Posts Tagged hemiplegic

[Abstract] Reliability of and Minimal Detectable Changes in Gait Performance Tests in Patients With Chronic Hemiplegic Stroke

Abstract

Purpose: This study aimed to determine the inter- and intra-rater reliability of and minimal detectable changes (MDCs) at the 95% confidence interval in gait performance tests in patients with chronic hemiplegic stroke who can walk independently.

Materials and Methods: Thirty patients with chronic hemiplegic stroke (24 men, 6 women, mean age 62.5 ± 11.6 years) were enrolled. Physical therapists (mean clinical experience: 9.1 ± 9.3 years) performed the timed up and go test (TUG), 10-m walk test (10MWT), and 6-min walk test (6MWT) 1 day apart. Reliability was evaluated using the intraclass correlation coefficient (ICC) and Bland–Altman analysis.

Results: The ICC was ≥0.9 for all tests, and no systematic bias was found. MDC at the 95% confidence interval was 1.9 s for the TUG, 0.16 m/s for the 10MWT, and 28.4 m for the 6MWT.

Discussion: We demonstrated excellent intra- and inter-rater reliability of all tests. These results suggest that gait performance tests are reliable.

Conclusion: These commonly used gait performance tests demonstrated high reliability and can be recommended to evaluate clinically meaningful improvements in patients with chronic hemiplegic stroke who can walk independently.

via Reliability of and Minimal Detectable Changes in Gait Performance Tests in Patients With Chronic Hemiplegic Stroke – Jun Hayakawa, Mitsuhiro Ochi, Yudai Yano, Ryutaro Matsugaki, Yuto Ogata, Takeshi Murakami, Satoshi Kuhara, Hideaki Itoh, Kenji Hachisuka, Satoru Saeki, 2020

, , , , ,

Leave a comment

[ARTICLE] Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair – Full Text

Abstract

To help hemiplegic patients with stroke to restore impaired or lost upper extremity functionalities efficiently, the design of upper limb rehabilitation robotics which can substitute human practice becomes more important. The aim of this work is to propose a powered exoskeleton for upper limb rehabilitation based on a wheelchair in order to increase the frequency of training and reduce the preparing time per training. This paper firstly analyzes the range of motion (ROM) of the flexion/extension, adduction/abduction, and internal/external of the shoulder joint, the flexion/extension of the elbow joint, the pronation/supination of the forearm, the flexion/extension and ulnar/radial of the wrist joint by measuring the normal people who are sitting on a wheelchair. Then, a six-degree-of-freedom exoskeleton based on a wheelchair is designed according to the defined range of motion. The kinematics model and workspace are analyzed to understand the position of the exoskeleton. In the end, the test of ROM of each joint has been done. The maximum error of measured and desired shoulder flexion and extension joint angle is 14.98%. The maximum error of measured and desired elbow flexion and extension joint angle is 14.56%. It is acceptable for rehabilitation training. Meanwhile, the movement of drinking water can be realized in accordance with the range of motion. It demonstrates that the proposed upper limb exoskeleton can also assist people with upper limb disorder to deal with activities of daily living. The feasibility of the proposed powered exoskeleton for upper limb rehabilitation training and function compensating based on a wheelchair is proved.

1. Introduction

Upper extremity motor function disorder is one of the most common rehabilitation problems of hemiplegic patients with stroke [1]. The upper extremity motor function plays a key role in self-care and social activities. The upper extremity motor function disorder significantly lowers the life quality of hemiplegic patients with stroke [23]. Due to the complex structure and functional requirement of the upper limb, the rehabilitation process of the impaired upper extremity functionality is a long and slow process. Because of the specificity of hemiplegic patients in diagnosis, treatment, and rehabilitation, it brings a series of severe psychological and financial stress for patients [4]. The outcome of upper limb motor rehabilitation depends on duration, intensity and task orientation of the training. The therapists assisting patients have to bear a significant burden. As a result, the duration of primary upper limb rehabilitation is becoming shorter [5]. To deal with these problems, robotic rehabilitation devices with the ability to conduct repetitive tasks and provide assistive force have been proposed.

The upper limb rehabilitation robots can be divided into two types according to the service environment. One is mainly used in the hospital and shared by several patients. The upper limb rehabilitation robots used in the hospital are often designed for rehabilitation training and difficult to move. Loris et al. introduced a dual exoskeleton robot called automatic recovery arm motility integrated system. The system was developed to enable therapists to define and apply patient-specific rehabilitation exercises with multidisciplinary support by neurologist, engineers, ICT specialists and designers [6]. Farshid et al. presented the GENTLE/S system for upper limb rehabilitation. The system comprised a 3-degree-of-freedom (DOF) robot manipulator with an extra 3 DOFs passive gimbal mechanism, an exercise table, computer screen, overhead frame, and chair [7]. Dongjin Lee et al. proposed a clinically relevant upper-limb exoskeleton that met the clinical requirements. The pilot test showed that the safety for robot-aided passive training of patients with spasticity could be guaranteed [8]. The other is mainly used in the home to assist a single patient in activities of daily living. A lightweight and ergonomic upper-limb rehabilitation exoskeleton named CLEVER ARM was proposed by Zeiaee et al. The wearable upper limb exoskeleton was to provide automated therapy to stroke patients [9]. Feiyun et al. presented a seven DOFs cable-driven upper limb exoskeleton for post-stroke patients. The experimental results showed that the activation levels of corresponding muscles were reduced by using the 7 DOFs cable-driven upper limb exoskeleton in the course of rehabilitation [10]. In fact, the main function of upper extremity rehabilitation devices is to provide the physical training and assist the patients with hemiplegia to perform the activities of daily living. However, hospital or home used rehabilitation robot research has just focused on one respect. Indeed, the research on the upper extremity rehabilitation devices would focus on both aspects of assisting and training. Therefore, it is important for the design of upper limb rehabilitation robot to combine the rehabilitation training and assisting function.

The stationary upper extremity rehabilitation robot cannot solve the movability problem and perform the activities of daily living (ADL). The wearable exoskeleton devices are limited by the weight. In addition, whether the range of motion is in line with the physiological joints directly determines the rehabilitation effect. Therefore, the key questions can be summarized as follows. Can we transform the weight of the upper limb exoskeleton to another movable device instead of wearing by patients? How to guarantee the design of upper limb exoskeleton joint axis in line with the human joint movement axis?

To deal with the above questions, some researchers have made useful explorations. Kiguchi et al. proposed a mechanism and control method of a mobile exoskeleton robot based on a wheelchair for 3 DOFs upper-limb motion assist [11]. The first problem of transforming weight can be solved by design based on a wheelchair. The physical rehabilitation training can be realized on a wheelchair instead of a stationary place. The ADL can be assisted by the powered upper limb exoskeleton on a moving platform. However, the rotation axis of each joint (shoulder joint and elbow joint) is moving with the movement of the upper limb. The gap between the exoskeleton and human arm is also changing by following their movement. It does not consider the problem about the movement consistency of the exoskeleton joint rotation axis and the human joint. As for this problem, Vitiello et al. proposed an elbow exoskeleton with double-shelled links to allow an ergonomic physical human-robot interface and a four-degree-of-freedom passive mechanism to allow the user’s elbow and robot axes to be constantly aligned during movement [12]. However, it focused on the elbow. The whole upper limb rehabilitation was not considered. In this work, we present a novel solution for the two mentioned problems. The range of motion of the upper extremity exoskeleton based on a wheelchair is defined through the normal people test. The 6 DOFs exoskeleton based on a wheelchair is designed according to the defined range of motion. The pursuit movement experiment and the assistive movement of drinking water of the prototype are done to verify the feasibility of the design.

2. Materials and Methods

2.1. Definition of ROM of Each Joint for the Specific Upper Limb Exoskeleton on a Wheelchair

To ensure the safety of using an upper limb exoskeleton on a wheelchair, it is necessary to know the ROM of the human upper limb on the wheelchair.

The parts of the upper limb taken into account in the design of an exoskeleton are shoulder, arm, elbow, wrist, and hand. Hand is excluded in an entire upper extremity exoskeleton design because of its complexity and dexterous characteristic. Therefore, this work only analyzes the ROM of the shoulder joint, elbow joint, and wrist joint. And then the upper limb exoskeleton designed in this paper must conform to the ROM of these joints.

2.1.1. Apparatus

The apparatus consists of a wheelchair and a motion analysis system. The motion analysis system can transmit data in real time. It was made in JIANGSU NEUCOGNIC MEDICAL CO., LTD. The system can measure the ROM of the shoulder joint, elbow joint and wrist joint of a person who sits on a common wheelchair. In Figure 1, there are two inertial sensors located at the upside and downside of backbone, and ten inertial sensors located at the upper limb (shoulder, upper arm, forearm, palm, and hand), respectively. All of the sensors in this system can measure the angles in x-, y– and z-axis. Sensor 1 and Sensor 4 are utilized to measure the ROM of the rear waist as the referring data. Sensor 4 and Sensor 6 are utilized to measure the ROM of the shoulder joint as the referring data. Sensor 6 and Sensor 7 are utilized to measure the ROM of the elbow joint as the referring data. Sensor 7 and hand sensor are utilized to measure the ROM of wrist joint as the referring data.[…]

Continue —-> Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair

, , , , , ,

Leave a comment

[Abstract] Optimizing Hand Rehabilitation Post-Stroke Using Interactive Virtual Environments

The main goal of this project is to refine and optimize elements of the virtual reality-based training paradigms to enhance neuroplasticity and maximize recovery of function in the hemiplegic hand of patients who had a stroke.

PIs, Sergei Adamovich, Alma Merians, Eugene Tunik, A.M. Barrett

This application seeks funding to continue our on-going investigation into the effects of intensive, high dosage task and impairment based training of the hemiparetic hand, using haptic robots integrated with complex gaming and virtual reality simulations. A growing body of work suggests that there is a time-limited period of post-ischemic heightened neuronal plasticity during which intensive training may optimally affect the recovery of gross motor skills, indicating that the timing of rehabilitation is as important as the dosing. However, recent literature indicates a controversy regarding both the value of intensive, high dosage as well as the optimal timing for therapy in the first two months after stroke. Our study is designed to empirically investigate this controversy. Furthermore, current service delivery models in the United States limit treatment time and length of hospital stay during this period. In order to facilitate timely discharge from the acute care hospital or the acute rehabilitation setting, the initial priority for rehabilitation is independence in transfers and ambulation. This has negatively impacted the provision of intensive hand and upper extremity therapy during this period of heightened neuroplasticity. It is evident that providing additional, intensive therapy during the acute rehabilitation stay is more complicated to implement and difficult for patients to tolerate, than initiating it in the outpatient setting, immediately after discharge. Our pilot data show that we are able to integrate intensive, targeted hand therapy into the routine of an acute rehabilitation setting. Our system has been specifically designed to deliver hand training when motion and strength are limited. The system uses adaptive algorithms to drive individual finger movement, gain adaptation and workspace modification to increase finger range of motion, and haptic and visual feedback from mirrored movements to reinforce motor networks in the lesioned hemisphere. We will translate the extensive experience gained in our previous studies on patients in the chronic phase, to investigate the effects of this type of intervention on recovery and function of the hand, when the training is initiated within early period of heightened plasticity. We will integrate the behavioral, the kinematic/kinetic and neurophysiological aspects of recovery to determine: 1) whether early intensive training focusing on the hand will result in a more functional hemiparetic arm; (2) whether it is necessary to initiate intensive hand therapy during the very early inpatient rehabilitation phase or will comparable outcomes be achieved if the therapy is initiated right after discharge, in the outpatient period; and 3) whether the effect of the early intervention observed at 6 months post stroke can be predicted by the cortical reorganization evaluated immediately after the therapy. This proposal will fill a critical gap in the literature and make a significant advancement in the investigation of putative interventions for recovery of hand function in patients post-stroke. Currently relatively little is known about the effect of very intensive, progressive VR/robotics training in the acute early period (5-30 days) post-stroke. This proposal can move us past a critical barrier to the development of more effective approaches in stroke rehabilitation targeted at the hand and arm.

via Hand Rehabilitation Post Stroke

, , , , , , , , , ,

Leave a comment

[ARTICLE] EMG based FES for post-stroke rehabilitation – Full Text

Abstract.

Annually, 15 million in world population experiences stroke. Nearly 9 million stroke
survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG based FES system can be used for effective upper limb motor re-education in post stroke upper limb rehabilitation. The  governing feature of the designed system is its synchronous activation, in which the FES stimulation is dependent on the amplitude of the EMG signal acquired from the unaffected upper limb muscle of the hemiplegic patient. This proportionate operation eliminates the undesirable  damage to the patient’s skin by generating stimulus in proportion to voluntary EMG signals. This feature overcomes the disadvantages of currently available manual motor re-education systems. This model can be used in home-based post stroke rehabilitation, to effectively improve the upper limb functions.

[…]

Download Full Text PDF

Available from: https://www.researchgate.net/publication/321478935_EMG_based_FES_for_post-stroke_rehabilitation [accessed Dec 09 2017].

 

, , , , , , , , ,

Leave a comment

[ARTICLE] Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors – Full Text

Abstract

Objective: The purpose of this study was to evaluate the Role of Practice and Mental Imagery on Hand function improvement in stroke survivors

Method: We conducted systematic review of the previous studies and searched electronic databases for the years 1995 to 2016, studies were selected according to inclusion criteria, and critical appraisal was done for each study and summarized the use of mental practice for the improvement in hand function in stroke survivors.

Results: Studies differed in the various aspects like intervention protocols, outcome measures, design, and patient’s characteristics. The total number of practice hours to see the potential benefits from mental practice varied widely. Results suggest that mental practice has potential to improve the upper extremity function in stroke survivors.

Conclusion: Although the benefits of mental practice to improve upper extremity function looks promising, general guidelines for the clinical use of mental practice is difficult to make. Future research should explore the dosage, factors affecting the use of Mental Practice, effects of Mental Therapy alone without in combination with other interventions.

Introduction

Up to 85% stroke survivors experience hemi paresis resulting in impaired movement of the arm, and hand as reported by Nakayama et al. Loss of arm function adversely affects quality of life and functional motor recovery in affected upper extremity.

Sensorimotor deficits in the upper limb, such as weakness, decreased speed of movement, decreased angular excursion and impaired temporal coordination of the joints impaired upper-limb and trunk coordination.

Treatment interventions such as materials-based occupations constraint-induced movement therapy modified constraint-induced movement therapy and task-related or task-specific training are common training methods for remediating impairments and restoring function in the upper limb.

For the improvement of upper and lower functions, physical therapy provides training for functional improvement and fine motor. For most patients such rehabilitation training has many constraints of time, place and expense, accordingly in recent studies, clinical methods such as mental practice for improvement of the upper and lower functions have been suggested.

Mental practice is a training method during which a person cognitively rehearses a physical skill using motor imagery in the absence of overt, physical movements for the purpose of enhancing motor skill performance. For example, a review of the duration of mental movements found temporal equivalence for reaching; grasping; writing; and cyclical activities, such as walking and running.

Evidence for the idea that motor imagery training could enhance the recovery of hand function comes from several lines of research: the sports literature; neurophysiologic evidence; health psychology research; as well as preliminary findings using motor imagery techniques in stroke patients.

Much interest has been raised by the potential of Motor Practice of Motor task, also called “Motor Imagery” as a neuro rehabilitation technique to enhance Motor Recovery following Stroke.

Mental Practice is a training method during which a person cognitively rehearsals a physical skill using Motor Imagery in the absence of Physical movements for the purpose of enhancing Motor skill performance.

The merits of this intervention are that the patient concentration and motivation can be enhanced without regard to time and place and the training is possible without expensive equipment.

Researchers have speculated about its utility in neurorehabilitation. In fact, several review articles examining the impact of mental practice have been published. Two reviews examined stroke outcomes in general and did not limit their review to upper-extremity–focused outcomes. Both articles included studies that were published in 2005 or earlier.

Previous reviews, however, did not attempt to rate the studies reviewed in terms of the level of evidence. Thus, in this review, we determined whether mental practice is an effective intervention strategy to remediate impairments and improve upper-limb function after stroke by examining and rating the current evidence. […]

Continue –>  Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors | Insight Medical Publishing

, , , , , , , , , , , , ,

Leave a comment

[Abstract] A survey on sEMG control strategies of wearable hand exoskeleton for rehabilitation

Abstract:

Surface electromyographic (sEMG) signals is one most commonly used control source of exoskeleton for hand rehabilitation. Due to the characteristics of non-invasive, convenient collection and safety, sEMG can conform to the particularity of hemiplegic patients’ physiological state and directly reflect human’s neuromuscular activity. By way of collecting, analyzing and processing, sEMG signals corresponding to identify the target movement model would be translated into robot movement control instructions and input into hand rehabilitation exoskeleton controller. Then patients’ hand can be directed to achieve the realization of the similar action finally. In this paper, the recent key technologies of sEMG-based control for hand rehabilitation robots are reviewed. Then a summarization of controlling technology principle and methods of sEMG signal processing employed by the hand rehabilitation exoskeletons is presented. Finally suitable processing methods of multi-channel sEMG signals for the controlling of hand rehabilitation exoskeleton are put forward tentatively and the practical application in hand exoskeleton control is commented also.

Source: A survey on sEMG control strategies of wearable hand exoskeleton for rehabilitation – IEEE Xplore Document

, , , , , , , , , , , , , , , ,

Leave a comment

[Abstract] Gaming-based virtual reality therapy for the rehabilitation of upper extremity function after stroke.

Abstract

Objective To investigate the effects of playing virtual reality games on the recovery of hemiplegic upper extremities after stroke.

Methods Thirty stroke patients with hemiplegic upper extremities were randomly assigned to a treatment group (n=15) or a control group (n=15).Both groups received routine medication and conventional physical therapy,while the treatment group was additionally given (Nintendo) gaming-based virtual reality therapy.Before and after 2 weeks of treatment,the patients in both groups were evaluated using the Fugl-Meyer Assessment for the Upper Extremities (FMA-UE),Brunnstrom staging and co-contraction ratios (CRs).Surface electromyogram signals from the biceps brachii and triceps brachii were also recorded during maximum isometric voluntary flexion and extension of the affected elbow.

Results No significant differences in any of the measurements were observed between the 2 groups before or after the intervention.Both groups demonstrated significant increases in their average FMA-UE score,Brunnstrom staging and CRs.

Conclusions Virtual reality gaming using a Wii controller is as effective as conventional therapy in enhancing upper extremity motor function and elbow flexion and extension after stroke.

Source: Gaming-based virtual reality therapy for the rehabilitation of upper extremity function after stroke | BVS Violência e Saúde

, , , , , , , , ,

Leave a comment

[Abstract] Effectiveness of Bilateral Arm Training for Improving Extremity Function and Activities of Daily Living Performance in Hemiplegic Patients

Background

Bilateral movement therapy, which encourages simultaneous use of the limbs on both the affected and nonaffected sides, is known to help in motor function recovery in hemiplegic patients. However, studies on the effectiveness of bilateral arm training for improving upper limb function and activities of daily living (ADL) performance in hemiplegic stroke patients are lacking. The present study investigated the effectiveness of bilateral arm training for improving upper limb function and ADL performance in hemiplegic stroke patients.

Methods

The study included 30 hemiplegic stroke patients. The patients were randomly divided into an experimental group (n = 15) and a control group (n = 15). All patients received a uniform general occupational therapy session lasting 30 minutes 5 times a week for 8 weeks. The experimental group received an additional session of bilateral arm training lasting 30 minutes, and the control group received an additional session of general occupational therapy lasting 30 minutes. The Fugl-Meyer assessment (FMA), Box and Block Test (BBT), and modified Barthel index (MBI) were used for evaluation.

Results

In both the experimental and control groups, the FMA, BBT, and MBI scores were significantly higher after the intervention than before the intervention (P <.05). The changes in the FMA, BBT, and MBI scores were greater in the experimental group than in the control group (P <.05).

Conclusions

Bilateral arm training along with general occupational therapy might be more effective than occupational therapy alone for improving upper limb function and ADL performance in hemiplegic stroke patients.

Source: Effectiveness of Bilateral Arm Training for Improving Extremity Function and Activities of Daily Living Performance in Hemiplegic Patients – Journal of Stroke and Cerebrovascular Diseases

, , , ,

Leave a comment

[Abstract] Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: A randomized pilot controlled study.

Abstract

Objective: The purpose of the study was to evaluate the feasibility and efficacy of robot-assisted hand rehabilitation in improving arm function abilities in sub-acute hemiplegic patients.

Design: Randomized controlled pilot study.

Setting: Inpatient rehabilitation centers.

Participants: Thirty hemiplegic stroke patients (Ashworth spasticity index <3) were recruited and randomly divided into a Treatment group (TG) and Control group (CG).

Interventions: Patients in the TG received intensive hand training with Gloreha, a hand rehabilitation glove that provides computer-controlled, repetitive, passive mobilization of the fingers, with multisensory feedback. Patients in the CG received the same amount of time in terms of conventional hand rehabilitation.

Main outcome measures: Hand motor function (Motricity Index, MI), fine manual dexterity (Nine Hole Peg Test, NHPT) and strength (Grip and Pinch test) were measured at baseline and after rehabilitation, and the differences, (Δ) mean(standard deviation), compared between groups.

Results Twenty-seven patients concluded the program: 14 in the TG and 13 in the CG. None of the patients refused the device and only one adverse event of rheumatoid arthritis reactivation was reported. Baseline data did not differ significantly between the two groups. In TG, ΔMI 23(16.4), ΔNHPT 0.16(0.16), ΔGRIP 0.27(0.23) and ΔPINCH 0.07(0.07) were significantly greater than in CG, ΔMI 5.2(9.2), ΔNHPT 0.02(0.07), ΔGRIP 0.03(0.06) and ΔPINCH 0.02(0.03)] (p=0.002, p=0.009, p=0.003and p=0.038, respectively).

Conclusions: Gloreha Professional is feasible and effective in recovering fine manual dexterity and strength and reducing arm disability in sub-acute hemiplegic patients.

Source: Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: A randomized pilot controlled study

, , , , , , , , , ,

Leave a comment

[Systematic Review] Effectiveness of Mirror Therapy for Lower Extremity Post-Stroke – Full Text

Summary

Background/Objective

This study reviewed the current evidence on the effectiveness of mirror therapy (MT) on improving the motor functions of the hemiplegic lower extremity (LE) in adult clients with stroke.

Methods

A systematic review was conducted of studies published in English in the 10-year period 2005–2015, retrieved from seven electronic databases: Medline, PubMed, CINAHL, PsychInfo, Science Direct, Cochrane and TBI Rehabilitation. Only articles that focused on the effects of MT on hemiparesis affecting LE function and performance were included. The methodological quality of the studies was appraised using the Physiotherapy Evidence Database Scale (PEDro).

Results

The literature search yielded 14 studies that satisfied the selection criteria, of which five (4 randomised controlled trials and 1 case study) were reviewed after screening. Despite the heterogeneity of the studies, they showed MT to be effective in improving some of the motor functions of the LE at different stages of stroke. However, they offered little evidence on MT’s long-term effects and for when is the optimal stage to start MT after stroke onset.

Conclusion

Further research is needed to determine the best treatment regimen and optimal time to initiate MT intervention in terms of the phases of stroke. No firm conclusions can be drawn on the effectiveness of MT on the hemiplegic LE until more evidence is available.

Continue —>  Systematic Review: Effectiveness of Mirror Therapy for Lower Extremity Post-Stroke

, , , , ,

Leave a comment

%d bloggers like this: