Posts Tagged hemodynamics

[Abstract] A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study  

Abstract:

The optimal conditions inducing proper brain activation during performance of rehabilitation robots should be examined to enhance the efficiency of robot rehabilitation based on the concept of brain plasticity. In this study, we attempted to investigate differences in cortical activation according to the speeds of passive wrist movements performed by a rehabilitation robot for stroke patients. 9 stroke patients with right hemiparesis participated in this study. Passive movements of the affected wrist were performed by the rehabilitation robot at three different speeds: 0.25 Hz; slow, 0.5Hz; moderate and 0.75 Hz; fast. We used functional near-infrared spectroscopy to measure the brain activity during the passive movements performed by a robot. Group-average activation map and the relative changes in oxy-hemoglobin (ΔOxyHb) in two regions of interest: the primary sensory-motor cortex (SM1); premotor area (PMA) and region of all channels were measured. In the result of group-averaged activation map, the contralateral SM1, PMA and somatosensory association cortex (SAC) showed the greatest significant activation according to the movements at 0.75 Hz, while there is no significantly activated area at 0.5 Hz. Regarding ΔOxyHb, no significant diiference was observed among three speeds regardless of region. In conclusion, the contralateral SM1, PMA and SAC showed the greatest activation by a fast speed (0.75 Hz) rather than slow (0.25 Hz) and moderate (0. 5 Hz) speed. Our results suggest an optimal speed for execution of the wrist rehabilitation robot. Therefore, we believe that our findings might point to several promising applications for future research regarding useful and empirically-based robot rehabilitation therapy.

Source: A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses – An Application in Ischemic Stroke – Full Text

Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral haemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15sec was found after a cumulative 550 sec stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.

Continue —> Frontiers | Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses—An Application in Ischemic Stroke | Neural Technology

Figure 1. Current density magnitude (normJ) at the scalp surface (A), skull surface (B), CSF surface (C), gray matter surface (D), and white matter surface (E) with 1 mA F3 anodal and Cz cathodal tDCS.

, , , , , , , ,

Leave a comment

%d bloggers like this: