Posts Tagged HEP

[ARTICLE] Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke – Full Text



Impairment of upper extremity function is a common outcome following stroke, to the detriment of lifestyle and employment opportunities. Yet, access to treatment may be limited due to geographical and transportation constraints, especially for those living in rural areas. While stroke rates are higher in these areas, stroke survivors in these regions of the country have substantially less access to clinical therapy. Home therapy could offer an important alternative to clinical treatment, but the inherent isolation and the monotony of self-directed training can greatly reduce compliance.


We developed a 3D, networked multi-user Virtual Environment for Rehabilitative Gaming Exercises (VERGE) system for home therapy. Within this environment, stroke survivors can interact with therapists and/or fellow stroke survivors in the same virtual space even though they may be physically remote. Each user’s own movement controls an avatar through kinematic measurements made with a low-cost, Kinect™ device. The system was explicitly designed to train movements important to rehabilitation and to provide real-time feedback of performance to users and clinicians. To obtain user feedback about the system, 15 stroke survivors with chronic upper extremity hemiparesis participated in a multisession pilot evaluation study, consisting of a three-week intervention in a laboratory setting. For each week, the participant performed three one-hour training sessions with one of three modalities: 1) VERGE system, 2) an existing virtual reality environment based on Alice in Wonderland (AWVR), or 3) a home exercise program (HEP).


Over 85% of the subjects found the VERGE system to be an effective means of promoting repetitive practice of arm movement. Arm displacement averaged 350 m for each VERGE training session. Arm displacement was not significantly less when using VERGE than when using AWVR or HEP. Participants were split on preference for VERGE, AWVR or HEP. Importantly, almost all subjects indicated a willingness to perform the training for at least 2–3 days per week at home.


Multi-user VR environments hold promise for home therapy, although the importance of reducing complexity of operation for the user in the VR system must be emphasized. A modified version of the VERGE system is currently being used in a home therapy study.


Chronic upper extremity impairment is all too common among the more than 7 million stroke survivors in the U.S. [1]. These impairments have disabling effects on all facets of life, including self-care, employment, and leisure activities. Repetitive practice of movement, such as arm movement, is thought to improve outcomes for stroke survivors [234], but access to the clinic for therapy is often limited by geography or lack of transportation. While almost 50 million Americans live in rural areas, 90% of physical and occupational therapists live in major urban areas [5]. Per capita ratios of therapists to overall population are 50% larger in urban as compared to rural regions of the country [6]. Rates of stroke in these rural areas, however, exceed those of major urban areas [789]. Thus, a large number of stroke survivors have limited access to skilled treatment. Data from 21 states found that only 30% of stroke survivors received outpatient rehabilitation, a much lower percentage than that recommended by clinical practice guidelines [10]. Declines seen following discharge from inpatient rehabilitation are undoubtedly exacerbated by limited access to clinical therapy [11].

Disparity in quality of care has been recognized in the acute treatment of stroke for a number of years. This situation has led to the development of telemedicine to extend expert care to individuals during the initial hours and days following the stroke, advance site-independent treatment, and create models of care in rural areas [121314]. Therapy options after this acute period, however, generally remain limited for stroke survivors in rural areas. Akin to the telemedicine efforts, telerehabilitation treatments have been proposed. However, telerehabilitation interactions are typically limited to off-line monitoring by the therapist [8915], phone calls between a therapist and client [1617], or videoconferencing [181920]. While systems allowing more direct interaction have been proposed, the hardware cost and complexity limit applicability for home-based therapy [212223]. Hence, the therapist is relegated to the role of observer and the intimacy of a clinical therapy session is lost. Therapy options are substantially restricted, as is the available feedback.

Recently, multiple investigators have been exploring means of improving home-based therapy through the development of systems or serious games which permit multiple, simultaneous users [24252627282930]. These efforts have proposed the inclusion of multiple users as a means to overcome resistance to home-based therapy that may result due to isolation or lack of engagement. Indeed, studies have observed a preference for multi-user vs, single-user therapy when utilizing these systems [2629]. However, these systems have largely been limited to control of a one-dimensional or two-dimensional space and both users remain in the same physical location (e.g., side by side). One team of researchers did develop a framework for supporting distant users (such as a therapist in the hospital and a stroke survivor in their home), but game control was limited to one or two dimensions [3132].

Here, we describe the development of a fully three-dimensional (3D) virtual reality environment (VRE) for home-based therapy in which multiple, remote users can interact in real time. In this Virtual Environment for Rehabilitative Gaming Exercises (VERGE) system [33], movement of the user is mapped to corresponding movement of an avatar to foster a sense of presence in and engagement with the VRE. The 3D environment encompasses aspects of clinical therapy, such as transport of objects or movement of the hand into specified regions of the upper extremity workspace. Although the importance of 3D movements in VR environments is a topic of debate [3435], movements tested in environments with lesser degrees-of-freedom (DOF) are often very limited and dictated by a one DOF robot. These movements differ substantially from the types of movements normally seen in 3D reaching movements [436]. The network architecture of the system allows users to be located remotely from each other, such as a stroke survivor in their home, a therapist in a clinic, or a stroke survivor’s friend or relative living in another city or state. The virtual nature of the environment allows even very limited movements in the physical world to have successful functional outcomes in the virtual world, thereby offering a sense of accomplishment and motivation for successive attempts. Additionally, task difficulty can easily be modified in order to maintain the proper level of challenge, which is important for motor learning in general [37] and rehabilitation in particular [38].

We developed and performed preliminary testing of the VERGE system to gauge user response in comparison to two other therapy modalities that could be used for home therapy: an existing virtual reality system based on the Alice in Wonderland story (AWVR) [39] and a home exercise program (HEP). Fifteen stroke survivors completed three, one-hour therapy sessions per week with each of the three therapy modalities (9 sessions total). We hypothesized that the use of the VERGE system would not decrease the amount of arm movement promoted, in comparison with the AWVR and HEP modalities. We further expected that users’ self-described engagement would be greatest for the VERGE system due to the presence of a partner.


VERGE System


At its core, VERGE consists of a 3D VRE in which avatars interact with virtual objects. To date, we have created two such VREs, one depicting a dining room and the other a kitchen. The scenes were created in Maya (Autodesk Inc., San Rafael, CA) and imported into Unity 3D (Unity 4.5, Unity Technologies, San Francisco, CA), the software platform controlling VERGE. The VREs are rich in detail in order to provide depth cues [40]. Thus, depth can be conveyed without the need for stereovision, such as that provided by head mounted displays (HMDs). We have found that HMDs can be difficult for stroke survivors to use due to the limited field-of-view and, especially, involuntary coupling between neck and arm motion [4142]. The latter may lead to complications with moving the arm while keeping the head steady.

The avatars were created from a custom skeleton in Maya (Autodesk Inc., San Rafael, CA), which was rigged to an existing mesh of the “casual young man” 3D model, purchased and modified for our project (Fig. 1). We created the custom skeleton to match the topology of the existing character while corresponding to the skeletal joint naming convention in Unity 3D. The skeleton (and thus avatar) is animated according to joint angle data captured with a Kinect™ I optical tracker (Microsoft Corp., Redmont, WA). The 3D motion data from the Kinect™ are transmitted to the Unity code through UDP to drive the movement of the avatar in the virtual environment.


Continue —> Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , , , , , , , ,

Leave a comment

[ARTICLE] The HAAPI (Home Arm Assistance Progression Initiative) Trial


Background. Geographical location, socioeconomic status, and logistics surrounding transportation impede access of poststroke individuals to comprehensive rehabilitative services. Robotic therapy may enhance telerehabilitation by delivering consistent and state-of-the art therapy while allowing remote monitoring and adjusting therapy for underserved populations. The Hand Mentor Pro (HMP) was incorporated within a home exercise program (HEP) to improve upper-extremity (UE) functional capabilities poststroke.

Objective. To determine the efficacy of a home-based telemonitored robotic-assisted therapy as part of a HEP compared with a dose-matched HEP-only intervention among individuals less than 6 months poststroke and characterized as underserved.

Methods. In this prospective, single-blinded, multisite, randomized controlled trial, 99 hemiparetic participants with limited access to UE rehabilitation were randomized to either (1) the experimental group, which received combined HEP and HMP for 3 h/d ×5 days ×8 weeks, or (2) the control group, which received HEP only at an identical dosage. Weekly communication between the supervising therapist and participant promoted compliance and progression of the HEP and HMP prescription. The Action Research Arm Test and Wolf Motor Function Test along with the Fugl-Meyer Assessment (UE) were primary and secondary outcome measures, respectively, undertaken before and after the interventions.

Results. Both groups demonstrated improvement across all UE outcomes. Conclusions. Robotic + HEP and HEP only were both effectively delivered remotely. There was no difference between groups in change in motor function over time. Additional research is necessary to determine the appropriate dosage of HMP and HEP.

Source: The HAAPI (Home Arm Assistance Progression Initiative) Trial

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Incorporating Robotic-Assisted Telerehabilitation in a Home Program to Improve Arm Function Following Stroke – Full Text HTML


Background and Purpose: After stroke, many individuals lack resources to receive the intensive rehabilitation that is thought to improve upper extremity motor function. This case study describes the application of a telerehabilitation intervention using a portable robotic device combined with a home exercise program (HEP) designed to improve upper extremity function.

Case Description: The participant was a 54-year-old man, 22 weeks following right medullary pyramidal ischemic infarct. At baseline, he exhibited residual paresis of the left upper extremity, resulting in impaired motor control consistent with a flexion synergistic pattern, scoring 22 of 66 on the Fugl-Meyer Assessment.

Intervention: The participant completed 85 total hours of training (38 hours of robotic device and 47 hours of HEP) over the 8-week intervention period.

Outcomes: The participant demonstrated an improvement of 26 points on the Action Research Arm Test, 5 points on the Functional Ability Scale portion of the Wolf Motor Function Test, and 20 points on the Fugl-Meyer Assessment, all of which surpassed the minimal clinically important difference. Of the 17 tasks of the Wolf Motor Function Test, he demonstrated improvement on 11 of the 15 time-based tasks and both strength measures. The participant reported an overall improvement in his recovery from stroke on the Stroke Impact Scale quality-of-life questionnaire from 40 of 100 to 65 of 100. His score on the Center for Epidemiologic Studies Depression Scale improved by 19 points.

Discussion: This case demonstrates that robotic-assisted therapy paired with an HEP can be successfully delivered within a home environment to a person with stroke. Robotic-assisted therapy may be a feasible and efficacious adjunct to an HEP program to elicit substantial improvements in upper extremity motor function, especially in those persons with stroke who lack access to stroke rehabilitation centers.

Video Abstract available (See Video, Supplemental Digital Content 1, for more insights from the authors.

Full Text HTML –> Incorporating Robotic-Assisted Telerehabilitation in a Home… : Journal of Neurologic Physical Therapy.

, , , , , , , , , ,

Leave a comment

%d bloggers like this: