Posts Tagged home rehabilitation

[WEB SITE] HOMEREHAB – Development of Robotic Technology for Post-Stroke Home Tele-Rehabilitation – The European Coordination Hub for Open Robotics Development

homerehab1

Rehabilitation can help hemiparetic patients to learn new ways of using and moving their weak arms and legs. With immediate therapy it is also possible that people who suffer from hemiparesis may eventually regain movement. However, reductions in healthcare reimbursement place constant demands on rehabilitation specialists to reduce the cost of care and improve productivity. Service providers have responded by shortening the length of patient hospitalisation.

The HOMEREHAB project will develop a new tele-rehabilitation robotic system for delivering therapy to stroke patients at home. It will research on the complex trade-off between robotic design requirements for in home systems and the performance required for optimal rehabilitation therapies, which current commercial systems designed for laboratories and hospitals do not take into account. Additionally, the new home scenario also demands for the smart monitoring of the patient’s physiological state, and the adaptation of the rehabilitation therapy for an optimal service.

 

Contact:

Universidad Miguel Hernández de Elche (UMH)
Nicolas M. Garcia-Aracil
Email: Nicolas.garcia@umh.es
Internet: www.umh.es

 

CEIT – Centro de Estudios e Investigaciones Técnicas
Iñaki Díaz
Email: idiaz@ceit.es
Internet: www.ceit.es

 

Instead Technologies
Alejandro García Moll
Email: Alejandro.garciam@gouhm.umh.es
Internet: www.gouhm.uhm.es

umh

 

 

ceit

 

capture

via HOMEREHAB – Development of Robotic Technology for Post-Stroke Home Tele-Rehabilitation – The European Coordination Hub for Open Robotics Development

, , , , , ,

Leave a comment

[ARTICLE] An Upper Extremity Rehabilitation System Using Efficient Vision-Based Action Identification Techniques – Full Text PDF

Abstract

This study proposes an action identification system for home upper extremity rehabilitation.
In the proposed system, we apply an RGB-depth (color-depth) sensor to capture the image sequences of the patient’s upper extremity actions to identify its movements. We apply a skin color detection technique to assist with extremity identification and to build up the upper extremity skeleton points.
We use the dynamic time warping algorithm to determine the rehabilitation actions. The system presented herein builds up upper extremity skeleton points rapidly. Through the upper extremity of the human skeleton and human skin color information, the upper extremity skeleton points are effectively established by the proposed system, and the rehabilitation actions of patients are identified by a dynamic time warping algorithm. Thus, the proposed system can achieve a high recognition rate of 98% for the defined rehabilitation actions for the various muscles.
Moreover, the computational speed of the proposed system can reach 125 frames per second—the processing time per frame is less than 8 ms on a personal computer platform. This computational efficiency allows efficient extensibility for future developments to deal with complex ambient environments and for implementation in embedded and pervasive systems.
The major contributions of the study are:
  1. The proposed system is not only a physical exercise game, but also a movement training program for specific muscle groups;
  2. The hardware of upper extremity rehabilitation system included a personal computer with personal computer and a depth camera. These are economic equipment, so that patients who need this system can set up one set at home;
  3. patients can perform rehabilitation actions in sitting position to prevent him/her from falling down during training;
  4. The accuracy rate of identifying rehabilitation action is as high as 98%, which is sufficient for distinguishing between correct and wrong action when performing specific action trainings;
  5. The proposed upper extremity rehabilitation system is real-time, efficient to vision-based action identification, and low-cost hardware and software, which is affordable for most families.

via “An Upper Extremity Rehabilitation System Using Efficient Vision-Based Action Identification Techniques” by Yen-Lin Chen

, , , , , , , ,

Leave a comment

[Abstract] Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study

Objective: To evaluate the feasibility and safety of home rehabilitation of the hand using a robotic glove, and, in addition, its effectiveness, in hemiplegic patients after stroke.

Methods: In this non-randomized pilot study, 21 hemiplegic stroke patients (Ashworth spasticity index ≤ 3) were prescribed, after in-hospital rehabilitation, a 2-month home-program of intensive hand training using the Gloreha Lite glove that provides computer-controlled passive mobilization of the fingers. Feasibility was measured by: number of patients who completed the home-program, minutes of exercise and number of sessions/patient performed. Safety was assessed by: hand pain with a visual analog scale (VAS), Ashworth spasticity index for finger flexors, opponents of the thumb and wrist flexors, and hand edema (circumference of forearm, wrist and fingers), measured at start (T0) and end (T1) of rehabilitation. Hand motor function (Motricity Index, MI), fine manual dexterity (Nine Hole Peg Test, NHPT) and strength (Grip test) were also measured at T0 and T1.

Results: Patients performed, over a mean period 56 (49–63) days, a total of 1699 (1353–2045) min/patient of exercise with Gloreha Lite, 5.1 (4.3–5.8) days/week. Seventeen patients (81%) completed the full program. The mean VAS score of hand pain, Ashworth spasticity index and hand edema did not change significantly at T1 compared to T0. The MI, NHPT and Grip test improved significantly (p = 0.0020, 0.0156 and 0.0024, respectively) compared to baseline.

Conclusion: Gloreha Lite is feasible and safe for use in home rehabilitation. The efficacy data show a therapeutic effect which need to be confirmed by a randomized controlled study.

 

via Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study: Topics in Stroke Rehabilitation: Vol 0, No 0

, , , , , , , , ,

Leave a comment

[Abstract] Quantification method of motor function recovery of fingers by using the device for home rehabilitation – IEEE Conference Publication

Abstract:

After leaving hospital, patients can carry out rehabilitation by using rehabilitation devices. However, they cannot evaluate the recovery by themselves. For this problem, a device which can both carry out the rehabilitation and evaluation of the degree of recovery is required. This paper proposes the method that quantifies the recovery of the paralysis of fingers to evaluate a patient automatically. A finger movement is measured by a pressure sensor on the rehabilitation device we have developed. A measured data is used as a time-series signal, and the recovery of the paralysis is quantified by calculating the dissimilarity between a healthy subject’s signal and the patient’s signal. The results of those dissimilarities are integrated over all finger to be used as a quantitative scale of recovery. From the experiment conducted with hemiplegia patients and healthy subjects, we could trace the process of the recovery by the proposed method.

Source: Quantification method of motor function recovery of fingers by using the device for home rehabilitation – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[Abstract] Delivering Remote Rehabilitation at Home: An Integrated Physio-Neuro Approach to Effective and User Friendly Wearable Devices – SpringerLink

Abstract

There is a global shortage of manpower and technology in rehabilitation to attend to the five million new patients who are left disabled every year with stroke. Neuroplasticity is increasingly recognized to be a primary mechanism to achieve significant motor recovery. However, most rehabilitation devices either limit themselves to mechanical repetitive movement practice at a limb level or focus only on cognitive tasks. This may result in improvements in impairment but seldom translates into effective limb and hand use in daily activities. This paper presents an easy-to-use, wearable upper limb system, SynPhNe (pronounced like “symphony”), which trains brain and muscle as one system employing neuroplasticity principles. A summary of clinical results with stroke patients is presented. A new, wireless, home-use version of the solution architecture has been proposed, which can make it possible for patients to do guided therapy at home and thus have access to more therapy hours.

Source: Delivering Remote Rehabilitation at Home: An Integrated Physio-Neuro Approach to Effective and User Friendly Wearable Devices | SpringerLink

, , , , ,

Leave a comment

[WEB SITE] RAPAEL Smart Glove Receives CES 2017 Innovation Award – Rehab Managment

The RAPAEL Smart Glove, a wearable device from NEOFECT, Burlingame, Calif, offers at-home game-based hand therapy for stroke patients who cannot visit a clinic due to economic or geographic reasons.

Simply wear the glove, connect to the “RAPAEL” app, and play the rehabilitation games.

The Smart Glove—a CES 2017 Innovation Awards Honoree for the hospital edition—leads the patient through games that stimulate daily activities, in one or two 30-minute sessions per day.

Built-in sensors capture the patient’s movement and positioning data, and transfer it via Bluetooth to a tablet, where it is analyzed. This analysis enables the games’ difficulty levels to be adjusted and the patient’s exercise schedule to be customized.

Training movements include forearm supination/pronation, wrist flexion/extension, wrist radial/ulnar deviation, and finger flexion/extension, per the company’s website.

[Source: NEOFECT]

Source: RAPAEL Smart Glove Receives CES 2017 Innovation Award – Rehab Managment

, , , , , , , , , , ,

Leave a comment

[WEB SITE] “Virtual physiotherapist” helps paralysed patients exercise using computer games – Medical News Today

A simple device can improve the ability of patients with arm disability to play physiotherapy-like computer games, according to new research.

The low-cost invention, called gripAble™, consists of a lightweight electronic handgrip, which interacts wirelessly with a standard PC tablet to enable the user to play arm-training games. To use it, patients squeeze, turn or lift the handgrip, and it vibrates in response to their performance whilst playing. The device uses a novel mechanism, which can detect the tiny flicker movements of severely paralysed patients and channel them into controlling a computer game.

Special-training computer games, controlled by the device, have been designed for people with no previous experience of using computers. For example one computer game requires the user to squeeze repeatedly to slowly reveal a photograph.

In a new study published in PLOS ONE, researchers from Imperial College London have shown that using the device increased the proportion of paralysed stroke patients able to direct movements on a tablet screen by 50 per cent compared to standard methods. In addition, the device enabled more than half of the severely disabled patients in the study to engage with arm-training software, whereas none of the patients were able to use conventional control methods such as swiping and tapping on tablets and smartphones.

Over five million people in the UK live with arm weakness – approximately one million of them following a stroke, plus others who have neurological and musculoskeletal conditions. Arm weakness contributes to physical disability that requires expensive long-term care. For example, treatment for stroke costs the NHS £9 billion a year, which is five per cent of the total NHS budget. The only intervention shown to improve arm function is repetitive, task-specific exercise but this is limited by the cost and availability of physiotherapists.

The gripAble™ device is designed for patients to use unsupervised in hospital and at home. The research tested the gripAble™ device with stroke patients who had suffered successive strokes with arm paralysis at Imperial College Healthcare NHS Trust over six months. The researchers assessed their ability to use gripAble™ to control mobile gaming devices such as tablets that could be used for rehabilitation and compared this to their use of conventional methods such as swiping and tapping.

They found that 93 per cent of patients were able to make meaningful movements to direct the cursor as a result of using gripAble™. In contrast, 67 per cent of patients were able to use mobile gaming devices by swiping on a tablet. For other types of control over the tablet, such as tapping or using joysticks, the number of patients able to make meaningful movements was lower.

The success of the device was most apparent for patients with severe arm weakness: no patients in this group were able to use conventional controls to play training games, whereas 58% could use gripAble™.

In a smaller sub-group the trial also demonstrated that severely disabled patients could play computer games that involve tracking a target with almost as good accuracy as healthy people.

The clinical trial was carried out at Charing Cross Hospital, part of Imperial College Healthcare Trust, between 2014 and 2015. The team is now carrying out a feasibility study in North West London to test the use of the device in patients’ homes.

The potential of gripAble™ as a means of delivering cost-effective physiotherapy was recognised by a NHS England Innovation Challenge Prize in early 2016.

Lead researcher Dr Paul Bentley, who is a Clinical Senior Lecturer at Imperial College London and Honorary Consultant Neurologist at Imperial College Healthcare NHS Trust , said: “In the UK 100,000 new cases of arm weaknesses are diagnosed each year following a stroke. Often this impairs people’s ability to carry out daily activities, requiring long-term care. The use of mobile-gaming could provide a cost-effective and easily available means to improve the arm movements of stroke patients but in order to be effective patients of all levels of disability should be able to access it.

“We have developed the gripAble™ device to improve arm and cognitive function of patients who have mild to severe arm weaknesses. Unlike other therapies currently on the NHS, gripAble™ is a low cost device which can be used in hospitals and independently by patients at home. As such it could potentially help save the health service millions of pounds. We now intend to further develop the device so we can help more patients who are currently suffering from the effects of poor arm and upper body mobility.”

The researchers collaborated with Human Robotics Group at Imperial College London to develop the device. The research is funded by the Imperial Confidence in Concept Award, the NHS England Innovation Challenge Prize, and the EU 7th Framework Programme for Research and Technological Development grants.

The gripAble™ device is an example of the work of the Imperial Academic Health Science Centre (AHSC). This is a partnership between Imperial College London and three NHS Trusts, which aims to improve patient outcomes by harnessing scientific discoveries and translating them as quickly as possible into new diagnostics, devices and therapies, in the NHS and beyond. The researchers are working with Imperial Innovations, the College’s technology transfer partner, to spinout gripAble™ as a digital healthcare start-up to commercialise the device.

Article: Democratizing neurorehabilitation: how accessible are low-cost mobile-gaming technologies for self-rehabilitation of arm disability in stroke? Rinne P, Mace M, Nakornchai T, Zimmerman K, Fayer S, Sharma P, et al., PLoS ONE, doi:10.1371/journal.pone.0163413, published 5 October 2016.

Source: “Virtual physiotherapist” helps paralysed patients exercise using computer games – Medical News Today

, , , , , ,

Leave a comment

[ARTICLE] Use of NeuroEyeCoach™ to Improve Eye Movement Efficacy in Patients with Homonymous Visual Field Loss – Full Text

Abstract

Visual field deficits are common in patients with damaged retinogeniculostriate pathways. The patient’s eye movements are often affected leading to inefficient visual search. Systematic eye movement training also called compensatory therapy is needed to allow patients to develop effective coping strategies. There is a lack of evidence-based, clinical gold-standard registered medical device accessible to patients at home or in clinical settings and NeuroEyeCoach (NEC) is developed to address this need. In three experiments, we report on performance of patients on NEC compared to the data obtained previously on the earlier versions of the search task (); we assessed whether the self-administered computerised tasks can be used to monitor the progress () and compared the findings in a subgroup of patients to a healthy control group. Performance on cancellation tasks, simple visual search, and self-reported responses on activities of daily living was compared, before and after training. Patients performed similarly well on NEC as on previous versions of the therapy; the inbuilt functionality for pre- and postevaluation functions was sensitive to allowing assessment of improvements; and improvements in patients were significantly greater than those in a group of healthy adults. In conclusion, NeuroEyeCoach can be used as an effective rehabilitation tool to develop compensatory strategies in patients with visual field deficits after brain injury.

1. Introduction

We explore our surrounding environment by moving our eyes on average three times per second. The eye movement episodes are punctuated by brief periods (100–300 ms) of fixations. This pattern of activity ensures detailed image processing by the high density cone-receptor region of our central vision [1]. The resultant continuous perception of the stable world relies on amalgamation of lower resolution peripheral vision with high resolution central information in a spatiotopic frame of reference [2]. This dynamic process encompasses the suppression of noise or distractors and selective enhancement of target objects [3]. The selection of candidate targets for subsequent eye movements (saccades) is achieved through a combination of stimulus driven bottom-up and goal driven top-down mechanisms [4].

Visual field deficits often accompany lesions of the visual pathways which in turn disrupt the selection of targets falling within the impaired visual fields [5]. Abnormal patterns of eye movement are reported in approximately 60% of such cases [6]. One method for quantifying disturbances of visual processing is to make use of a visual search paradigm where the patient is required to report the presence or absence of a target amongst distractor items, often but not exclusively, presented on a computer screen [7]. The reaction times are then compared to those for target detection in the sighted field in the same individual or in a group of healthy individuals. The inverse of the slope for a linearly fitted plot of reaction times as a function of the number of distractor items reflects “search efficiency” [8]. In general, for healthy adults when targets and distractors are easily discriminable (pop-out search), the slope is shallow (high efficiency), but steeper slopes are expected when targets and distractors share features (complex or conjunction search).

Eye movement recordings of patients with visual field deficits following brain injury reveal a number of characteristics [9]. These include smaller saccade amplitudes, and, hence, a larger number of fixations; limited exploration of the contralesioned visual field; and more between-hemifield saccades often summarised as disorganised eye movements leading to slower reaction times for targets in contralesioned hemifields. Disturbances of eye movement dynamics are also reported in the sighted (ipsilesioned) hemifield [6, 10].

In clinical practice, the rehabilitation of patients with visual field deficits is often conducted by occupational therapists or low-vision experts. The aim of any intervention is to improve the patient’s interactions with their immediate surrounding and increasing their confidence in tasks such as shopping or commuting. The use of computerised visual search tasks as a rehabilitation tool to improve eye movements after brain injury was first reported in a group of 30 patients [11]. Patients were given systematic practice with large saccadic eye movements to search for targets presented at unpredictable positions in both the affected hemifield and the entire field of gaze. This class of treatment was later extended by use of a visual search paradigm to improve scanning strategy. Simultaneous recording of eye movements in a group of 60 patients provided further evidence for spatially disorganised pattern of eye movements in 60% of cases [6], with improved visual scanning in all 13 cases that underwent visual search training. With better use of the remaining sight as well as efficient search strategy, patients were able to compensate for their partial blindness; hence, the technique has been termed compensatory. This technique with various modifications has been used in 14 studies to date, with a total of 593 patients with homonymous visual field loss and persistent visual disabilities (see Table 1). Indeed a recent systematic review [12] has identified eye movement training as the most promising approach to visual rehabilitation in stroke patients.

Continue —> Use of NeuroEyeCoach™ to Improve Eye Movement Efficacy in Patients with Homonymous Visual Field Loss

, , , , , , ,

Leave a comment

[ARTICLE] Effect of home-based training using a slant board with dorsiflexed ankles on walking function in post-stroke hemiparetic patients – Full Text PDF

Abstract.

[Purpose] To investigate the effects of a 30-day rehabilitation program using a slant board on walking function in post-stroke hemiparetic patients.

[Subjects and Methods] Six hemiparetic patients with gait disturbance were studied. The patients were instructed to perform a home-based rehabilitation program using a slant board, thrice daily for 30 days, the exercise included standing on the slant board for 3 minutes, with both ankles dorsiflexed without backrest. For all patients, the Brunnstrom Recovery Stage, Barthel Index, range of motion of the ankle joint, modified Ashworth scale scole for calf muscle, sensory impairments with Numeral Rating Scale, maximum walking speed, number of steps, and Timed “Up and Go” test were serially evaluated at the beginning and end of the 30-day program.

[Results] The program significantly increased walking velocity, decreased the number of steps in the 10-m walking test, and decreased Timed “Up and Go” test performance time.

[Conclusion] This rehabilitation program using the slant board was safe and improved walking function in patients. The improvement in walking function could be due to a forward shift of the center of gravity, which can be an important part of motor learning for gait improvement.
INTRODUCTION

Fig. 1. The slant board used in this study The slant angle was set at 20 degrees

Stroke is a leading cause of long-term disability, and the absolute number of patients with stroke is increasing. Of the neurological sequelae that cause functional disability, hemiparesis is the most common. The incidence of gait disturbance due to hemiparesis is reportedly relatively high among chronic stroke patients1, 2). The occurrence of this disability leads to marked impairment of quality of life and the sense of well-being3, 4). In addition, the burden of caregivers is anticipated to increase when patients are in need of assistance for walking5). Improved walking ability is one of the most common goals for post-stroke hemiparetic patients6, 7). A slant board has been used as a therapeutic device for patients with spastic lower hemiparesis. Standing on the toe-up inclination surface stretches the calf muscles, which reduces the pathologically increased lower limb muscle tone in post-stroke hemiparetic patients. Standing without a back rest on the slant board can produce a forward shift in the center of pressure in healthy adults and hemiparetic patients, as reported in our previous study. Kluzak reported that standing on an inclined surface resulted in an after-effect of learning in healthy, blindfolded subjects when they returned to standing on a horizontal surface8). Subjects leaned forward after they stood on a toes-up inclination surface. Recent reports described other benefits of using the board in healthy adults and hemiparetic patients, such as movement of “center of pressure”9), and possible increase in the maximum range of “center of gravity” in the antero-posterior direction10).
Neurophysiological studies have also demonstrated increased contraction of the anterior tibialis muscle in healthy subjects standing on the slant board11). Daily home-based rehabilitation using the slant board was hypothesized to improve gait in post-stroke hemiparetic patients. To test the hypothesis, the present study investigated the effects of a 30-day home-based daily rehabilitation program using the slant board on walking function in post-stroke hemiparetic patients.

Full Text PDF

, , , , ,

Leave a comment

[ARTICLE] SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke – Full Text PDF

Abstract

Recovery of functional hand movements after stroke is directly linked to rehabilitation duration and intensity. Continued therapy at home has the potential to increase both. For many patients this requires a device that helps them overcome the hyperflexion of wrist and fingers that is limiting their ability to open and use their hand. We developed an interactive hand and wrist orthosis for post-stroke rehabilitation that provides compliant and adaptable extension assistance at the wrist and fingers, interfaces with motivational games based on activities of daily living, is integrated with an off-the-shelf mobile arm support and includes novel wrist and finger actuation mechanisms. During the iterative development, multiple prototypes have been evaluated by therapists in clinical settings and used intensively and independently by 33 patients at home. This paper details the final design of the SCRIPT passive orthosis resulting from these efforts.

Source: SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke | SpringerLink

, , , , , , , , ,

Leave a comment

%d bloggers like this: