Posts Tagged hospital

[NEWS] New Virtual Reality Therapy game could offer relief for patients with chronic pain, mobility issues

News-MedicalA Virtual Reality Therapy game (iVRT) which could introduce relief for patients suffering from chronic pain and mobility issues has been developed by a team of UK researchers.

Dr Andrew Wilson and colleagues from Birmingham City University built the CRPS app in collaboration with clinical staff at Sandwell and West Birmingham Hospitals NHS Trust for a new way to tackle complex regional pain syndrome and to aid people living with musculoskeletal conditions.

Using a head mounted display and controllers, the team created an immersive and interactive game which mimics the processes used in traditional ‘mirror therapy’ treatment. Within the game, players are consciously and subconsciously encouraged to stretch, move and position the limbs that are affected by their conditions.

Mirror therapy is a medical exercise intervention where a mirror is used to create areflective illusion that encourages patient’s brain to move their limb more freely. This intervention is often used by occupational therapists and physiotherapists to treat CRPS patients who have experienced a stroke. This treatment has proven to be successful exercises are often deemed routine and mundane by patients, which contributes to decline in the completion of therapy.

Work around the CRPS project, which could have major implications for other patient rehabilitation programmes worldwide when fully realised, was presented at the 12th European Conference on Game Based Learning (ECGBL) in France late last year.

Dr Wilson, who leads Birmingham City University’s contribution to a European research study into how virtual reality games can encourage more physical activity, and how movement science in virtual worlds can be used for both rehabilitation and treatment adherence, explained, “The first part of the CRPS project was to examine the feasibility of being able to create a game which reflects the rehabilitation exercises that the clinical teams use on the ground to reduce pain and improve mobility in specific patients.”

“By making the game enjoyable and playable we hope family members will play too and in doing so encourage the patient to continue with their rehabilitation. Our early research has shown that in healthy volunteers both regular and casual gamers enjoyed the game which is promising in terms of our theory surrounding how we may support treatment adherence by exploiting involvement of family and friends in the therapy processes.”

The CRPS project was realized through collaborative working between City Hospital, Birmingham, and staff at the School of Computing and Digital Technology, and was developed following research around the provision of a 3D virtual reality ophthalmoscopy trainer.

Andrea Quadling, Senior Occupational Therapist at Sandwell Hospital, said “The concept of using virtual reality to treat complex pain conditions is exciting, appealing and shows a lot of potential. This software has the potential to be very helpful in offering additional treatment options for people who suffer with CRPS.”

via New Virtual Reality Therapy game could offer relief for patients with chronic pain, mobility issues

, , , , , , , , , , , ,

Leave a comment

[NEWS] Pill that reverses brain damage could be on the horizon

 

Researchers at the University of Pennsylvania have made important progress in designing a drug that could recover brain function in cases of severe brain damage due to injury or diseases such as Alzheimer’s.

brain cellsVitaly Sosnovskiy | Shutterstock

The work builds on a previous study where the team managed to convert human fetal glial cells called astrocytes into functional neurons. However, that required using a combination of nine molecules – too many for the formula to be translated into a clinically useful solution.

As reported in the journal Stem Cell Reports, the team has now successfully streamlined the process so that only four molecules are needed – an achievement that could lead to pill for repairing brain damage.

We identified the most efficient chemical formula among the hundreds of drug combinations that we tested. By using four molecules that modulate four critical signaling pathways in human astrocytes, we can efficiently turn human astrocytes — as many as 70 percent — into functional neurons.”

Jiu-Chao Yin, Study Author

The researchers report that the new neurons survived for more than seven months in the laboratory environment and that they functioned like normal brain cells, forming networks and communicating with one another using chemical and electrical signaling.

“The most significant advantage of the new approach is that a pill containing small molecules could be distributed widely in the world, even reaching rural areas without advanced hospital systems,” says Chen.

“My ultimate dream is to develop a simple drug delivery system, like a pill, that can help stroke and Alzheimer’s patients around the world to regenerate new neurons and restore their lost learning and memory capabilities,” he continued.

Now, the years of effort the team has put into simplifying the drug formula has finally paid off and taken the researchers a step closer towards realizing that dream.

via Pill that reverses brain damage could be on the horizon

, , , , , , , ,

Leave a comment

[WEB SITE] New method based on artificial intelligence may help predict epilepsy outcomes

 

Medical University of South Carolina (MUSC) neurologists have developed a new method based on artificial intelligence that may eventually help both patients and doctors weigh the pros and cons of using brain surgery to treat debilitating seizures caused by epilepsy. This study, which focused on mesial temporal lobe epilepsy (TLE), was published in the September 2018 issue of Epilepsia. Beyond the clinical implications of incorporating this analytical method into clinicians’ decision making processes, this work also highlights how artificial intelligence is driving change in the medical field.

Despite the increase in the number of epilepsy medications available, as many as one-third of patients are refractory, or non-responders, to the medication. Uncontrolled epilepsy has many dangers associated with seizures, including injury from falls, breathing problems, and even sudden death. Debilitating seizures from epilepsy also greatly reduce quality of life, as normal activities are impaired.

Epilepsy surgery is often recommended to patients who do not respond to medications. Many patients are hesitant to undergo brain surgery, in part, due to fear of operative risks and the fact that only about two-thirds of patients are seizure-free one year after surgery. To tackle this critical gap in the treatment of this epilepsy population, Dr. Leonardo Bonilha and his team in the Department of Neurology at MUSC looked to predict which patients are likely to have success in being seizure free after the surgery.

Neurology Department Chief Resident Dr. Gleichgerrcht explains that they tried “to incorporate advanced neuroimaging and computational techniques to anticipate surgical outcomes in treating seizures that occur with loss of consciousness in order to eventually enhance quality of life”. In order to do this, the team turned to a computational technique, called deep learning, due to the massive amount of data analysis required for this project.

The whole-brain connectome, the key component of this study, is a map of all physical connections in a person’s brain. The brain map is created by in-depth analysis of diffusion magnetic resonance imaging (dMRI), which patients receive as standard-of-care in the clinic. The brains of epilepsy patients were imaged by dMRI prior to having surgery.

Deep learning is a statistical computational approach, within the realm of artificial intelligence, where patterns in data are automatically learned. The physical connections in the brain are very individualized and thus it is challenging to find patterns across multiple patients. Fortunately, the deep learning method is able to isolate the patterns in a more statistically reliable method in order to provide a highly accurate prediction.

Currently, the decision to perform brain surgery on a refractory epilepsy patient is made based on a set of clinical variables including visual interpretation of radiologic studies. Unfortunately, the current classification model is 50 to 70 percent accurate in predicting patient outcomes post-surgery. The deep learning method that the MUSC neurologists developed was 79 to 88 percent accurate. This gives the doctors a more reliable tool for deciding whether the benefits of surgery outweigh the risks for the patient.

A further benefit of this new technique is that no extra diagnostic tests are required for the patients, since dMRIs are routinely performed with epilepsy patients at most centers.

This first study was retrospective in nature, meaning that the clinicians looked at past data. The researchers propose that an ideal next step would include a multi-site prospective study. In a prospective study, they would analyze the dMRI scans of patients prior to surgery and follow-up with the patients for at least one year after surgery. The MUSC neurologists also believe that integrating the brain’s functional connectome, which is a map of simultaneously occurring neural activity across different brain regions, could enhance the prediction of outcomes.

Dr. Gleichgerrcht says that the novelty in the development of this study lies in the fact that this “is not a question of human versus machine, as is often the fear when we hear about artificial intelligence. In this case, we are using artificial intelligence as an extra tool to eventually make better informed decisions regarding a surgical intervention that holds the hope for a cure of epilepsy in a large number of patients.”

 

via New method based on artificial intelligence may help predict epilepsy outcomes

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Researchers demonstrate synaptic plasticity in new-born neurons

Repeated stimulation enlarges dendritic spines

Even in adult brains, new neurons are generated throughout a lifetime. In a publication in the scientific journal PNAS, a research group led by Goethe University describes plastic changes of adult-born neurons in the hippocampus, a critical region for learning: frequent nerve signals enlarge the spines on neuronal dendrites, which in turn enables contact with the existing neural network.

Practice makes perfect, and constant repetition promotes the ability to remember. Researchers have been aware for some time that repeated electrical stimulation strengthens neuron connections (synapses) in the brain. It is similar to the way a frequently used trail gradually widens into a path. Conversely, if rarely used, synapses can also be removed – for example, when the vocabulary of a foreign language is forgotten after leaving school because it is no longer practiced. Researchers designate the ability to change interconnections permanently and as needed as the plasticity of the brain.

Plasticity is especially important in the hippocampus, a primary region associated with long-term memory, in which new neurons are formed throughout life. The research groups led by Dr Stephan Schwarzacher (Goethe University), Professor Peter Jedlicka (Goethe University and Justus Liebig University in Gieβen) and Dr Hermann Cuntz (FIAS, Frankfurt) therefore studied the long-term plasticity of synapses in new-born hippocampal granule cells. Synaptic interconnections between neurons are predominantly anchored on small thorny protrusions on the dendrites called spines. The dendrites of most neurons are covered with these spines, similar to the thorns on a rose stem.

In their recently published work, the scientists were able to demonstrate for the first time that synaptic plasticity in new-born neurons is connected to long-term structural changes in the dendritic spines: repeated electrical stimulation strengthens the synapses by enlarging their spines. A particularly surprising observation was that the overall size and number of spines did not change: when the stimulation strengthened a group of synapses, and their dendritic spines enlarged, a different group of synapses that were not being stimulated simultaneously became weaker and their dendritic spines shrank.

“This observation was only technically possible because our students Tassilo Jungenitz and Marcel Beining succeeded for the first time in examining plastic changes in stimulated and non-stimulated dendritic spines within individual new-born cells using 2-photon microscopy and viral labeling,” says Stephan Schwarzacher from the Institute for Anatomy at the University Hospital Frankfurt. Peter Jedlicka adds: “The enlargement of stimulated synapses and the shrinking of non-stimulated synapses was at equilibrium. Our computer models predict that this is important for maintaining neuron activity and ensuring their survival.”

The scientists now want to study the impenetrable, spiny forest of new-born neuron dendrites in detail. They hope to better understand how the equilibrated changes in dendritic spines and their synapses contribute the efficient storing of information and consequently to learning processes in the hippocampus.

 

via Researchers demonstrate synaptic plasticity in new-born neurons

, , , , , , , , ,

Leave a comment

[WEB SITE] Monthly cycles of brain activity linked to seizures in patients with epilepsy

January 8, 2018
UC San Francisco neurologists have discovered monthly cycles of brain activity linked to seizures in patients with epilepsy. The finding, published online January 8 in Nature Communications, suggests it may soon be possible for clinicians to identify when patients are at highest risk for seizures, allowing patients to plan around these brief but potentially dangerous events.

“One of the most disabling aspects of having epilepsy is the seeming randomness of seizures,” said study senior author Vikram Rao, MD, PhD, an assistant professor of neurology at UCSF and member of the UCSF Weill Institute for Neurosciences. “If your neurologist can’t tell you if your next seizure is a minute from now or a year from now, you live your life in a state of constant uncertainty, like walking on eggshells. The exciting thing here is that we may soon be able to empower patients by letting them know when they are at high risk and when they can worry less.”

Epilepsy is a chronic disease characterized by recurrent seizures — brief storms of electrical activity in the brain that can cause convulsions, hallucinations, or loss of consciousness. Epilepsy researchers around the world have been working for decades to identify patterns of electrical activity in the brain that signal an oncoming seizure, but with limited success. In part, Rao says, this is because technology has limited the field to recording brain activity for days to weeks at most, and in artificial inpatient settings.

At UCSF Rao has pioneered the use of an implanted brain stimulation device that can quickly halt seizures by precisely stimulating a patient’s brain as a seizure begins. This device, called the NeuroPace RNS® System, has also made it possible for Rao’s team to record seizure-related brain activity for many months or even years in patients as they go about their normal lives. Using this data, the researchers have begun to show that seizures are less random than they appear. They have identified patterns of electrical discharges in the brain that they term “brain irritability” that are associated with higher likelihood of having a seizure.

Related Stories

  • Adequate intake of choline during pregnancy could provide cognitive benefits for offspring
  • Powerful imaging technique sheds light on how the brain responds to vascular injury
  • Callous-unemotional traits linked to brain structure differences in boys, not girls

The new study, based on recordings from the brains of 37 patients fitted with NeuroPace implants, confirmed previous clinical and research observations of daily cycles in patients’ seizure risk, explaining why many patients tend to experience seizures at the same time of day. But the study also revealed that brain irritability rises and falls in much longer cycles lasting weeks or even months, and that seizures are more likely to occur during the rising phase of these longer cycles, just before the peak. The lengths of these long cycles differ from person to person but are highly stable over many years in individual patients, the researchers found.

The researchers show in the paper that when the highest-risk parts of a patient’s daily and long-term cycles of brain irritability overlap, seizures are nearly seven times more likely to occur than when the two cycles are mismatched.

Rao’s team is now using this data to develop a new approach to forecasting patients’ seizure risk, which could allow patients to avoid potentially dangerous activities such as swimming or driving when their seizure risk is highest, and to potentially take steps (such as additional medication doses) to reduce their seizure risk, similar to how people with asthma know to take extra care to bring their inhalers when pollen levels are high.

“I like to compare it to a weather forecast,” Rao said. “In the past, the field has focused on predicting the exact moment a seizure will occur, which is like predicting when lightning will strike. That’s pretty hard. It may be more useful to be able tell people there is a 5 percent chance of a thunderstorm this week, but a 90 percent chance next week. That kind of information lets you prepare.”

Source:
https://www.ucsf.edu/

via Monthly cycles of brain activity linked to seizures in patients with epilepsy

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] Findings reveal how seizures can have lasting detrimental effects on memory

October 16, 2017

Although it’s been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer’s disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, a team of researchers reveals a mechanism that can explain how even relatively infrequent seizures can lead to long-lasting cognitive deficits in animal models. A better understanding of this new mechanism may lead to future strategies to reduce cognitive deficits in Alzheimer’s disease and other conditions associated with seizures, such as epilepsy.

“It’s been hard to reconcile how infrequent seizures can lead to persistent changes in memory in patients with Alzheimer’s disease,” said corresponding author Dr. Jeannie Chin, assistant professor of neuroscience at Baylor College of Medicine. “To solve this puzzle, we worked with a mouse model of Alzheimer’s disease focusing on the genetic changes that seizures might trigger in the memory center of the brain, the hippocampus, that could lead to loss of memory or other cognitive deficits.”

The researchers measured the levels of a number of proteins involved in memory and learning and found that levels of the protein deltaFosB strikingly increase in the hippocampus of Alzheimer’s disease mice that had seizures. DeltaFosB already is well known for its association with other neurological conditions linked to persistent brain activity of specific brain regions, such as addiction. In this study, the researchers found that after a seizure, the deltaFosB protein remains in the hippocampus for an unusually long time; its half-life – the time it takes for the amount of protein to decrease by half – is eight days. Most proteins have a half-life that is between hours and a day or two.

“Interestingly, because deltaFosB is a transcription factor, meaning that its job is to regulate the expression of other proteins, these findings led us to predict that the increased deltaFosB levels might be responsible for suppressing the production of proteins that are necessary for learning and memory,” Chin said. “In fact, we found that when the levels of deltaFosB increase, those of other proteins, such as calbindin, decrease. Calbindin also has been known for a long time to be involved in Alzheimer’s disease and epilepsy, but its mechanism of regulation was not known. We then hypothesized that deltaFosB might be regulating the production of calbindin.”

Further investigations supported the researchers’ hypothesis. The scientists showed that deltaFosB can bind to the gene calbindin suppressing the expression of the protein. When they either prevented deltaFosB activity or experimentally increased calbindin expression in the mice, calbindin levels were restored and the mice improved their memory. And when researchers experimentally increased deltaFosB levels in normal mice, calbindin expression was suppressed and the animals’ memory deteriorated, demonstrating that deltaFosB and calbindin are key regulators of memory.

Connecting pieces of the puzzle

“Our findings have helped us answer the question of how even infrequent seizures can have such lasting detrimental effects on memory,” Chin said. “We found that seizures can increase the levels of deltaFosB in the hippocampus, which results in a decrease in the levels of calbindin, a regulator of memory processes. DeltaFosB has a relatively long half-life, therefore even when seizures are infrequent, deltaFosB remains in the hippocampus for weeks acting like a brake, reducing the production of calbindin and other proteins, and disrupting the consequent brain activity involved in memory. The regulation of gene expression far outlasts the actual seizure event that triggered it.”

The scientists found the same changes in deltaFosB and calbindin levels in the hippocampus of Alzheimer’s disease patients and in the temporal lobe of epilepsy patients. However, they underscore that it is too soon to know whether regulating deltaFosB or calbindin could improve or prevent memory problems or other cognitive deficits in people with Alzheimer’s disease. However, “now that we know that the levels of deltaFosB and calbindin are effective markers of brain activity in the hippocampus and memory function, we propose that these markers could potentially help assess clinical therapies for Alzheimer’s and other diseases with seizures,” Chin said.

Source: Findings reveal how seizures can have lasting detrimental effects on memory

, , , , , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Brain surgery helps remove scar tissue causing seizures in epilepsy patients

By the time epilepsy patient Erika Fleck came to Loyola Medicine for a second opinion, she was having three or four seizures a week and hadn’t been able to drive her two young children for five years.

“It was no way to live,” she said.

Loyola epileptologist Jorge Asconapé, MD, recommended surgery to remove scar tissue in her brain that was triggering the seizures. Neurosurgeon Douglas Anderson, MD, performed the surgery, called an amygdalohippocampectomy. Ms. Fleck hasn’t had a single seizure in the more than three years since her surgery.

“I’ve got my life back,” she said. “I left my seizures at Loyola.”

Surgery can be an option for a minority of patients who do not respond to medications or other treatments and have epileptic scar tissue that can be removed safely. In 60 to 70 percent of surgery patients, seizures are completely eliminated, and the success rate likely will improve as imaging and surgical techniques improve, Dr. Anderson said.

Traditionally, patients would have to try several medications with poor results for years or decades before being considered for surgery, according to the Epilepsy Foundation. “More recently, surgery is being considered sooner,” the foundation said. “Studies have shown that the earlier surgery is performed, the better the outcome.” (Ms. Fleck is a service coordinator for the Epilepsy Foundation North/Central Illinois Iowa and Nebraska.)

Dr. Asconapé said Ms. Fleck was a perfect candidate for surgery because the scar tissue causing her seizures was located in an area of the brain that could be removed without damaging critical structures.

Ms. Fleck experienced complex partial seizures, characterized by a deep stare, unresponsiveness and loss of control for a minute or two. An MRI found the cause: A small area of scar tissue in a structure of the brain called the hippocampus. The subtle lesion had been overlooked at another center.

Epilepsy surgery takes about three hours, and patients typically are in the hospital for two or three days. Like all surgery, epilepsy surgery entails risks, including infection, hemorrhage, injury to other parts of the brain and slight personality changes. But such complications are rare, and they pose less risk to patients than the risk of being injured during seizures, Dr. Asconapé said.

Loyola has been designated a Level Four Epilepsy Center by the National Association of Epilepsy Centers. Level Four is the highest level of specialized epilepsy care available. Level Four centers have the professional expertise and facilities to provide the highest level of medical and surgical evaluation and treatment for patients with complex epilepsy.

Loyola’s comprehensive, multidisciplinary Epilepsy Center offers a comprehensive multidisciplinary approach to epilepsy and seizure disorders for adults and children as young as two years old. Pediatric and adult epileptologist consultation and state-of-the-art neuroimaging and electrodiagnostic technology are used to identify and assess complex seizure disorders by short- and long-term monitoring.

Source: Loyola University Health System

Source: Brain surgery helps remove scar tissue causing seizures in epilepsy patients

, , , , , , , , , ,

Leave a comment

[WEB SITE] Brain plasticity after injury: an interview with Dr Swathi Kiran

What is brain plasticity and why is it important following a brain injury?

Brain plasticity is the phenomenon by which the brain can rewire and reorganize itself in response to changing stimulus input. Brain plasticity is at play when one is learning new information (at school) or learning a new language and occurs throughout one’s life.

Brain plasticity is particularly important after a brain injury, as the neurons in the brain are damaged after a brain injury, and depending on the type of brain injury, plasticity may either include repair of damaged brain regions or reorganization/rewiring of different parts of the brain.

MRI brain injury

How much is known about the level of injury the brain can recover from? Over what time period does the brain adapt to an injury?

A lot is known about brain plasticity immediately after an injury. Like any other injury to the body, after an initial negative reaction to the injury, the brain goes through a massive healing process, where the brain tries to repair itself after the injury. Research tells us exactly what kinds of repair processes occur hours, days and weeks after the injury.

What is not well understood is how recovery continues to occur in the long term. So, there is a lot research showing that the brain is plastic, and undergoes recovery even months after the brain damage, but what promotes such recovery and what hinders such recovery is not well understood.

It is well understood that some rehabilitative training promotes brain injury and most of the current research is focused on this topic.

What techniques are used to study brain plasticity?

Human brain plasticity has mostly been studied using non-invasive imaging methods, because these techniques allow us to measure the gray matter (neurons), white matter (axons) at a somewhat coarse level. MRI and fMRI techniques provide snapshots and video of the brain in function, and that allows us to capture changes in the brain that are interpreted as plasticity.

Also, more recently, there are invasive stimulation methods such as transcranial direct current stimulation or transcranial magnetic stimulation which allow providing electric current or magnetic current to different parts of the brain and such stimulation causes certain changes in the brain.

How has our understanding advanced over recent years?

One of the biggest shifts in our understanding of brain plasticity is that it is a lifelong phenomenon. We used to previously think that the brain is plastic only during childhood and once you reach adulthood, the brain is hardwired, and no new changes can be made to it.

However, we now know that even the adult brain can be modified and reorganized depending on what new information it is learning. This understanding has a profound impact on recovery from brain injury because it means that with repeated training/instruction, even the damaged brain is plastic and can recover.

What role do you see personalized medicine playing in brain therapy in the future?

One reason why rehabilitation after brain injury is so complex is because no two individuals are alike. Each individual’s education and life experiences have shaped their brain (due to plasticity!) in unique ways, so after a brain injury, we cannot expect that recovery in two individuals will be occur the same way.

Personalized medicine allows the ability to tailor treatment for each individual taking into account their strengths and weaknesses and providing exactly the right kind of therapy for that person. Therefore, one size treatment does not fit all, and individualized treatments prescribed to the exact amount of dosage will become a reality.

Senior couple tablet

What is ‘automedicine’ and do you think this could become a reality?

I am not sure we understand what automedicine can and cannot do just yet, so it’s a little early to comment on the reality. Using data to improve our algorithms to precisely deliver the right amount of rehabilitation/therapy will likely be a reality very soon, but it is not clear that it will eliminate the need for doctors or rehabilitation professionals.

What do you think the future holds for people recovering from strokes and brain injuries and what’s Constant Therapy’s vision?

The future for people recovering from strokes and brain injuries is more optimistic than it has ever been for three important reasons. First, as I pointed above, there is tremendous amount of research showing that the brain is plastic throughout life, and this plasticity can be harnessed after brain injury also.

Second, recent advances in technology allow patients to receive therapy at their homes at their convenience, empowering them to take control of their therapy instead of being passive consumers.

Finally, the data that is collected from individuals who continuously receive therapy provides a rich trove of information about how patients can improve after rehabilitation, what works and what does not work.

Constant Therapy’s vision incorporates all these points and its goal to provide effective, efficient and reasonable rehabilitation to patients recovering from strokes and brain injury.

Where can readers find more information?

About Dr Swathi Kiran

DR SWATHI KIRANSwathi Kiran is Professor in the Department of Speech and Hearing Sciences at Boston University and Assistant in Neurology/Neuroscience at Massachusetts General Hospital. Prior to Boston University, she was at University of Texas at Austin. She received her Ph.D from Northwestern University.

Her research interests focus around lexical semantic treatment for individuals with aphasia, bilingual aphasia and neuroimaging of brain plasticity following a stroke.

She has over 70 publications and her work has appeared in high impact journals across a variety of disciplines including cognitive neuroscience, neuroimaging, rehabilitation, speech language pathology and bilingualism.

She is a fellow of the American Speech Language and Hearing Association and serves on various journal editorial boards and grant review panels including at National Institutes of Health.

Her work has been continually funded by the National Institutes of Health/NIDCD and American Speech Language Hearing Foundation awards including the New Investigator grant, the New Century Scholar’s Grant and the Clinical Research grant. She is the co-founder and scientific advisor for Constant Therapy, a software platform for rehabilitation tools after brain injury.

Source: Brain plasticity after injury: an interview with Dr Swathi Kiran

, , , , , , , , , ,

Leave a comment

[REVIEW] Outpatient Stroke Rehabilitation | EBRSR – Evidence-Based Review of Stroke Rehabilitation – Full Text PDF

 

Abstract

With the aging of the general population and an increasing number of stroke survivors, there is growing interest in outpatient stroke rehabilitation as a less expensive alternative to hospital-based programs. In this chapter, we evaluate the effectiveness of three forms of outpatient rehabilitation, which we have defined as: hospital-based, community-based and early supported discharge. Each will be evaluated again standard or traditional care for an outpatient stroke patient.

Get Full Text PDF

via Outpatient Stroke Rehabilitation | EBRSR – Evidence-Based Review of Stroke Rehabilitation.

, , , , , ,

Leave a comment

%d bloggers like this: