Posts Tagged Human-systems integration

[Abstract + References] Development of a Hand Rehabilitation Therapy System with Soft Robotic Glove – Conference paper

Abstract

The major cause of problems with hand motility in adults is due to work accidents, strokes, injuries and work accidents. The emergence of robotic gloves for hand rehabilitation therapy has been developed to assist with rehabilitation treatment. In this scientific paper, a robotic glove prosthesis is designed and developed for use in hand rehabilitation in patients with grip pathologies. There is talk of mechanical design and operation, and the glove is controlled by a mobile application that allows the physiotherapist to enter the settings for the patient or allow an expert system based on 15 rules to do so. The system is capable of generating reports for the patient, the physiotherapist or the caregiver to review. The developed system is portable, lightweight and easy to transport. The validation of the prototype was carried out with adult patients suffering from hemiparesis.

References

  1. 1.
    Borboni, A., Mor, M., Fgila, R.: Gloreha—hand robotic rehabilitation: design, mechanical model, and experiments (2016). asmedigitalcollection.asme.orgCrossRefGoogle Scholar
  2. 2.
    Henao, G., Arango, J., Rendon, J.F.G., Velasquez, J.B., Tellez, C.H.O.: Rehabilitación temprana de fracturas de mano con órtesis robóticas. Reporte de caso. Elsevier (2018)Google Scholar
  3. 3.
    Chu, C.-Y., Patterson, R.M.: Soft robotic devices for hand rehabilitation and assistance: a narrative review. J. Neuroeng. Rehabil. 15(1), 9 (2018)CrossRefGoogle Scholar
  4. 4.
    Polygerinos, P., Galloway, K.C., Savage, E., Herman, M., O’Donnell, K., Walsh, C.J.: Soft robotic glove for hand rehabilitation and task specific training (2015). ieeexplore.ieee.org
  5. 5.
    Ueki, S., Kawasaki, H., Ito, S., Nishimoto, Y., Abe, M., Aoki, T., Ishigure, Y., Ojika, T., Mouri, T.: Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy (2012). ieeexplore.ieee.orgCrossRefGoogle Scholar
  6. 6.
    Kutner, N., Zhang, R., Butler, A.J., Wolf, S.L., Alberts, J.L.: Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial (2010). academic.oup.com
  7. 7.
    Abdallah, I.B., Bouteraa, Y., Rekik, C.: Design and development of 3D printed myoelectric robotic exoskeleton for hand rehabilitation. Int. J. Smart Sens. Intell. Syst. 10(2), 341–366 (2017)Google Scholar
  8. 8.
    Cempini, M., Cortese, M., Vitiello, A.: A powered finger–thumb wearable hand exoskeleton with self-aligning joint axes (2015). ieeexplore.ieee.org
  9. 9.
    Heo, P., Gu, G.M., Lee, S., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012)CrossRefGoogle Scholar
  10. 10.
    Jones, C., Wang, F., Morrison, R., Sarkar, N., Kamper, D.G.: Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke (2014). ieeexplore.ieee.orgCrossRefGoogle Scholar
  11. 11.
    Polygerinos, P., Wang, Z., Galloway, K., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Elsevier (2015)Google Scholar
  12. 12.
    Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11(1), 3 (2014)CrossRefGoogle Scholar
  13. 13.
    Avila Chaurand, R., Prado León, L.R., González Muñoz, E.L., and Universidad de Guadalajara: Centro de Investigaciones en Ergonomía., Dimensiones antropométricas de población latinoamericana. Universidad de Guadalajara, Centro Universitario de Arte, Arquitectura y Diseño, División de Tecnología y Procesos, Departamento de Producción y Desarrollo, Centro de Investigaciones en Ergonomía (2001)Google Scholar

via Development of a Hand Rehabilitation Therapy System with Soft Robotic Glove | SpringerLink

, , , , , , , ,

Leave a comment

[Abstract + References] Motigravity: A New VR System to Increase Performance and Safety in Space Operations Simulation and Rehabilitation Medicine – Conference paper

Abstract

Motigravity is a new immersive instrument developed by Mars Planet where one or more persons interact with a virtual environment using a visual and biomechanical system. The applications of this system are various; here, applications in space operations simulation and rehabilitation medicine, in particular, are presented. This paper aims to bring to the scientific community knowledge about this recently developed virtual reality technology in order to motivate cooperation, development, and application of this facility.

References

  1. 1.
    Schlacht, I.L., Del Mastro, A., Nazir, S.: Virtual reality for safety, entertainment or education: the Mars mission test. In: 7th International Conference on Applied Human Factors and Ergonomics (AHFE) and the Affiliated Conferences, AHFE 2016 (2016)Google Scholar
  2. 2.
    Schlacht I.L., Nazir S., Manca D.: Space vs. chemical domains: virtual and real simulation to increase safety in extreme contexts. In: 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, AHFE 2015 (2015). http://www.sciencedirect.com/science/article/pii/S235197891500222X
  3. 3.
    Groemer, G., Losiak, A., Soucek, A., Plank, C., Zanardini, L., Sejkora, N., Sams, S.: The AMADEE-15 Mars simulation. Acta Astronaut. 129(2016), 277–290 (2016)CrossRefGoogle Scholar
  4. 4.
    Marquez, J.J., Newman, D.J.: Mission planning and re-planning for planetary extravehicular activities: analysis of excursions in a Mars-analog environment and apollo program environmental systems (ICES). Technical report 724. (2006). doi: 10.4271/2006-01-2297
  5. 5.
    Brodski, Y., at al.: The use of immersive virtual reality and motion tracking in astronaut training and space system design. In: 66th International Astronautical Congress, Jerusalem, Israel, IAC 15 B3.5.1 (2015)Google Scholar
  6. 6.
    World Health Organization: Mental and neurological disorders. The World Health Report 2001, Mental Health: New Understanding, New Hope. NMH Communications, Geneva, 2001 (2001)Google Scholar
  7. 7.
    World Health Organization: Mental disorders affect one in four people. The world health report 2001, Mental Health: New Understanding, New Hope, Press Release, NMH Communications, Geneva, 2001 (2001)Google Scholar
  8. 8.
    Malbos, E., Boyer, L., Lançon, C.: Virtual reality in the treatment of mental disorders. Presse Med. 42(11), 1442–1452 (2013)CrossRefGoogle Scholar
  9. 9.
    Sarver, N.W., Beidel, D.C., Spitalnick, J.S.: The feasibility and acceptability of virtual environments in the treatment of childhood social anxiety disorder. J. Clin. Child. Adolesc. Psychol. 43(1), 63–73 (2014)CrossRefGoogle Scholar
  10. 10.
    Fleming, T.M., Bavin, L., Stasiak, K., et al.: Serious games and gamification for mental health: current status and promising directions. Front. Psychiatry 2017(7), 215 (2017)Google Scholar
  11. 11.
    Fernandez Montenegro, J.M., Argyriou, V.: Cognitive evaluation for the diagnosis of Alzheimer’s disease based on turing test and virtual environments. Physiol. Behav. 2017(173), 42–51 (2017)CrossRefGoogle Scholar
  12. 12.
    White, P.J., Moussavi, Z.: Neurocognitive treatment for a patient with Alzheimer’s disease using a virtual reality navigational environment. J. Exp. Neurosci. 2016(10), 129–135 (2016)CrossRefGoogle Scholar
  13. 13.
    Dockx, K., Bekkers, E.M., Van der Bergh, V., et al.: Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 12, CD010760 (2016)Google Scholar
  14. 14.
    Laver, K.E., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2, CD008349 (2015)Google Scholar
  15. 15.
    Pietrzak, E., Pullman, S., McGuire, A.: Using virtual reality and videogames for Traumatic brain injury rehabilitation: a structured literature review. Games Health J. 3(4), 202–214 (2014)CrossRefGoogle Scholar
  16. 16.
    Villiger, M., Bohli, D., Kiper, D., et al.: Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil. Neural Repair 27(8), 675–683 (2013)CrossRefGoogle Scholar
  17. 17.
    Sloot, L.H., Harlaar, J., Van der Krogt, M.M.: Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy. Gait Posture 42(4), 498–504 (2015)CrossRefGoogle Scholar
  18. 18.
    Cho, C., Hwang, W., Hwang, S., Chung, Y.: Treadmill training with virtual reality improves gait, balance and muscle strength in children with cerebral palsy. Tohoku J. Exp. Med. 238(3), 213–218 (2016)CrossRefGoogle Scholar
  19. 19.
    Chiarovano, E., Wang, W., Rogers, S.J., MacDoughall, H.G., Curthoys, I.S., De Waele, C.: Balance in virtual reality: effect of age and bilateral vestibular loss. Front. Neurol. 8(5) (2017). doi: 10.3389/fneur.2017.00005https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247457/
  20. 20.
    Cogné, M., et al.: The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigation aids: a systematic literature review. Ann. Phys. Rehabil. Med. 2016 (2016). doi: 10.1016/j.rehab.2015.12.004
  21. 21.
    Schlacht, I.L., Foing, B., Beneassai, M., Bringeland, S., Ceppi, G., Deml, B., Del Mastro, A., Masali, M., Micheletti C.M., Nazir, S., Rittweger, J., Stevenin, H.: From virtual reality to neutral buoyancy – methodologies for analyzing walking patterns on Moon and Mars. In: 7th International Conference on Applied Human Factors and Ergonomics (AHFE) and the Affiliated Conferences, AHFE 2016 (2016b). https://www.crcpress.com/Ergonomics-and-Human-Factors-in-Safety-Management/Arezes-Rodrigues-de-Carvalho/p/book/9781498727563
  22. 22.
    Norcross, J.R., Gernhardt Wyle M.L.: Selecting tasks for evaluating human performance as a function of gravity. Integrated Science and Engineering Group and NASA Johnson Space Center (2010)Google Scholar
  23. 23.
    Chun-Ming, C., Cheng-Hsin, H., Chih-Fan, H., Kuan-Ta, C.: Performances measurements of virtual reality systems: quantifying the timing and position accuracy. In: Proceedings of ACM Multimedia 2016 (2016). http://mmnet.iis.sinica.edu.tw/publication_detail.html?key=chang16_vr_performance

via Motigravity: A New VR System to Increase Performance and Safety in Space Operations Simulation and Rehabilitation Medicine | SpringerLink

, , , , ,

Leave a comment

%d bloggers like this: