Posts Tagged hybrid exoskeleton

[ARTICLE] A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation – Full Text

Abstract

Background

Hybrid exoskeletons are a recent development which combine Functional Electrical Stimulation with actuators to improve both the mental and physical rehabilitation of stroke patients. Hybrid exoskeletons have been shown capable of reducing the weight of the actuator and improving movement precision compared to Functional Electrical Stimulation alone. However little attention has been given towards the ability of hybrid exoskeletons to reduce and manage Functional Electrical Stimulation induced fatigue or towards adapting to user ability. This work details the construction and testing of a novel assist-as-need upper-extremity hybrid exoskeleton which uses model-based Functional Electrical Stimulation control to delay Functional Electrical Stimulation induced muscle fatigue. The hybrid control is compared with Functional Electrical Stimulation only control on a healthy subject.

Results

The hybrid system produced 24° less average angle error and 13.2° less Root Mean Square Error, than Functional Electrical Stimulation on its own and showed a reduction in Functional Electrical Stimulation induced fatigue.

Conclusion

As far as the authors are aware, this is the study which provides evidence of the advantages of hybrid exoskeletons compared to use of Functional Electrical Stimulation on its own with regards to the delay of Functional Electrical Stimulation induced muscle fatigue.

Background

Stroke is the second largest cause of disability worldwide after dementia [1]. Temporary hemiparesis is common among stroke survivors. Regaining strength and movement in the affected side takes time and can be improved with the use of rehabilitation therapy involving repetitive and function-specific tasks [2]. Muscle atrophy is another common issue that occurs after a stroke due to lack of use of the muscle. For each day a patient is in hospital lying in bed with minimal activity approximately 13% of muscular strength is lost (Ellis. Liam, Jackson. Samuel, Liu. Cheng-Yueh, Molloy. Peter, Paterson. Kelsey, Lower Limb Exoskeleton Final Report, unpublished). Electromechanically actuated exoskeletons offer huge advantages in their ability to repetitively and precisely provide assistance/resistance to a user. However electromechanical actuators which provide the required forces are often heavy in weight and have high power requirements which limits portability. Furthermore, muscle atrophy can only be prevented by physically working the muscles either through the patient’s own volition or the use of Functional Electrical Stimulation (FES).

FES is the application of high frequency electrical pulses to the nerves or directly to the muscle belly in order to elicit contractions in the muscle. FES devices are typically lightweight and FES is well suited to reducing muscle atrophy in patients with no or extremely limited movement. The trade off to this is that precise control of FES is extremely difficult and controlling specific, repetitive, and functional movement is not easily accomplished. Furthermore, extended use of FES is limited by the introduction of muscle fatigue caused by the unnatural motor unit recruitment order [3]. The forces required for large movements, such as shoulder abduction, are too great to be provided by the use of FES which is much better suited to smaller movements such as finger extension [45]. Some patients also find the use of FES painful.

Combining the use of FES and an electromechanical actuator within an exoskeleton can potentially overcome the limitations of each individual system. Despite the potential advantages of hybrid exoskeletons, so far only limited studies have been done on their effectiveness. A recent review was conducted into upper-extremity hybrid exoskeletons [6] which highlighted the advantages hybrid exoskeletons (exoskeletons which combine FES with an actuator) have with regards to improving the precision of FES induced movements. However, little attention has been given towards reduction and management of FES-induced fatigue. FES control systems used for upper-extremity hybrid exoskeletons simply manually ramp up stimulation intensity when fatigue is observed.

This work describes the design and testing of an assist-as-need upper-extremity hybrid exoskeleton which uses model-based control of FES with a focus on reducing FES-induced muscle fatigue. The control system is described in Section “Theory”, and the results are presented in Section “Results”. A discussion of the results is given in Section “Discussion”. Conclusions are summarised in Section “Conclusion”. Methods, physical structure of the exoskeleton, and the sensing system is described in Section “Material and methods”.[…]

 

Continue —->  A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation | BMC Biomedical Engineering | Full Text

figure10

Fig. 10 The Powered Exoskeleton (Right Arm)

, , , , , , , , ,

Leave a comment

[WEB SITE] One step at a time

IMAGE: DR. KIM (LEFT) WITH DR. SHARMA AND A HYBRID EXOSKELETON PROTOTYPE IN THE NEUROMUSCULAR CONTROL AND ROBOTICS LABORATORY IN THE SWANSON SCHOOL OF ENGINEERING. view more CREDIT: SWANSON SCHOOL OF ENGINEERING

PITTSBURGH (March 7, 2017) … The promise of exoskeleton technology that would allow individuals with motor impairment to walk has been a challenge for decades. A major difficulty to overcome is that even though a patient is unable to control leg muscles, a powered exoskeleton could still cause muscle fatigue and potential injury.

However, an award from the National Science Foundation’s Cyber-Physical Systems (CPS) program will enable researchers at the University of Pittsburgh to develop an ultrasound sensor system at the heart of a hybrid exoskeleton that utilizes both electrical nerve stimulation and external motors.

Principal investigator of the three year, $400,000 award is Nitin Sharma, assistant professor of mechanical engineering and materials science at Pitt’s Swanson School of Engineering. Co-PI is Kang Kim, associate professor of medicine and bioengineering. The Pitt team is collaborating with researchers led by Siddhartha Sikdar, associate professor of bioengineering and electrical and computer engineering at George Mason University, who also received a $400,000 award for the CPS proposal, “Synergy: Collaborative Research: Closed-loop Hybrid Exoskeleton utilizing Wearable Ultrasound Imaging Sensors for Measuring Fatigue.”

This latest funding furthers Dr. Sharma’s development of hybrid exoskeletons that combine functional electrical stimulation (FES), which uses low-level electrical currents to activate leg muscles, with powered exoskeletons, which use electric motors mounted on an external frame to move the wearer’s joints.

“One of the most serious impediments to developing a human exoskeleton is determining how a person who has lost gait function knows whether his or her muscles are fatigued. An exoskeleton has no interface with a human neuromuscular system, and the patient doesn’t necessarily know if the leg muscles are tired, and that can lead to injury,” Dr. Sharma explained. “Electromyography (EMG), the current method to measure muscle fatigue, is not reliable because there is a great deal of electrical “cross-talk” between muscles and so differentiating signals in the forearm or thigh is a challenge.”

To overcome the low signal-to-noise ratio of traditional EMG, Dr. Sharma partnered with Dr. Kim, whose research in ultrasound focuses on analyzing muscle fatigue.

“An exoskeleton biosensor needs to be noninvasive, but systems like EMG aren’t sensitive enough to distinguish signals in complex muscle groups,” Dr. Kim said. “Ultrasound provides image-based, real-time sensing of complex physical phenomena like neuromuscular activity and fatigue. This allows Nitin’s hybrid exoskeleton to switch between joint actuators and FES, depending upon the patient’s muscle fatigue.”

In addition to mating Dr. Sharma’s hybrid exoskeleton to Dr. Kim’s ultrasound sensors, the research group will develop computational algorithms for real-time sensing of muscle function and fatigue. Human subjects using a leg-extension machine will enable detailed measurement of strain rates, transition to fatigue, and full fatigue to create a novel muscle-fatigue prediction model. Future phases will allow the Pitt and George Mason researchers to develop a wearable device for patients with motor impairment.

“Right now an exoskeleton combined with ultrasound sensors is just a big machine, and you don’t want to weigh down a patient with a backpack of computer systems and batteries,” Dr. Sharma said. “The translational research with George Mason will enable us to integrate a wearable ultrasound sensor with a hybrid exoskeleton, and develop a fully functional system that will aid in rehabilitation and mobility for individuals who have suffered spinal cord injuries or strokes.”

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Source: One step at a time | EurekAlert! Science News

, , , , , , , ,

Leave a comment

%d bloggers like this: