Posts Tagged Indexes

[Abstract + References] Electromyographic indices of muscle fatigue of a severely paralyzed chronic stroke patient undergoing upper limb motor rehabilitation

Abstract

Modern approaches to motor rehabilitation of severe upper limb paralysis in chronic stroke decode movements from electromyography for controlling rehabilitation orthoses. Muscle fatigue is a phenomenon that influences these neurophysiological signals and may diminish the decoding quality. Characterization of these potential signal changes during movement patterns of rehabilitation training could therefore help improve the decoding accuracy. In the present work we investigated how electromyographic indices of muscle fatigue in the Deltoid Anterior muscle evolve during typical forward reaching movements of a rehabilitation training in healthy subjects and a stroke patient. We found that muscle fatigue in healthy subjects changed the neurophysiological signal. In the patient, however, no consistent change was observed over several sessions.
1. V. L. Feigin , B. Norrving , M. G. George , J. L. Foltz , A. Roth Gregory , and G. A. Mensah , “Prevention of stroke: a strategic global imperative,” Nat. Rev. Neurol., vol. 107, pp. 501–512, 2016.

2. A. Ramos-Murguialday et al , “Brain-machine interface in chronic stroke rehabilitation: a controlled study,” Ann. Neurol., vol. 74, no. 1, pp. 100–108, 2013.

3. A. Sarasola-Sanz et al , “A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients,” IEEE Int Conf Rehabil Robot, vol. 2017, pp. 895–900, Jul. 2017.

4. R. M. Enoka and J. Duchateau , “Muscle fatigue: what, why and how it influences muscle function,” J Physiol, vol. 586, no. 1, pp. 11–23, Jan. 2008.

5. M. González-Izal , A. Malanda , E. Gorostiaga , and M. Izquierdo , “Electromyographic models to assess muscle fatigue,” J. Electromyogr. Kinesiol., vol. 22, no. 4, pp. 501–512, Aug. 2012.

6. A. Sarasola Sanz et al , “EMG-based multi-joint kinematics decoding for robot-aided rehabilitation therapies,” in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015.

7. P. V. Komi and P. Tesch , “EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man,” Eur. J Appl Physiol, vol. 42, no. 1, pp. 41–50, Sep. 1979.

8. D. R. Rogers and D. T. MacIsaac , “A comparison of EMG-based muscle fatigue assessments during dynamic contractions,” J. Electromyogr. Kinesiol., vol. 23, no. 5, pp. 1004–1011, Oct. 2013.

9. B. Bigland-Ritchie , E. F. Donovan , and C. S. Roussos , “Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts,” J Appl Physiol Respir Env. Exerc Physiol, vol. 51, no. 5, pp. 1300–1305, Nov. 1981.

10. G. V. Dimitrov , T. I. Arabadzhiev , K. N. Mileva , J. L. Bowtell , N. Crichton , and N. A. Dimitrova , “Muscle Fatigue during Dynamic Contractions Assessed by New Spectral Indices,” Med. Sci. Sports Exerc., 2006.

11. N. A. Riley and M. Bilodeau , “Changes in upper limb joint torque patterns and EMG signals with fatigue following a stroke,” Disabil Rehabil, vol. 24, no. 18, pp. 961–969, Dec. 2002.

12. M. J. Campbell , A. J. McComas , and F. Petito , “Physiological changes in ageing muscles,” J. Neurol. Neurosurg. Psychiatry, vol. 36, no. 2, pp. 174–182, 1973.

 

via Electromyographic indices of muscle fatigue of a severely paralyzed chronic stroke patient undergoing upper limb motor rehabilitation – IEEE Conference Publication

, , , , , , , , , , ,

Leave a comment

[Abstract] Quantification method of motor function recovery of fingers by using the device for home rehabilitation – IEEE Conference Publication

Abstract:

After leaving hospital, patients can carry out rehabilitation by using rehabilitation devices. However, they cannot evaluate the recovery by themselves. For this problem, a device which can both carry out the rehabilitation and evaluation of the degree of recovery is required. This paper proposes the method that quantifies the recovery of the paralysis of fingers to evaluate a patient automatically. A finger movement is measured by a pressure sensor on the rehabilitation device we have developed. A measured data is used as a time-series signal, and the recovery of the paralysis is quantified by calculating the dissimilarity between a healthy subject’s signal and the patient’s signal. The results of those dissimilarities are integrated over all finger to be used as a quantitative scale of recovery. From the experiment conducted with hemiplegia patients and healthy subjects, we could trace the process of the recovery by the proposed method.

Source: Quantification method of motor function recovery of fingers by using the device for home rehabilitation – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[Abstract] Technical validation of an integrated robotic hand rehabilitation device: Finger independent movement, EMG control, and EEG-based biofeedback

Abstract:

The objective of this work was to design and experiment a robotic hand rehabilitation device integrated with a wireless EEG system, going towards patient active participation maximization during the exercise. This has been done through i) hand movement actively triggered by patients muscular activity as revealed by electromyographic signals (i.e., a target hand movement for the rehabilitation session is defined, the patient is required to start the movement and only when the muscular activity overcomes a predefined threshold, the patient-initiated movement is supported); ii) an EEG-based biofeedback implemented to make the user aware of his/her level of engagement (i.e., brain rhythms power ratio Beta/Alpha). The designed system is composed by the Gloreha hand rehabilitation glove, a device for electromyographic signals recording, and a wireless EEG headset. A strong multidisciplinary approach was the base to reach this goal, which is the fruitful background of the Think and Go project. Within this project, research institutes (Politecnico di Milano), clinical centers (INRCA-IRCCS), and companies (ab medica s.p.a., Idrogent, SXT) have worked together throughout the development of the integrated robotic hand rehabilitation device. The integrated device has been tested on a small pilot group of healthy volunteers. All the users were able to calibrate and correctly use the system, and they reported that the system was more challenging to be used with respect to the standard passive hand mobilization session, and required more attention and involvement. The results obtained during the preliminary tests are encouraging, and demonstrate the feasibility of the proposed approach.

Source: Technical validation of an integrated robotic hand rehabilitation device: Finger independent movement, EMG control, and EEG-based biofeedback – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: