Posts Tagged Inertial sensor

[Abstract + References] A Mechatronic Mirror-Image Motion Device for Symmetric Upper-Limb Rehabilitation

Abstract

This paper presents an upper-limb rehabilitation device that provides symmetric bilateral movements with motion measurements using inertial sensors. Mirror therapy is one of widely used methods for rehabilitation of impaired side movements because voluntary movement of the unimpaired side facilitates reorganizational changes in the motor cortex. The developed upper-limb exoskeleton was equipped with two brushless DC motors that helped generate three axes of upper-limb movements corresponding to other arm movements that were measured using inertial sensors. In this study, inertial sensors were used to estimate the joint angles for three target upper-limb movements: elbow flexion and extension (flex/ext), wrist flex/ext, and forearm pronation and supination (pro/sup). Elbow flex/ext was performed by the actuator that was directly attached to the elbow joint. The actuation of the forearm pro/sup and wrist flex/ext shared one motor using a developed cable-driven mechanism, and two types of motion were selectively performed. We assessed the feasibility of the proposed mirror-image device with the accuracy and precision of the motion estimation and the actuation of joint movements. An individual could perform most upper-limb movements for activities of daily living using the proposed device.

References

1.
Moseley, L. G., Gallace, A., & Spence, C. (2008). Is mirror therapy all it is cracked up to be? Current evidence and future directions. Pain,138(1), 7–10.Google Scholar
2.
Hamzei, F., Läppchen, C. H., et al. (2012). Functional plasticity induced by mirror training: The mirror as the element connecting both hands to one hemisphere. Neurorehabilitation and neural repair,26(5), 484–496.CrossRefGoogle Scholar
3.
Michielsen, M. E., et al. (2011). Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: A phase II randomized controlled trial. Neurorehabilitation and neural repair,25(3), 223–233.CrossRefGoogle Scholar
4.
Kim, W., Beom, J., et al. (2018). Reliability and validity of attitude and heading reference system motion estimation in a novel mirror therapy system. Journal of Medical and Biological Engineering,38(3), 370–377.CrossRefGoogle Scholar
5.
Nam, H. S., Koh, S., et al. (2017). Recovery of proprioception in the upper extremity by robotic mirror therapy: A clinical pilot study for proof of concept. Journal of Korean Medical Science,32(10), 1568–1575.CrossRefGoogle Scholar
6.
Samuelkamaleshkumar, S., Reethajanetsureka, S., et al. (2014). Mirror therapy enhances motor performance in the paretic upper limb after stroke: A pilot randomized controlled trial. Archives of Physical Medicine and Rehabilitation,95(11), 2000–2005.CrossRefGoogle Scholar
7.
Yue, G., & Cole, K. J. (1992). Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. Journal of Neurophysiology,67(5), 1114–1123.CrossRefGoogle Scholar
8.
Babaiasl, M., Mahdioun, S. H., et al. (2016). A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disability and Rehabilitation: Assistive Technology,11(4), 263–280.Google Scholar
9.
Moon, S. B., et al. (2017). Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower-limb robot: A pilot study. International Journal of Precision Engineering and Manufacturing,18(12), 1773–1781.CrossRefGoogle Scholar
10.
Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet Neurology,3(9), 528–536.CrossRefGoogle Scholar
11.
Gillen, G. (2015). Stroke rehabilitation: A function-based approach. Amsterdam: Elsevier.Google Scholar
12.
Lessard, S., Pansodtee, P., et al. (2018). A soft exosuit for flexible upper-extremity rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering,26(8), 1604–1617.CrossRefGoogle Scholar
13.
Colombo, R., & Sanguineti, V. (2018). Assistive controllers and modalities for robot-aided neurorehabilitation. In Rehabilitation robotics (pp. 63–74). Academic Press.Google Scholar
14.
Ercolini, G., Trigili, E., et al. (2019). A novel generation of ergonomic upper-limb wearable robots: Design challenges and solutions. Robotica,37(12), 2056–2072.CrossRefGoogle Scholar
15.
Heo, P., Gu, G., et al. (2012). Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf.,13(5), 807–824.CrossRefGoogle Scholar
16.
Muellbacher, W., Ziemann, U., et al. (2001). Role of the human motor cortex in rapid motor learning. Experimental Brain Research,136(4), 431–438.CrossRefGoogle Scholar
17.
Perry, J. C., Rosen, J., & Burns, S. (2007). Upper-limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics,12(4), 408–417.CrossRefGoogle Scholar
18.
Hu, X., Yao, C., & Soh, G. S. (2015). Performance evaluation of lower limb ambulatory measurement using reduced Inertial Measurement Units and 3R gait model. In IEEE international conference on rehabilitation robotics (ICORR) (549–554).Google Scholar
19.
Liao, W. W., et al. (2012). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: A randomized controlled trial. Clinical Rehabilitation,26(2), 111–120.MathSciNetCrossRefGoogle Scholar
20.
Park, K., Lee, D. J., et al. (2012). Development of mirror image motion system with sEMG for shoulder rehabilitation of post-stroke hemiplegic patients. International Journal of Precision Engineering and Manufacturing,13(8), 1473–1479.CrossRefGoogle Scholar
21.
Lum, P. S., Burgar, C. G., et al. (2006). MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of Rehabilitation Research and Development,43(5), 631.CrossRefGoogle Scholar
22.
French, J. A., Rose, C. G., & O’malley, M. K. (2014). System characterization of MAHI Exo-II: a robotic exoskeleton for upper extremity rehabilitation. In Proceedings of the ASME dynamic systems and control conference. NIH Public Access.Google Scholar
23.
KATS:The Report of the anthropometry survey, Korea, KATS Report, 2010.Google Scholar
24.
Perreault, S., & Gosselin, C. M. (2008). Cable-driven parallel mechanisms: Application to a locomotion interface. Journal of Mechanical Design,130(10), 102301.CrossRefGoogle Scholar
25.
Abdolshah, S., & Rosati, G. (2017). Improving performance of cable robots by adaptively changing minimum tension in cables. International Journal of Precision Engineering and Manufacturing,18(5), 673–680.CrossRefGoogle Scholar
26.
Cho, G. R., Kim, S. T., & Kim, J. (2018). Backlash compensation for accurate control of biopsy needle manipulators having long cable transmission. International Journal of Precision Engineering and Manufacturing,19(5), 675–684.CrossRefGoogle Scholar
27.
Lee, C., & Park, S. (2018). Estimation of unmeasured golf swing of arm based on the swing dynamics. Int. J. Precis. Eng. Manuf.,19(5), 745–751.CrossRefGoogle Scholar
28.
Lundin, T. M., Grabiner, M. D., & Jahnigen, D. W. (1995). On the assumption of bilateral lower extremity joint moment symmetry during the sit-to-stand task. Journal of Biomechanics,28(1), 109–112.CrossRefGoogle Scholar
29.
El-Gohary, M., & McNames, J. (2012). Shoulder and elbow joint angle tracking with inertial sensors. IEEE Transactions on Biomedical Engineering,59(9), 2635–2641.CrossRefGoogle Scholar
30.
Cutti, A. G., Paolini, G., et al. (2005). Soft tissue artefact assessment in humeral axial rotation. Gait & Posture,21(3), 341–349.CrossRefGoogle Scholar

 

via A Mechatronic Mirror-Image Motion Device for Symmetric Upper-Limb Rehabilitation | SpringerLink

 

, , , , , , ,

Leave a comment

[ARTICLE] Effectiveness of Single Functional Electrical Stimulation in Neurological Patients with Ankle-Foot Orthoses – Full Text PDF

Abstract

Background: Drop foot is a distal deficiency common in patients with central nervous system diseases that makes clearance difficult during swing phase, contributes to inefficient gait compensations, contributes to increase incidence of falls and energy expenditure. Aim of this study is to evaluate the effectiveness of a single application of functional electrical stimulation compared with ankle-foot orthoses in patients with drop foot.

Methods: Patients enrolled were unable to walk and to perform test without ankle-foot orthoses. They were evaluated by 10-meters walk test, obstacles test, up-and-down stair test, six-minute walk test and gait analysis with inertial sensors. All tests were performed with ankle-foot orthoses and with no ankle-foot orthoses and application of single functional electrical stimulation.

Results: Thirteen patients (8 males and 5 females) were recruited for this study out of 41 potential subjects. Data collected were processed by Student’s t test and by Wilcoxon test for paired observations and by Student’s t test and Mann-Whitney test for independent samples. P ≤ 0.05 were considered significant. For each test suitable effect sizes (Cohen’s d, and Pearson’s r) were calculated. Analysis of results with ankle-foot orthoses and with no anklefoot orthoses and application of single functional electrical stimulation showed no statistically significant difference in all test.

Conclusions: The use of single functional electrical stimulation showed same effects of ankle-foot orthoses on walking capacity and motor performance in chronic neurological diseases. More studies would be required to assess the long term effectiveness of functional electrical stimulation and to evaluate if its application in acute-phase may be used in association with traditional treatment.

Download Full Text PDF

 

, , , , ,

Leave a comment

%d bloggers like this: