Posts Tagged Levetiracetam

[ARTICLE] Levetiracetam and brivaracetam: a review of evidence from clinical trials and clinical experience – Full Text

Until the early 1990s, a limited number of antiepileptic drugs (AEDs) were available. Since then, a large variety of new AEDs have been developed and introduced, several of them offering new modes of action. One of these new AED families is described and reviewed in this article. Levetiracetam (LEV) and brivaracetam (BRV) are pyrrolidone derivate compounds binding at the presynaptic SV2A receptor site and are thus representative of AEDs with a unique mode of action. LEV was extensively investigated in randomized controlled trials and has a very promising efficacy both in focal and generalized epilepsies. Its pharmacokinetic profile is favorable and LEV does not undergo clinically relevant interactions. Adverse reactions comprise mainly asthenia, somnolence, and behavioral symptoms. It has now been established as a first-line antiepileptic drug. BRV has been recently introduced as an adjunct antiepileptic drug in focal epilepsy with a similarly promising pharmacokinetic profile and possibly increased tolerability concerning psychiatric adverse events. This review summarizes the essential preclinical and clinical data of LEV and BRV that is currently available and includes the experiences at a large tertiary referral epilepsy center.

Since the introduction of bromides as the first effective antiepileptic drugs (AEDs),1 chronic AED treatment that consisted of the sustained prevention of epileptic seizures has remained the standard of epilepsy therapy.2 Before to the introduction of the newer generation of AEDs, a limited number of drugs were available that addressed the blockade of sodium channels, acting on gamma-aminobutyric acid (GABA) type A receptors, or interacting with calcium channels as the leading modes of action.3 With the introduction of the newer AEDs a heterogeneous group of drugs appeared, some of them offering new mechanisms of action2 including the blockade of GABA aminotransferase (vigabatrin [VGB]), GABA re-uptake from the synaptic cleft (tiagabine [TGB]), the modulation of calcium channels (gabapentin [GBP], pregabalin [PGB]), the selective non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazolproprionic acid (AMPA) receptor antagonism (perampanel [PER]), and the binding to the presynaptic SV2A receptor site which is the unique mode of action of levetiracetam (LEV) and brivaracetam (BRV), the AEDs this review will cover. The authors will summarize the development of both compounds as derivatives of piracetam, review the currently available preclinical and clinical data, and discuss the question of whether BRV has the potential to be recognized as being superior to LEV and if it can replace it as the standard AED with the main mode of action both AEDs reflect.[…]

 

Continue —-> Levetiracetam and brivaracetam: a review of evidence from clinical trials and clinical experience – Bernhard J. Steinhoff, Anke M. Staack, 2019

, , , , , , ,

Leave a comment

[Abstract + References] Epilepsy and Anticonvulsant Therapy in Brain Tumor Patients – Book Chapter

Book Chapter

Authors: Sylvia C. Kurz, David Schiff, Patrick Y. Wen

Abstract

Seizures are common in patients with brain tumors and may have a significant impact on quality of life. The actual seizure risk varies based on tumor histology and tumor location. Seizures are most common in patients with glioneuronal tumors and temporal, insular, or frontal lobe tumor location. Antiepileptic drug therapy is indicated in patients with a history of seizure, and the choice of symptomatic treatment should follow the principles of treatment for focal symptomatic epilepsy. In general, antiepileptic drugs that interact with the hepatic CYP450 co-enzymes should be avoided in brain tumor patients if possible due to potential drug-chemotherapy interactions. Levetiracetam represents the antiepileptic drug of choice in patients with brain tumors and has been demonstrated to be efficacious and is well tolerated in brain tumor patients. Lacosamide is an alternative anticonvulsant agent with increasing experience supporting its efficacy and favorable side effect profile.

References

  1. 1.
    Lote K, Stenwig AE, Skullerud K, Hirschberg H (1998) Prevalence and prognostic significance of epilepsy in patients with gliomas. Eur J Cancer 34:98–102PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Herman ST (2002) Epilepsy after brain insult: targeting epileptogenesis. Neurology 59:S21–S26PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    De Santis A, Villani R, Sinisi M, Stocchetti N, Perucca E (2002) Add-on phenytoin fails to prevent early seizures after surgery for supratentorial brain tumors: a randomized controlled study. Epilepsia 43:175–182PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Southwell DG, Garcia PA, Berger MS, Barbaro NM, Chang EF (2012) Long-term seizure control outcomes after resection of gangliogliomas. Neurosurgery 70:1406–1413; discussion 1413–1404PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chang EF, Christie C, Sullivan JE et al (2010) Seizure control outcomes after resection of dysembryoplastic neuroepithelial tumor in 50 patients. J Neurosurg Pediatr 5:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tomita T, Volk JM, Shen W, Pundy T (2016) Glioneuronal tumors of cerebral hemisphere in children: correlation of surgical resection with seizure outcomes and tumor recurrences. Childs Nerv Syst 32:1839–1848PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pallud J, Audureau E, Blonski M et al (2014) Epileptic seizures in diffuse low-grade gliomas in adults. Brain 137:449–462PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Chang EF, Potts MB, Keles GE et al (2008) Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 108:227–235PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Moots PL, Maciunas RJ, Eisert DR, Parker RA, Laporte K, Abou-Khalil B (1995) The course of seizure disorders in patients with malignant gliomas. Arch Neurol 52:717–724PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Flanigan PM, Jahangiri A, Kuang R et al (2017) Improved survival with decreased wait time to surgery in glioblastoma patients presenting with seizure. Neurosurgery 81(5):824–833PubMedPubMedCentralGoogle Scholar
  11. 11.
    Toledo M, Sarria-Estrada S, Quintana M et al (2017) Epileptic features and survival in glioblastomas presenting with seizures. Epilepsy Res 130:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Englot DJ, Magill ST, Han SJ, Chang EF, Berger MS, McDermott MW (2016) Seizures in supratentorial meningioma: a systematic review and meta-analysis. J Neurosurg 124:1552–1561PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lieu AS, Howng SL (2000) Intracranial meningiomas and epilepsy: incidence, prognosis and influencing factors. Epilepsy Res 38:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Oberndorfer S, Schmal T, Lahrmann H, Urbanits S, Lindner K, Grisold W (2002) [The frequency of seizures in patients with primary brain tumors or cerebral metastases. An evaluation from the Ludwig Boltzmann Institute of Neuro-Oncology and the Department of Neurology, Kaiser Franz Josef Hospital, Vienna]. Wien Klin Wochenschr 114:911–916Google Scholar
  15. 15.
    Wu A, Weingart JD, Gallia GL et al (2017) Risk factors for preoperative seizures and loss of seizure control in patients undergoing surgery for metastatic brain tumors. World Neurosurg 104:120–128PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lynam LM, Lyons MK, Drazkowski JF et al (2007) Frequency of seizures in patients with newly diagnosed brain tumors: a retrospective review. Clin Neurol Neurosurg 109:634–638PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    You G, Sha ZY, Yan W et al (2012) Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study. Neuro Oncol 14:230–241PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lee JW, Wen PY, Hurwitz S et al (2010) Morphological characteristics of brain tumors causing seizures. Arch Neurol 67:336–342PubMedPubMedCentralGoogle Scholar
  19. 19.
    Englot DJ, Chang EF, Vecht CJ (2016) Epilepsy and brain tumors. Handb Clin Neurol 134:267–285PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fish DR, Spencer SS (1995) Clinical correlations: MRI and EEG. Magn Reson Imaging 13:1113–1117PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7:525–537PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schaller B (2005) Influences of brain tumor-associated pH changes and hypoxia on epileptogenesis. Acta Neurol Scand 111:75–83PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wolf HK, Roos D, Blumcke I, Pietsch T, Wiestler OD (1996) Perilesional neurochemical changes in focal epilepsies. Acta Neuropathol 91:376–384PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Beaumont A, Whittle IR (2000) The pathogenesis of tumour associated epilepsy. Acta Neurochir (Wien) 142:1–15CrossRefGoogle Scholar
  25. 25.
    Yuen TI, Morokoff AP, Bjorksten A et al (2012) Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology 79:883–889PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rosati A, Poliani PL, Todeschini A et al (2013) Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme. Neuro Oncol 15:618–625PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pallud J, Capelle L, Huberfeld G (2013) Tumoral epileptogenicity: how does it happen? Epilepsia 54(Suppl 9):30–34PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Aronica E, Yankaya B, Jansen GH et al (2001) Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 27:223–237PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bateman DE, Hardy JA, McDermott JR, Parker DS, Edwardson JA (1988) Amino acid neurotransmitter levels in gliomas and their relationship to the incidence of epilepsy. Neurol Res 10:112–114PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chen H, Judkins J, Thomas C et al (2017) Mutant IDH1 and seizures in patients with glioma. Neurology 88:1805–1813PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Blumcke I, Luyken C, Urbach H, Schramm J, Wiestler OD (2004) An isomorphic subtype of long-term epilepsy-associated astrocytomas associated with benign prognosis. Acta Neuropathol 107:381–388PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Danfors T, Ribom D, Berntsson SG, Smits A (2009) Epileptic seizures and survival in early disease of grade 2 gliomas. Eur J Neurol 16:823–831PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Berendsen S, Varkila M, Kroonen J et al (2016) Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol 18:700–706PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Buckner JC, Shaw EG, Pugh SL et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cairncross JG, Wang M, Jenkins RB et al (2014) Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 32:783–790PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stockhammer F, Misch M, Helms HJ et al (2012) IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure 21:194–197PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Liubinas SV, D’Abaco GM, Moffat BM et al (2014) IDH1 mutation is associated with seizures and protoplasmic subtype in patients with low-grade gliomas. Epilepsia 55:1438–1443PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Neal A, Kwan P, O’Brien TJ, Buckland ME, Gonzales M, Morokoff A (2017) IDH1 and IDH2 mutations in postoperative diffuse glioma-associated epilepsy. Epilepsy Behav 78:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Chaichana KL, Parker SL, Olivi A, Quinones-Hinojosa A (2009) Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. Clinical article. J Neurosurg 111:282–292PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sheth RD (2002) Adolescent issues in epilepsy. J Child Neurol 17(Suppl 2):2S23–22S27PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Klein M, Engelberts NH, van der Ploeg HM et al (2003) Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann Neurol 54:514–520PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Taphoorn MJ, Klein M (2004) Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3:159–168PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Batchelor TT, Byrne TN (2006) Supportive care of brain tumor patients. Hematol Oncol Clin North Am 20:1337–1361PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Auriel E, Landov H, Blatt I et al (2009) Quality of life in seizure-free patients with epilepsy on monotherapy. Epilepsy Behav 14:130–133PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Giulioni M, Galassi E, Zucchelli M, Volpi L (2005) Seizure outcome of lesionectomy in glioneuronal tumors associated with epilepsy in children. J Neurosurg 102:288–293PubMedGoogle Scholar
  48. 48.
    Giulioni M, Gardella E, Rubboli G et al (2006) Lesionectomy in epileptogenic gangliogliomas: seizure outcome and surgical results. J Clin Neurosci 13:529–535PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Giulioni M, Rubboli G, Marucci G et al (2009) Seizure outcome of epilepsy surgery in focal epilepsies associated with temporomesial glioneuronal tumors: lesionectomy compared with tailored resection. J Neurosurg 111:1275–1282PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bonney PA, Glenn CA, Ebeling PA et al (2015) Seizure freedom rates and prognostic indicators after resection of gangliogliomas: a review. World Neurosurg 84:1988–1996PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bonney PA, Boettcher LB, Conner AK et al (2016) Review of seizure outcomes after surgical resection of dysembryoplastic neuroepithelial tumors. J Neurooncol 126:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Englot DJ, Han SJ, Berger MS, Barbaro NM, Chang EF (2012) Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery 70:921–928; discussion 928PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bonney PA, Boettcher LB, Burks JD et al (2017) Rates of seizure freedom after surgical resection of diffuse low-grade gliomas. World Neurosurg 106:750–756PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chaichana KL, Pendleton C, Zaidi H et al (2013) Seizure control for patients undergoing meningioma surgery. World Neurosurg 79:515–524PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Chen WC, Magill ST, Englot DJ et al (2017) Factors associated with pre- and postoperative seizures in 1033 patients undergoing supratentorial meningioma resection. Neurosurgery 81(2):297–306PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ruda R, Magliola U, Bertero L et al (2013) Seizure control following radiotherapy in patients with diffuse gliomas: a retrospective study. Neuro Oncol 15:1739–1749PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rogers LR, Morris HH, Lupica K (1993) Effect of cranial irradiation on seizure frequency in adults with low-grade astrocytoma and medically intractable epilepsy. Neurology 43:1599–1601PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chalifoux R, Elisevich K (1996) Effect of ionizing radiation on partial seizures attributable to malignant cerebral tumors. Stereotact Funct Neurosurg 67:169–182PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Taphoorn MJ, Stupp R, Coens C et al (2005) Health-related quality of life in patients with glioblastoma: a randomised controlled trial. Lancet Oncol 6:937–944PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Koekkoek JA, Kerkhof M, Dirven L, Heimans JJ, Reijneveld JC, Taphoorn MJ (2015) Seizure outcome after radiotherapy and chemotherapy in low-grade glioma patients: a systematic review. Neuro Oncol 17:924–934PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kaloshi G, Benouaich-Amiel A, Diakite F et al (2007) Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 68:1831–1836PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pace A, Vidiri A, Galie E et al (2003) Temozolomide chemotherapy for progressive low-grade glioma: clinical benefits and radiological response. Ann Oncol 14:1722–1726PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Koekkoek JA, Dirven L, Heimans JJ et al (2015) Seizure reduction in a low-grade glioma: more than a beneficial side effect of temozolomide. J Neurol Neurosurg Psychiatry 86:366–373PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Soffietti R, Ruda R, Bradac GB, Schiffer D (1998) PCV chemotherapy for recurrent oligodendrogliomas and oligoastrocytomas. Neurosurgery 43:1066–1073PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lebrun C, Fontaine D, Bourg V et al (2007) Treatment of newly diagnosed symptomatic pure low-grade oligodendrogliomas with PCV chemotherapy. Eur J Neurol 14:391–398PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Frenay MP, Fontaine D, Vandenbos F, Lebrun C (2005) First-line nitrosourea-based chemotherapy in symptomatic non-resectable supratentorial pure low-grade astrocytomas. Eur J Neurol 12:685–690PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wu AS, Trinh VT, Suki D et al (2013) A prospective randomized trial of perioperative seizure prophylaxis in patients with intraparenchymal brain tumors. J Neurosurg 118:873–883PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Franceschetti S, Binelli S, Casazza M et al (1990) Influence of surgery and antiepileptic drugs on seizures symptomatic of cerebral tumours. Acta Neurochir (Wein) 103:47–51CrossRefGoogle Scholar
  69. 69.
    Forsyth PA, Weaver S, Fulton D et al (2003) Prophylactic anticonvulsants in patients with brain tumour. Can J Neurol Sci 30:106–112PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Dewan MC, White-Dzuro GA, Brinson PR et al (2017) The influence of perioperative seizure prophylaxis on seizure rate and hospital quality metrics following glioma resection. Neurosurgery 80:563–570PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    North JB, Penhall RK, Hanieh A, Frewin DB, Taylor WB (1983) Phenytoin and postoperative epilepsy. A double-blind study. J Neurosurg 58:672–677PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chang SM, Parney IF, Huang W et al (2005) Patterns of care for adults with newly diagnosed malignant glioma. JAMA 293:557–564PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dewan MC, Thompson RC, Kalkanis SN, Barker FG II, Hadjipanayis CG (2017) Prophylactic antiepileptic drug administration following brain tumor resection: results of a recent AANS/CNS section on tumors survey. J Neurosurg 126:1772–1778PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sirven JI, Wingerchuk DM, Drazkowski JF, Lyons MK, Zimmerman RS (2004) Seizure prophylaxis in patients with brain tumors: a meta-analysis. Mayo Clin Proc 79:1489–1494PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pulman J, Greenhalgh J, Marson AG (2013) Antiepileptic drugs as prophylaxis for post-craniotomy seizures. Cochrane Database Syst Rev 2:CD007286Google Scholar
  76. 76.
    Kuijlen JM, Teernstra OP, Kessels AG, Herpers MJ, Beuls EA (1996) Effectiveness of antiepileptic prophylaxis used with supratentorial craniotomies: a meta-analysis. Seizure 5:291–298PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Weston J, Greenhalgh J, Marson AG (2015) Antiepileptic drugs as prophylaxis for post-craniotomy seizures. Cochrane Database Syst Rev 3:CD007286Google Scholar
  78. 78.
    Glantz MJ, Cole BF, Forsyth PA et al (2000) Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 54:1886–1893PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Soffietti R, Baumert BG, Bello L et al (2010) Guidelines on management of low-grade gliomas: report of an EFNS-EANO task force. Eur J Neurol 17:1124–1133PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Glauser T, Ben-Menachem E, Bourgeois B et al (2013) Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia 54:551–563PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Crepeau AZ, Sirven JI (2017) Management of adult onset seizures. Mayo Clin Proc 92:306–318PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gilbert MR, Supko JG, Batchelor T et al (2003) Phase I clinical and pharmacokinetic study of irinotecan in adults with recurrent malignant glioma. Clin Cancer Res 9:2940–2949PubMedPubMedCentralGoogle Scholar
  83. 83.
    Maschio M, Albani F, Baruzzi A et al (2006) Levetiracetam therapy in patients with brain tumour and epilepsy. J Neurooncol 80:97–100PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Vecht CJ, Wagner GL, Wilms EB (2003) Interactions between antiepileptic and chemotherapeutic drugs. Lancet Neurol 2:404–409PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Oberndorfer S, Piribauer M, Marosi C, Lahrmann H, Hitzenberger P, Grisold W (2005) P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol 72:255–260PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Neef C, de Voogd-van der Straaten I (1988) An interaction between cytostatic and anticonvulsant drugs. Clin Pharmacol Ther 43:372–375PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ruegg S (2002) Dexamethasone/phenytoin interactions: neurooncological concerns. Swiss Med Wkly 132:425–426PubMedPubMedCentralGoogle Scholar
  88. 88.
    Lackner TE (1991) Interaction of dexamethasone with phenytoin. Pharmacotherapy 11:344–347PubMedPubMedCentralGoogle Scholar
  89. 89.
    Pursche S, Schleyer E, von Bonin M et al (2008) Influence of enzyme-inducing antiepileptic drugs on trough level of imatinib in glioblastoma patients. Curr Clin Pharmacol 3:198–203PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Raymond E, Brandes AA, Dittrich C et al (2008) Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 26:4659–4665PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wen PY, Yung WK, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12:4899–4907PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Maschio M, Dinapoli L, Sperati F et al (2011) Levetiracetam monotherapy in patients with brain tumor-related epilepsy: seizure control, safety, and quality of life. J Neurooncol 104:205–214PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Usery JB, Michael LM II, Sills AK, Finch CK (2010) A prospective evaluation and literature review of levetiracetam use in patients with brain tumors and seizures. J Neurooncol 99:251–260PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kerkhof M, Dielemans JC, van Breemen MS et al (2013) Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol 15:961–967PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Maschio M, Zarabla A, Maialetti A et al (2017) Quality of life, mood and seizure control in patients with brain tumor related epilepsy treated with lacosamide as add-on therapy: a prospective explorative study with a historical control group. Epilepsy Behav 73:83–89PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Maschio M, Dinapoli L, Mingoia M et al (2011) Lacosamide as add-on in brain tumor-related epilepsy: preliminary report on efficacy and tolerability. J Neurol 258:2100–2104PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Brodie MJ, Whitesides J, Schiemann J, D’Souza J, Johnson ME (2016) Tolerability, safety, and efficacy of adjunctive brivaracetam for focal seizures in older patients: a pooled analysis from three phase III studies. Epilepsy Res 127:114–118PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Moseley BD, Sperling MR, Asadi-Pooya AA et al (2016) Efficacy, safety, and tolerability of adjunctive brivaracetam for secondarily generalized tonic-clonic seizures: pooled results from three phase III studies. Epilepsy Res 127:179–185PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Elger C, Koepp M, Trinka E et al (2017) Pooled efficacy and safety of eslicarbazepine acetate as add-on treatment in patients with focal-onset seizures: data from four double-blind placebo-controlled pivotal phase III clinical studies. CNS Neurosci Ther 23:961–972PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Plosker GL (2012) Perampanel: as adjunctive therapy in patients with partial-onset seizures. CNS Drugs 26:1085–1096PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    French JA, Krauss GL, Biton V et al (2012) Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304. Neurology 79:589–596PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    French JA, Krauss GL, Steinhoff BJ et al (2013) Evaluation of adjunctive perampanel in patients with refractory partial-onset seizures: results of randomized global phase III study 305. Epilepsia 54:117–125PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Krauss GL, Serratosa JM, Villanueva V et al (2012) Randomized phase III study 306: adjunctive perampanel for refractory partial-onset seizures. Neurology 78:1408–1415PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Van Nifterik KA, Van den Berg J, Slotman BJ, Lafleur MV, Sminia P, Stalpers LJ (2012) Valproic acid sensitizes human glioma cells for temozolomide and gamma-radiation. J Neurooncol 107:61–67PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hosein AN, Lim YC, Day B et al (2015) The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells. J Neurooncol 122:263–271PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chie EK, Shin JH, Kim JH, Kim HJ, Kim IA, Kim IH (2015) In vitro and in vivo radiosensitizing effect of valproic acid on fractionated irradiation. Cancer Res Treat 47:527–533PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Weller M, Gorlia T, Cairncross JG et al (2011) Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77:1156–1164PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Barker CA, Bishop AJ, Chang M, Beal K, Chan TA (2013) Valproic acid use during radiation therapy for glioblastoma associated with improved survival. Int J Radiat Oncol Biol Phys 86:504–509PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Happold C, Gorlia T, Chinot O et al (2016) Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J Clin Oncol 34:731–739PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bobustuc GC, Baker CH, Limaye A et al (2010) Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol 12:917–927PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kim YH, Kim T, Joo JD et al (2015) Survival benefit of levetiracetam in patients treated with concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide for glioblastoma multiforme. Cancer 121:2926–2932PubMedCrossRefPubMedCentralGoogle Scholar

via Epilepsy and Anticonvulsant Therapy in Brain Tumor Patients | SpringerLink

, , , , , , , ,

Leave a comment

[ARTICLE] Levetiracetam for epilepsy: an evidence map of efficacy, safety and economic profiles – Full Text

Objective: To evaluate the efficacy, safety and economics of levetiracetam (LEV) for epilepsy.
Materials and methods: PubMed, Scopus, the Cochrane Library, OpenGrey.eu and ClinicalTrials.gov were searched for systematic reviews (SRs), meta-analyses, randomized controlled trials (RCTs), observational studies, case reports and economic studies published from January 2007 to April 2018. We used a bubble plot to graphically display information of included studies and conducted meta-analyses to quantitatively synthesize the evidence.
Results: A total of 14,803 records were obtained. We included 30 SRs/meta-analyses, 34 RCTs, 18 observational studies, 58 case reports and 2 economic studies after the screening process. The included SRs enrolled patients with pediatric epilepsy, epilepsy in pregnancy, focal epilepsy, generalized epilepsy and refractory focal epilepsy. Meta-analysis of the included RCTs indicated that LEV was as effective as carbamazepine (CBZ; treatment for 6 months: 58.9% vs 64.8%, OR=0.76, 95% CI: 0.50–1.16; 12 months: 54.9% vs 55.5%, OR=1.24, 95% CI: 0.79–1.93), oxcarbazepine (57.7% vs 59.8%, OR=1.34, 95% CI: 0.34–5.23), phenobarbital (50.0% vs 50.9%, OR=1.20, 95% CI: 0.51–2.82) and lamotrigine (LTG; 61.5% vs 57.7%, OR=1.22, 95% CI: 0.90–1.66). SRs and observational studies indicated a low malformation rate and intrauterine death rate for pregnant women, as well as low risk of cognitive side effects. But psychiatric and behavioral side effects could not be ruled out. LEV decreased discontinuation due to adverse events compared with CBZ (OR=0.52, 95% CI: 0.41–0.65), while no difference was found when LEV was compared with placebo and LTG. Two cost-effectiveness evaluations for refractory epilepsy with decision-tree model showed US$ 76.18 per seizure-free day gained in Canada and US$ 44 per seizure-free day gained in Korea.


Conclusion: 
LEV is as effective as CBZ, oxcarbazepine, phenobarbital and LTG and has an advantage for pregnant women and in cognitive functions. Limited evidence supports its cost-effectiveness

Background

Epilepsy ranks fourth after tension-type headache, migraine and Alzheimer disease in the world’s neurological disorders burden.1 A systematic review (SR) and meta-analysis of international studies reported that the point prevalence of active epilepsy was 6.38 per 1,000 people, while the lifetime prevalence was 7.60 per 1,000 people. The annual cumulative incidence of epilepsy was 67.77 per 100,000 people, while the incidence rate was 61.44 per 100,000 person-years.2 As a fairly common clinical condition affecting all ages and requiring long-term, sometimes lifelong, treatment, epilepsy incurs high health care costs for the society.1 In 2010, the total annual cost for epilepsy was 13.8 billion and the total cost per patient was €5,221 in Europe.3 Meanwhile, in the USA, epilepsy-related costs ranged from $1,022 to $19,749 per person annually.4 What is more, drug-refractory epilepsy was a major cost driver,5 with main costs from anticonvulsants, hospitalization and early retirement.6

Currently, antiepileptic drugs (AEDs) are the main treatment method for epilepsy patients, and it was reported that approximately two-thirds of epileptic seizures were controlled by AEDs.7 Conventional AEDs such as carbamazepine (CBZ) and sodium valproate (VPA) have been proven to have good therapeutic effects and low treatment cost. However, some adverse events (AEs) related to these drugs, such as Stevens–Johnson syndrome, menstrual disorder and memory deterioration seriously affect the tolerance and compliance of patients. Compared with conventional AEDs, new AEDs have the potential to be safer, but also more expensive.8

Levetiracetam (LEV) is a novel AED that has been approved as an adjunctive therapy for adults with focal epilepsy since 1999 in the US. In 2006, it was licensed as monotherapy for adults and adolescents above 16 years of age with newly diagnosed focal-onset seizures with or without secondary generalization in Europe. Also, it has been indicated as an adjunctive therapy for partial-onset seizures in patients above 4 years of age in China since 2007. Although the precise mechanism of LEV is still unclear, current researches suggest that its pharmacological mechanism is different from those of other AEDs. It may bind to the synaptic vesicle protein 2A (SV2A), which presents on the synaptic vesicles and some neuroendocrine cells. SV2A may participate in the exocytosis of synaptic vesicles and regulate the release of neurotransmitters, especially the release of excitatory amino acids, and thus depress the epilepsy discharge.9,10 Other possible mechanisms of LEV include the following: selective inhibition of voltage-dependent N-type calcium channels in hippocampal pyramidal cells and reduction of the negative allosteric agents’ inhibition, such as zinc ions and B-carbolines, on glycine and γ-aminobutyric acid neurons, which results in indirectly increasing central nervous system inhibition.11

LEV is almost completely absorbed after oral administration and the absorption is unaffected by food. The bioavailability is nearly 100% and the steady-state concentrations are achieved in 2 days if LEV is taken twice daily. Sixty-six percent of LEV is renally excreted unchanged and its major metabolic pathway is enzymatic hydrolysis of the acetamide group, which is independent of liver CYP/CYP450; so, no clinically meaningful drug–drug interactions with other AEDs were found.12 One published SR of LEV suggested LEV has an equal efficacy compared with conventional AEDs and it is well tolerated for long-term therapy without significant effect on the immune system.13 But in recent years, apart from the most frequent AEs of LEV, such as nausea, gastrointestinal symptoms, dizziness, irritability and aggressive behavior, some rare AEs of LEV have been reported, including eosinophilic pneumonia, rhabdomyolysis, thrombocytopenia, elevated kinase and reduced sperm quality.1417

Thus, we conducted a mapping review to evaluate the efficacy, safety and economic profiles of LEV compared with all other AEDs for epilepsy, to provide evidence-based information for the rational use of LEV and research agendas.

[…]

 

Continue —>  [Full text] Levetiracetam for epilepsy: an evidence map of efficacy, safety and ec | NDT

, , , , , , , , , ,

Leave a comment

[BLOG POST] Which are the safest epilepsy drugs in pregnancy? – Neurochecklists Updates

Maternal use of antiepileptic agents during pregnancy and major congenital malformations in children

Bromley RL, Weston J, Marson AG.

JAMA 2017; 318:1700-1701.

Abstract

CLINICAL QUESTION:

Is maternal use of antiepileptic drugs during pregnancy associated with major congenital malformations in children?

BOTTOM LINE:

Certain antiepileptic drugs were associated with increased rates of congenital malformations (eg, spina bifida, cardiac anomalies). Lamotrigine (2.31% in 4195 pregnancies) and levetiracetam (1.77% in 817 pregnancies) were associated with the lowest risk and valproate was associated with the highest risk (10.93% in 2565 pregnancies) compared with the offspring of women without epilepsy (2.51% in 2154 pregnancies).

Also see

Weston J, Bromley R, Jackson CF, et al. Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child. Cochrane Database Syst Rev 2016; 11:CD010224.

Both references are cited in the neurochecklist:

Antiepileptic drugs (AEDs): teratogenicity

Abstract link 1

Abstract link 2

Drugs firms ‘creating ills for every pill’. Publik15 on Flickr. https://www.flickr.com/photos/publik15/3415531899

via Which are the safest epilepsy drugs in pregnancy? – Neurochecklists Updates

, , , , , ,

Leave a comment

[Abstract] Antiepileptic drug clearances during pregnancy and clinical implications for women with epilepsy

Abstract

Objective To characterize the magnitude and time course of pregnancy-related clearance changes for different antiepileptic drugs (AEDs): levetiracetam, oxcarbazepine, topiramate, phenytoin, and valproate. A secondary aim was to determine if a decreased AED serum concentration was associated with increased seizure frequency.

 

Methods Women with epilepsy were enrolled preconception or early in pregnancy and prospectively followed throughout pregnancy and the first postpartum year with daily diaries of AED doses, adherence, and seizures. Study visits with AED concentration measurements occurred every 1–3 months. AED clearances in each trimester were compared to nonpregnant baseline using a mixed linear regression model, with adjustments for age, race, and hours postdose. In women on monotherapy, 2-sample t test was used to compare the ratio to target concentrations (RTC) between women with seizure worsening each trimester and those without.

 

Results AED clearances were calculated for levetiracetam (n = 18 pregnancies), oxcarbazepine (n = 4), topiramate (n = 10), valproate (n = 5), and phenytoin (n = 7). Mean maximal clearances were reached for (1) levetiracetam in first trimester (1.71-fold baseline clearance) (p = 0.0001), (2) oxcarbazepine in second trimester (1.63-fold) (p = 0.0001), and (3) topiramate in second trimester (1.39-fold) (p = 0.025). In 15 women on AED monotherapy, increased seizure frequency in the first, second, and all trimesters was associated with a lower RTC (p < 0.05).

 

Conclusion AED clearance significantly changes by the first trimester for levetiracetam and by the second trimester for oxcarbazepine and topiramate. Lower RTC was associated with seizure worsening. Early therapeutic drug monitoring and dose adjustment may be helpful to avoid increased seizure frequency.

 

via Antiepileptic drug clearances during pregnancy and clinical implications for women with epilepsy | Neurology

, , , , , , , , ,

Leave a comment

[WEB SITE] Antiepileptic Drugs – Medscape

Overview

Modern treatment of seizures started in 1850 with the introduction of bromides, which was based on the theory that epilepsy was caused by an excessive sex drive. In 1910, phenobarbital (PHB), which then was used to induce sleep, was found to have antiseizure activity and became the drug of choice for many years. A number of medications similar to PHB were developed, including primidone.

In 1938, Houston Merrit and Tracy Putnam described animal models for screening multiple compounds for antiepileptic activity in the Journal of the American Medical Association. In 1940, phenytoin (PHT) was found to be an effective drug for the treatment of epilepsy, and since then it has become a major first-line antiepileptic drug (AED) in the treatment of partial and secondarily generalized seizures.

In 1968, carbamazepine (CBZ) was approved, initially for the treatment of trigeminal neuralgia; later, in 1974, it was approved for partial seizures. Ethosuximide has been used since 1958 as a first-choice drug for the treatment of absence seizures without generalized tonic-clonic seizures. Valproate (VPA) was licensed in Europe in 1960 and in the United States in 1978, and now is widely available throughout the world. It became the drug of choice in primary generalized epilepsies and in the mid 1990s was approved for treatment of partial seizures.

These anticonvulsants were the mainstays of seizure treatment until the 1990s, when newer AEDs with good efficacy, fewer toxic effects, better tolerability, and no need for blood level monitoring were developed. A study of live-born infants in Denmark found that exposure to the newer-generation AEDs lamotrigine, oxcarbazepine, topiramate, gabapentin, and levetiracetam in the first trimester was not associated with an increased risk in major birth defects. [1]

The new AEDs have been approved in the United States as add-on therapy only, with the exception of topiramate and oxcarbazepine (OXC); lamotrigine (LTG) is approved for conversion to monotherapy. A meta-analysis of 70 randomized clinical trials confirms the clinical impression that efficacy does not significantly differ among AEDs used for refractory partial epilepsy. [2]

Antiepileptic drugs should be used carefully, with consideration of medication interactions and potential side effects. This is particularly important for special populations, such as patients with HIV/AIDS. [3]

For more information, see Epilepsy and Seizures.

Mechanism of Action

It is important to understand the mechanisms of action and the pharmacokinetics of antiepileptic drugs (AEDs) so that these agents can be used effectively in clinical practice, especially in multidrug regimens (see the image below).

Pearls of antiepileptic drug use and management.
Pearls of antiepileptic drug use and management.

Many structures and processes are involved in the development of a seizure, including neurons, ion channels, receptors, glia, and inhibitory and excitatory synapses. The AEDs are designed to modify these processes so as to favor inhibition over excitation and thereby stop or prevent seizure activity (see the image below).

Dynamic target of seizure control in management of epilepsy is achieving balance between factors that influence excitatory postsynaptic potential (EPSP) and those that influence inhibitory postsynaptic potential (IPSP).

The AEDs can be grouped according to their main mechanism of action, although many of them have several actions and others have unknown mechanisms of action. The main groups include sodium channel blockers, calcium current inhibitors, gamma-aminobutyric acid (GABA) enhancers, glutamate blockers, carbonic anhydrase inhibitors, hormones, and drugs with unknown mechanisms of action (see the image below).

Antiepileptic drugs can be grouped according to th
Antiepileptic drugs can be grouped according to their major mechanism of action. Some antiepileptic drugs work by acting on combination of channels or through some unknown mechanism of action.

[…]

For more Visit site —>  Antiepileptic Drugs: Overview, Mechanism of Action, Sodium Channel Blockers

, , , , , , ,

Leave a comment

[ARTICLE] Eslicarbazepine acetate as a replacement for levetiracetam in people with epilepsy developing behavioral adverse events – Full Text

Abstract

Background

Psychiatric and behavioral side effects (PBSEs) are a major cause of antiepileptic drug (AED) withdrawal. Levetiracetam (LEV) is a recognized first-line AED with good seizure outcomes but recognized with PBSEs. Eslicarbazepine (ESL) is considered to function similarly to an active metabolite of the commonly used carbamazepine (CBZ). Carbamazepine is used as psychotropic medication to assist in various psychiatric illnesses such as mood disorders, aggression, and anxiety.

Aim

The aim was to evaluate the psychiatric profile of ESL in people who had LEV withdrawn due to PBSEs in routine clinical practice to see if ESL can be used as a possible alternative to LEV.

Methods

A retrospective observational review was conducted in two UK epilepsy centers looking at all cases exposed to ESL since its licensing in 2010. The ESL group was all patients with treatment-resistant epilepsy who developed intolerable PBSEs to LEV, subsequently trialed on ESL. The ESL group was matched to a group who tolerated LEV without intolerable PBSEs. Psychiatric disorders were identified from case notes. The Hamilton Depression Scale (HAM-D) was used to outcome change in mood. Clinical diagnoses of a mental disorder were compared between groups using the Fisher’s exact test. Group differences in HAM-D scores were assessed using the independent samples t-test (alpha = 0.05).

Results

The total number of people with active epilepsy in the two centers was 2142 of whom 46 had been exposed to ESL. Twenty-six had previous exposure to LEV and had intolerable PBSEs who were matched to a person tolerating LEV. There was no statistical differences in the two groups for mental disorders including mood as measured by HAM-D (Chi-square test: p = 0.28).

Conclusion

The ESL was well tolerated and did not produce significant PBSEs in those who had PBSEs with LEV leading to withdrawal of the drug. Though numbers were small, the findings suggest that ESL could be a treatment option in those who develop PBSEs with LEV and possibly other AEDs.


1. Background

Epilepsy is a neurological condition with an enduring predisposition to generate seizures and is associated with cognitive, psychological, and social issues [1]. Neuropsychiatric disorders are also more prevalent in people with epilepsy than in the general population [2] ;  [3]. There is, however, still ambiguity as to whether these comorbidities are the result of a direct link such as a genetic predisposition or structural cause leading to seizures and psychiatric problems or if seizures over time lead to psychiatric symptoms [4].

Treatment strategies in epilepsy need to be tailored to the individual and in particular, clinicians when choosing the appropriate antiepileptic drug (AED) medication need to pay attention not only to seizure patterns but also to a number of different parameters such as age, gender, comorbidities, and cognitive state.

Up to 75% of people with epilepsy may at some point have mental health issues. Antiepileptic drugs also have the potential to impact on mental health and cognition [5] ;  [6], and treatment with some AEDs is associated with the occurrence of psychiatric and behavioral side effects (PBSEs) while other may have beneficial psychotropic effects [7][8][9] ;  [10]. The PBSEs are often overlooked in epilepsy management and, withdrawal of an AED occurs only if the impact of these symptoms is significant and usually a risk to self or others.

Understanding psychotropic effects of (AEDs) is crucial but knowledge is limited. Carbamazepine (CBZ)-purported mode of action is via the modulation of voltage-sensitive sodium channels. Apart from antiepileptic action, CBZ is also used as a mood stabilizer and has proven efficacy in affective disorders. Oxcarbazepine (OXB) is structurally related to CBZ and is a prodrug that is converted into licarbazepine. The active form licarbazepine is the S enantiomer, known as eslicarbazepine (ESL). The presumed mechanism of action is as for CBZ. Conversely, OXB has never been proven to work as a mood stabilizer. In view of similarities of the postulated mechanism of action but a better tolerability profile, OXB has been used “off label” in mood management.

Levetiracetam (LEV), a commonly prescribed AED in the UK, is associated with PBSEs including irritability, depression, and anxiety [9] ;  [11]. A study suggested that PBSEs occurred in around 17% of people exposed to commonly used AEDs. Nearly 1 in 5 study participants on LEV reported PBSEs to LEV. However for CBZ the reported PBSEs were significantly lower [11]. The ESL did not figure in this study. Another study suggested that PBSEs with ESL were < 2.5%. While side effects such as irritability, anxiety, and aggressive behavior have been associated with other AEDs, rates of aggression and agitation were comparable between ESL and placebo [12]. […]

Continue —> Eslicarbazepine acetate as a replacement for levetiracetam in people with epilepsy developing behavioral adverse events

, , ,

Leave a comment

[WEB SITE] Treating Levetiracetam-Induced Behavioral Effects With Vitamin B6

Data showed that 11.8% of levetiracetam-treated patients experienced behavioral side effects.

Data showed that 11.8% of levetiracetam-treated patients experienced behavioral side effects.

Daily pyridoxine (vitamin B6) was found to be an effective treatment for the behavioral adverse effects seen with the antiepileptic drug levetiracetam, according to a poster presented at the AES Annual Meeting 2017.

Treatment with levetiracetam (Keppra; UCB) has been shown to cause non-psychotic behavioral effects (eg, aggression, anger, emotional lability, anger, depression, anxiety) in clinical studies (13% in levetiracetam-treated patients vs 6% in placebo-treated). Currently, there is a lack of data regarding the treatment of behavioral effects of levetiracetam, which represents a key cause of treatment discontinuation.

For the retrospective study, Creighton University School of Medicine researchers evaluated whether pyridoxine supplementation could benefit patients who are experiencing behavioral adverse effects due to levetiracetam. The team reviewed electronic medical records of all patients in the Creighton University Epilepsy Center Clinic (2011–2015) for those taking levetiracetam. Forty-five of the 380 total patients receiving levetiracetam (median dose 1000mg daily; highest dose 4000mg daily) were initiated on pyridoxine 100mg daily for symptom control.

The data showed 11.8% of levetiracetam-treated patients experienced behavioral side effects with agitation, insomnia, and irritability being the most commonly observed. These behavioral changes were typically seen within the first month of starting levetiracetam therapy. Nearly all of the patients who received pyridoxine (42/45; 93.3%) remained on levetiracetam therapy as they saw significant improvement in their behavioral symptoms.

“This benefit is seen across the entire range of levetiracetam dosing,” lead author Kalyan Sajja noted. Supplementation with pyridoxine 100mg daily enabled continued treatment with levetiracetam in these patients. The authors added that a large multicenter, prospective, randomized-controlled trial can further validate this clinical benefit.

Reference

Sajja K, Sankaraneni R, Galla K, Singh SP. Role of Pyridoxine (Vitamin B6) in the Treatment of Levetiracetam Induced Behavioral Effects in Epilepsy Patients. Presented at: AES annual meeting in Washington, DC. Abstract 1.308.

via Treating Levetiracetam-Induced Behavioral Effects With Vitamin B6

, , , ,

Leave a comment

[Abstract] Brivaracetam in the treatment of patients with epilepsy – clinical experiences

Objectives. To assess first clinical experiences with Brivaracetam (BRV) in the treatment of epilepsies.
Methods. Data on patients treated with BRV from February to December 2016 and with at least one clinical follow-up were collected from electronic patient records. Data on safety and efficacy were evaluated retrospectively.
Results. In total, 93 patients were analysed; 12 (12.9%) received BRV in monotherapy. Mean duration of follow up was 4.85 months (MD=4 months; SD=3.63). Fifty-seven patients had more than one seizure per month at baseline and had a follow-up of more than 4 weeks; the rate of ≥50% responders was 35.1% (n=20) in this group, of which five (8.8%) patients were newly seizure free.
In 50.5% (47/93), patients were switched from Levetiracetam (LEV) to BRV, of which 43 (46.2%) were switched immediately. Adverse events (AE) occurred in 39.8%, with 22.6% being behavioural, and 25.8% non-behavioural. LEV-related AE (LEV-AE) were significantly reduced by switching to BRV.
The discontinuation of BRV was reported in 26/93 patients (28%); 10 of those were switched back to LEV with an observed reduction of AE in70%.
For clinical reasons, 12 patients received BRV in monotherapy, 75% were seizure free and previous LEV-AE improved in 6/9 patients. BRV-related AE occurred in 5/12 cases, five patients discontinued BRV.
Conclusion. BRV seems to be a safe, easy and effective option in the treatment of patients with epilepsy, especially in the treatment of patients that have psychiatric comorbidities and might not be good candidates for LEV-treatment. BRV broadens the therapeutic spectrum and facilitates personalized treatment.

 

via Frontiers | Brivaracetam in the treatment of patients with epilepsy – clinical experiences | Neurology

, , , , ,

Leave a comment

[ARTICLE] Dramatic Weight Loss with Levetiracetam – Full Text

Summary

Background: Levetiracetam is considered a “weight-neutral” drug. We report 19 cases of significant weight loss associated with levetiracetam at a dose ranging from 500 to 2000 mg/day.

Methods: The population was divided into two groups. Group 1 includes patients in whom levetiracetam was the only possible cause of weight loss and Group 2 those in whom other factors may have played a role. Similar cases reported by the French national drug safety center were added (Group 3).

Results: Group 1 included 9 females and 3 males (weight loss ranging from 8.1% to 28.6%). Three patients had levetiracetam in monotherapy. Prior levetiracetam only three were overweight. One patient was hospitalized for a thorough assessment of weight loss. Seven patients reported reduced caloric intake due to decreased pleasure with food. The other five did not report any changes in feeding behavior. Group 2 included seven females with a weight loss ranging from 10% to 26.6%. One patient was on topiramate since two years prior to levetiracetam. Weight loss started with the introduction of levetiracetam. In 4 patients, there was a decreased dosage or cessation of a previous drug known to produce weight gain in some cases simultaneously to the introduction of levetiracetam, but in two of these patients these drugs had not produced any weight gain. Group 3 included only two patients (weight loss: 7 and 20 kg).

Conclusions: This study provides evidence that levetiracetam can cause significant weight loss. Women are at higher risk while initial weight is not a factor.

Levetiracetam (LEV) is an antiepileptic drug with a broad clinical spectrum effective in focal epilepsy as well as in idiopathic generalized epilepsy (Grunewald, 2005Di Bonaventura et al., 2005). The majority of adverse effects are of mild to moderate severity, the most commonly reported being asthenia, somnolence, headache, and dizziness (Genton et al., 2006). Less frequent events that may also occur are anorexia, nausea, dry mouth (Biton, 2002) and behavioral and psychiatric events (Dinkelacker et al., 2003Genton et al., 2006).

LEV is considered “weight-neutral” (Gidal et al., 2003Briggs and French, 2004). However, weight loss is listed in a study comparing LEV in adult vs ageing patients (Cramer et al., 2003) and four cases of considerable weight loss have been published with LEV used in cotherapy at a dose ranging from 2000 to 3000 mg/day (Hadjikoutis et al., 2003). In the light of our recent clinical experience, we report 19 cases of weight loss associated with LEV but at lower doses and in monotherapy in three patients. These 19 patients were divided in two soubgroups, with LEV as the likely contributing factor vs cases with confounding variables.[…]

 

Continue —> Dramatic Weight Loss with Levetiracetam – Gelisse – 2007 – Epilepsia – Wiley Online Library

, , ,

Leave a comment

%d bloggers like this: