Posts Tagged lower limb

[Abstract + References] Unilateral Dorsiflexor Strengthening With Mirror Therapy to Improve Motor Function After Stroke: A Pilot Randomized Study

Abstract

Background: Independently, cross-education, the performance improvement of the untrained limb following unilateral training, and mirror therapy have shown to improve lower limb functioning poststroke. Mirror therapy has shown to augment the cross-education effect in healthy populations. However, this concept has not yet been explored in a clinical setting.

Objectives: This study set out to investigate the feasibility and potential efficacy of applying cross-education combined with mirror therapy compared with cross-education alone for lower limb recovery poststroke.

Methods: Thirty-one chronic stroke participants (age 61.7 ± 13.3) completed either a unilateral strength training (ST; n = 15) or unilateral strength training with mirror-therapy (MST; n = 16) intervention. Both groups isometrically strength trained the less-affected ankle dorsiflexors three times per week for 4 weeks. Only the MST group observed the mirror reflection of the training limb. Patient eligibility, compliance, treatment reliability, and outcome measures were assessed for feasibility. Maximal voluntary contraction (MVC; peak torque, rate of torque development, and average torque), 10-m walk test, timed up and go (TUG), Modified Ashworth Scale (MAS), and the London Handicap Scale (LHS) were assessed at pretraining and posttraining.

Results: Treatment and assessments were well tolerated without adverse effects. No between group differences were identified for improvement in MVC, MAS, TUG, or LHS. Only the combined treatment was associated with functional improvements with the MST group showing an increase in walking velocity.

Conclusion: Cross-education plus mirror therapy may have potential for improving motor function after stroke. This study demonstrates the feasibility of the combination treatment and the need for future studies with larger sample sizes to investigate the effectiveness of the treatment.

REFERENCES

    1. Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology (Bethesda, MD: 1985), 93(4), 1318-1326. https://doi.org/10.1152/japplphysiol.00283.2002
    1. ACSM (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687-708. https://doi.org/10.1249/MSS.0b013e3181915670
    1. AI Therapy Statistics (2017). Sample size calculator. Retrieved from https://www.ai-therapy.com/psychology-statistics/sample-size-calculator
    1. Barzi, Y., & Zehr, E. (2008). Rhythmic arm cycling suppresses hyperactive soleus H-reflex amplitude after stroke. Clinical Neurophysiology, 119(6), 1443-1452. https://doi.org/10.1016/j.clinph.2008.02.016
    1. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., … Jiménez, M. C. (2017). Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation, 135(10), e146-e603. https://doi.org/10.1161/cir.0000000000000485
    1. Biodex Medical Systems Inc. (2006). Biodex system 3 pro application/ operationmanual. Retrieved from http://www.biodex.com/sites/default/files/835000man_06159.pdf
    1. Bird, S. P., Tarpenning, K. M., & Marino, F. E. (2005). Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Medicine, 35(10), 841-851. https://doi.org/10.2165/00007256-200535100-00002
    1. Broderick, P., Horgan, F., Blake, C., Ehrensberger, M., Simpson, D., & Monaghan, K. (2018). Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis. Gait & Posture, 63, 208-220. https://doi.org/10.1016/j.gaitpost.2018.05.017
    1. Carroll, L. M., Volpe, D., Morris, M. E., Saunders, J., & Clifford, A. M. (2017). Aquatic exercise therapy for people with Parkinson disease: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 98(4), 631-638. https://doi.org/10.1016/j.apmr.2016.12.006
    1. Carson, R., Riek, S., Mackey, D., Meichenbaum, D., Willms, K., Forner, M., & Byblow, W. (2004). Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. The Journal of Physiology, 560(Pt 3, 929-940. https://doi.org/10.1113/jphysiol.2004.069088
    1. Carvalho, D., Teixeira, S., Lucas, M., Yuan, T. F., Chaves, F., Peressutti, C., & Arias-Carrion, O. (2013). The mirror neuron system in post-stroke rehabilitation. International Archives of Medicine, 6(1), 41. https://doi.org/10.1186/1755-7682-6-41
    1. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155
    1. Collen, F. M., Wade, D. T., & Bradshaw, C. M. (1990). Mobility after stroke: Reliability of measures of impairment and disability. International Disability Studies, 12(1), 6-9. https://doi.org/10.3109/03790799009166594
    1. de Morton, N. A. (2009). The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. The Australian Journal of Physiotherapy, 55(2), 129-133. https://doi.org/10.1016/S0004-9514(09)70043-1
    1. Deconinck, F. J., Smorenburg, A. R., Benham, A., Ledebt, A., Feltham, M. G., & Savelsbergh, G. J. (2015). Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabilitation and Neural Repair, 29(4), 349-361. https://doi.org/10.1177/1545968314546134
    1. Dragert, K., & Zehr, E. P. (2013). High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Experimental Brain Research, 225(1), 93-104. https://doi.org/10.1007/s00221-012-3351-x
    1. Ehrensberger, M., Simpson, D., Broderick, P., & Monaghan, K. (2016). Cross-education of strength has a positive impact on post-stroke rehabilitation: A systematic literature review. Topics in Stroke Rehabilitation, 23(2), 126-135. https://doi.org/10.1080/10749357.2015.1112062
    1. Eng, J. J., Kim, C. M., & Macintyre, D. L. (2002). Reliability of lower extremity strength measures in persons with chronic stroke. Archives of Physical Medicine and Rehabilitation, 83(3), 322-328. https://doi.org/10.1053/apmr.2002.29622
    1. Faber, J., & Fonseca, L. M. (2014). How sample size influences research outcomes. Dental Press Journal of Orthodontics, 19(4), 27-29. https://doi.org/10.1590/2176-9451.19.4.027-029.ebo
    1. Faria, C. D., Teixeira-Salmela, L. F., Neto, M. G., & Rodrigues-de-Paula, F. (2012). Performance-based tests in subjects with stroke: Outcome scores, reliability and measurement errors. Clinical Rehabilitation, 26(5), 460-469. https://doi.org/10.1177/0269215511423849
    1. Farthing, J. P. (2009). Cross-education of strength depends on limb dominance: Implications for theory and application. Exercise and Sport Sciences Reviews, 37(4), 179-187. https://doi.org/10.1097/JES.0b013e3181b7e882
    1. Fimland, M. S., Helgerud, J., Solstad, G. M., Iversen, V. M., Leivseth, G., & Hoff, J. (2009). Neural adaptations underlying cross-education after unilateral strength training. European Journal of Applied Physiology, 107(6), 723-730. https://doi.org/10.1007/s00421-009-1190-7
    1. Flansbjer, U. B., Holmback, A. M., Downham, D., Patten, C., & Lexell, J. (2005). Reliability of gait performance tests in men and women with hemiparesis after stroke. Journal of Rehabilitation Medicine, 37(2), 75-82. https://doi.org/10.1080/16501970410017215
    1. Gracies, J. M. (2005). Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle & Nerve, 31(5), 552-571. https://doi.org/10.1002/mus.20285
    1. Harbo, T., Brincks, J., & Andersen, H. (2012). Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. European Journal of Applied Physiology, 112(1), 267-275. https://doi.org/10.1007/s00421-011-1975-3
    1. Hendy, A. M., & Lamon, S. (2017). The cross-education phenomenon: Brain and beyond. Frontiers in Physiology, 8, 297. https://doi.org/10.3389/fphys.2017.00297
    1. Holmback, A. M., Porter, M. M., Downham, D., & Lexell, J. (1999). Reliability of isokinetic ankle dorsiflexor strength measurements in healthy young men and women. Scandinavian Journal of Rehabilitation Medicine, 31(4), 229-239.
    1. Hortobagyi, T. (2005). Cross education and the human central nervous system. IEEE Engineering in Medicine and Biology Magazine, 24(1), 22-28. https://doi.org/10.1109/MEMB.2005.1384096
    1. Hortobagyi, T., Taylor, J. L., Petersen, N. T., Russell, G., & Gandevia, S. C. (2003). Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Journal of Neurophysiology, 90(4), 2451-2459. https://doi.org/10.1152/jn.01001.2002
    1. Howatson, G., Zult, T., Farthing, J. P., Zijdewind, I., & Hortobagyi, T. (2013). Mirror training to augment cross-education during resistance training: A hypothesis. Frontiers in Human Neuroscience, 7, 396. https://doi.org/10.3389/fnhum.2013.00396
    1. Lee, M., & Carroll, T. J. (2007). Cross education: Possible mechanisms for the contralateral effects of unilateral resistance training. Sports Medicine, 37(1), 1-14. https://doi.org/10.2165/00007256-200737010-00001
    1. Magnus, C. R., Arnold, C. M., Johnston, G., Dal-Bello Haas, V., Basran, J., Krentz, J. R., & Farthing, J. P. (2013). Cross-education for improving strength and mobility after distal radius fractures: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 94(7), 1247-1255. https://doi.org/10.1016/j.apmr.2013.03.005
    1. Manca, A., Cabboi, M., Dragone, D., Ginatempo, F., Ortu, E., De Natale, E., … Deriu, F. (2017). Resistance training for muscle weakness in multiple sclerosis: Direct versus contralateral approach in individuals with ankle dorsiflexors’ disparity in strength. Archives of Physical Medicine and Rehabilitation, 98(7), 1348-1356. https://doi.org/10.1016/j.apmr.2017.02.019
    1. Manca, A., Dragone, D., Dvir, Z., & Deriu, F. (2017). Cross-education of muscular strength following unilateral resistance training: A meta-analysis. European Journal of Applied Physiology, 117(11), 2335-2354. https://doi.org/10.1007/s00421-017-3720-z
    1. Manca, A., Pisanu, F., Ortu, E., & Deriu, F. (2015). Isokinetic cross-training effect in foot drop following common peroneal nerve injury. Isokinetics and Exercise Science, 23(1), 17-20. https://doi.org/10.3233/IES-140559
    1. McElwaine, P., McCormack, J., & Harbison, J. (2015). National Stroke Audit 2015. Retrieved from http://www.irishheart.ie/media/pub/strokestudy2015/ihfhse_national_stroke_audit__mcelwaine.pdf
    1. Michielsen, M. E., Selles, R. W., van der Geest, J. N., Eckhardt, M., Yavuzer, G., Stam, H. J., … Bussmann, J. B. (2011). Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: A phase II randomized controlled trial. Neurorehabilitation and Neural Repair, 25(3), 223-233. https://doi.org/10.1177/1545968310385127
    1. Park, E., & Choi, Y. (2014). Rasch analysis of the London Handicap Scale in stroke patients: A cross-sectional study. Journal of Neuroengineering and Rehabilitation, 11, 114. https://doi.org/10.1186/1743-0003-11-114
    1. Patten, C., Lexell, J., & Brown, H. E. (2004). Weakness and strength training in persons with poststroke hemiplegia: Rationale, method, and efficacy. Journal of Rehabilitation Research and Development, 41(3a), 293-312. https://doi.org/10.1682/JRRD.2004.03.0293
    1. Pekna, M., Pekny, M., & Nilsson, M. (2012). Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke, 43(10), 2819-2828. https://doi.org/10.1161/strokeaha.112.654228
    1. Perera, S., Mody, S. H., Woodman, R. C., & Studenski, S. A. (2006). Meaningful change and responsiveness in common physical performance measures in older adults. Journal of the American Geriatrics Society, 54(5), 743-749. https://doi.org/10.1111/j.1532-5415.2006.00701
    1. Rossiter, H. E., Borrelli, M. R., Borchert, R. J., Bradbury, D., & Ward, N. S. (2015). Cortical mechanisms of mirror therapy after stroke. Neurorehabilitation and Neural Repair, 29(5), 444-452. https://doi.org/10.1177/1545968314554622
    1. Shaw, L., Rodgers, H., Price, C., van Wijck, F., Shackley, P., Steen, N., & Graham, L. (2010). BoTULS: A multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technology Assessment, 14(26), 1-113. https://doi.org/10.3310/hta14260
    1. Stolberg, H. O., Norman, G., & Trop, I. (2004). Randomized controlled trials. AJR. American Journal of Roentgenology, 183(6), 1539-1544. https://doi.org/10.2214/ajr.183.6.01831539
    1. Thibaut, A., Chatelle, C., Ziegler, E., Bruno, M. A., Laureys, S., & Gosseries, O. (2013). Spasticity after stroke: Physiology, assessment and treatment. Brain Injury, 27(10), 1093-1105. https://doi.org/10.3109/02699052.2013.804202
    1. Thieme, H., Morkisch, N., Mehrholz, J., Pohl, M., Behrens, J., Borgetto, B., & Dohle, C. (2018). Mirror therapy for improving motor function after stroke. Cochrane Database of Systematic Reviews, (7), Cd008449. https://doi.org/10.1002/14651858.CD008449.pub3
    1. Touzalin-Chretien, P., Ehrler, S., & Dufour, A. (2010). Dominance of vision over proprioception on motor programming: Evidence from ERP. Cerebral Cortex, 20(8), 2007-2016. https://doi.org/10.1093/cercor/bhp271
    1. Trompetto, C., Marinelli, L., Mori, L., Pelosin, E., Currà, A., Molfetta, L., & Abbruzzese, G. (2014). Pathophysiology of spasticity: Implications for neurorehabilitation. BioMed Research International, 2014, 1-8. https://doi.org/10.1155/2014/354906
    1. Urban, P. P., Wolf, T., Uebele, M., Marx, J. J., Vogt, T., Stoeter, P., … Wissel, J. (2010). Occurence and clinical predictors of spasticity after ischemic stroke. Stroke, 41(9), 2016-2020. https://doi.org/10.1161/strokeaha.110.581991
    1. van Wijck, F. M., Pandyan, A. D., Johnson, G. R., & Barnes, M. P. (2001). Assessing motor deficits in neurological rehabilitation: Patterns of instrument usage. Neurorehabilitation and Neural Repair, 15(1), 23-30. https://doi.org/10.1177/154596830101500104
    1. Vattanasilp, W., Ada, L., & Crosbie, J. (2000). Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 69(1), 34-39. https://doi.org/10.1136/jnnp.69.1.34
    1. World Health Organization (2001). International classification of functioning, disability and health. Retrieved from http://unstats.un.org/unsd/disability/pdfs/ac.81-b4.pdf2001
    1. Wimpenny, P. (2016). Theory-Interpretation of results. Retrieved from http://www.isokinetics.net/index.php/2016-04-05-17-04-58/interpretation/general-interpretation
    1. Wissel, J., Schelosky, L. D., Scott, J., Christe, W., Faiss, J. H., & Mueller, J. (2010). Early development of spasticity following stroke: A prospective, observational trial. Journal of Neurology, 257(7), 1067-1072. https://doi.org/10.1007/s00415-010-5463-1
    1. Wolf, S. L., Catlin, P. A., Gage, K., Gurucharri, K., Robertson, R., & Stephen, K. (1999). Establishing the reliability and validity of measurements of walking time using the emory functional ambulation profile. Physical Therapy, 79(12), 1122-1133.
    1. Zipp, G., & Sullivan, J. (2010). Neurology section StrokEDGE taskforce. Retrieved from http://www.neuropt.org/docs/stroke-sig/strokeedge_taskforce_summary_document.pdf
    1. Zult, T., Goodall, S., Thomas, K., Solnik, S., Hortobagyi, T., & Howatson, G. (2016). Mirror training augments the cross-education of strength and affects inhibitory paths. Medicine and Science in Sports and Exercise, 48, 1001-1013. https://doi.org/10.1249/mss.0000000000000871
    1. Zult, T., Howatson, G., Kadar, E. E., Farthing, J. P., & Hortobagyi, T. (2014). Role of the mirror-neuron system in cross-education. Sports Medicine, 44(2), 159-178. https://doi.org/10.1007/s40279-013-0105-2
    1. Whitehead, A. L., Julious, S. A., Cooper, C. L., & Campbell, M. J. (2016). Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Statistical Methods in Medical Research, 25(3), 1057-1073. https://doi.org/10.1177/0962280215588241

via Unilateral Dorsiflexor Strengthening With Mirror Therapy to Improve Motor Function After Stroke: A Pilot Randomized Study – PubMed

, , , , , , , , ,

Leave a comment

[Abstract] The effectiveness of extracorporeal shock wave therapy to reduce lower limb spasticity in stroke patients: a systematic review and meta-analysis

Objective: To assess the effectiveness of Extracorporeal Shock Wave Therapy (ESWT) to reduce lower limb spasticity in adult stroke survivors.

Data Sources: A systematic review of Medline/Pubmed, CENTRAL, CINAHL, PEDro database, REHABDATA, Scielo, Scopus, Web of Science, Trip Database, and Epistemonikos from 1980 to December 2018 was carried out.

Review Methods: The bibliography was screened to identify clinical trials (controlled and before-after) that used ESWT to reduce spasticity in stroke survivors. Two reviewers independently screened references, selected relevant studies, extracted data, and assessed risk of bias by PEDro scale. The primary outcome was spasticity.

Results: A total of 12 studies (278 participants) were included (5 randomized controlled trials, 1 controlled trial, and 6 before-after studies). A meta-analysis was performed by randomized controlled trials. A beneficial effect on spasticity was found. The mean difference (MD) was 0.58; 95% confidence interval (CI) 0.30 to 0.86 and also in subgroup analysis (short, medium, and long term). The MD for range of motion was 1.81; CI −0.20 to 3.82 and for lower limb function the standard mean difference (SMD) was 0.34; 95% CI −0.09 to 0.77. Sensitivity analysis demonstrated a better beneficial effect for myotendinous junction. MD was 1.5; 95% CI −2.44 to 5.44 at long-term (9 weeks).

Conclusion: The ESWT (radial/focused) would be a good non-invasive rehabilitation strategy in chronic stroke survivors to reduce lower limb spasticity, increase ankle range of motion, and improve lower limb function. It does not show any adverse events and it is a safe and effective method.

, , , , , , , ,

Leave a comment

[Abstract] Does Casting After Botulinum Toxin Injection Improve Outcomes in Adults With Limb Spasticity? A Systematic Review – Full Text PDF

Abstract

Objective: To determine current evidence for casting as an adjunct therapy following botulinum toxin injection for adult limb spasticity.

Design: The databases MEDLINE, EMBASE, CINAHL and Cochrane Central Register of Controlled Trials were searched for English language studies from 1990 to August 2018. Full-text studies using a casting protocol following botulinum toxin injection for adult participants for limb spasticity were included. Studies were graded according to Sackett’s levels of evidence, and outcome measures were categorized using domains of the International Classification of Disability, Functioning and Health. The review was prepared and reported according to PRISMA guidelines.

Results: Five studies, involving a total of 98 participants, met the inclusion criteria (2 randomized controlled trials, 1 pre-post study, 1 case series and 1 case report). Casting protocols varied widely between studies; all were on casting of the lower limbs. There is level 1b evidence that casting following botulinum toxin injection improves spasticity outcomes compared with stretching and taping, and that casting after either botulinum toxin or saline injections is better than physical therapy alone.

Conclusion: The evidence suggests that adjunct casting of the lower limbs may improve outcomes following botulinum toxin injection. Casting protocols vary widely in the literature and priority needs to be given to future studies that determine which protocol yields the best results.

Full Text PDF

via Does Casting After Botulinum Toxin Injection Improve Outcomes in Adults With Limb Spasticity? A Systematic Review – PubMed

, , , ,

Leave a comment

[Abstract + References] Gait rehabilitation after stroke: review of the evidence of predictors, clinical outcomes and timing for interventions

Abstract

The recovery of walking capacity is one of the main aims in stroke rehabilitation. Being able to predict if and when a patient is going to walk after stroke is of major interest in terms of management of the patients and their family’s expectations and in terms of discharge destination and timing previsions. This article reviews the recent literature regarding the predictive factors for gait recovery and the best recommendations in terms of gait rehabilitation in stroke patients. Trunk control and lower limb motor control (e.g. hip extensor muscle force) seem to be the best predictors of gait recovery as shown by the TWIST algorithm, which is a simple tool that can be applied in clinical practice at 1 week post-stroke. In terms of walking performance, the 6-min walking test is the best predictor of community ambulation. Various techniques are available for gait rehabilitation, including treadmill training with or without body weight support, robotic-assisted therapy, virtual reality, circuit class training and self-rehabilitation programmes. These techniques should be applied at specific timing during post-stroke rehabilitation, according to patient’s functional status.

References

  1. 1.

    Stevens E, Emmett E, Wang Y, McKevitt C, Wolfe C (2018) The burden of stroke in Europe, report. Division of Health and Social Care Research, King’s College London, London

  2. 2.

    Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 76(1):27–32

  3. 3.

    Harvey RL (2015) Predictors of functional outcome following stroke. Phys Med Rehabil Clin N Am 26(4):583–598

  4. 4.

    WHO (2007) International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY. World Health Organization

  5. 5.

    Kinoshita S, Abo M, Okamoto T, Tanaka N (2017) Utility of the revised version of the ability for basic movement scale in predicting ambulation during rehabilitation in poststroke patients. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc 26(8):1663–1669

  6. 6.

    KNGF (2014) KNGF guidelines: stroke. Royal Dutch Society for Physical Therapy (Koninklijk Nederlands Genootschap voor Fysiotherapie, KNGF)

  7. 7.

    Holsbeeke L, Ketelaar M, Schoemaker MM, Gorter JW (2009) Capacity, capability, and performance: different constructs or three of a kind? Arch Phys Med Rehabil 90(5):849–855

  8. 8.

    Perry J, Garrett M, Gronley JK, Mulroy SJ (1995) Classification of walking handicap in the stroke population. Stroke 26(6):982–989

  9. 9.

    Smith MC, Barber PA, Stinear CM (2017) The TWIST algorithm predicts time to walking independently after stroke. Neurorehabil Neural Repair 31(10–11):955–964

  10. 10.

    Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC et al (2016) Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 47(6):e98–e169

  11. 11.

    Platz T (2019) Evidence-based guidelines and clinical pathways in stroke rehabilitation—an international perspective. Front Neurol 10:200

  12. 12.

    Kollen B, Kwakkel G, Lindeman E (2006) Longitudinal robustness of variables predicting independent gait following severe middle cerebral artery stroke: a prospective cohort study. Clin Rehabil 20(3):262–326

  13. 13.

    Veerbeek JM, Van Wegen EE, Harmeling-Van der Wel BC, Kwakkel G (2011) Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS study. Neurorehabil Neural Repair 25(3):268–274

  14. 14.

    Stinear CM, Byblow WD, Ward SH (2014) An update on predicting motor recovery after stroke. Ann Phys Rehabil Med 57(8):489–498

  15. 15.

    Collin C, Wade D (1990) Assessing motor impairment after stroke: a pilot reliability study. J Neurol Neurosurg Psychiatry 53(7):576–579

  16. 16.

    Fulk GD, He Y, Boyne P, Dunning K (2017) Predicting home and community walking activity poststroke. Stroke 48(2):406–411

  17. 17.

    Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE et al (2011) Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med 364(21):2026–2036

  18. 18.

    Kluding PM, Dunning K, O’Dell MW, Wu SS, Ginosian J, Feld J et al (2013) Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 44(6):1660–1669

  19. 19.

    Tudor-Locke C, Bassett DR Jr (2004) How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med (Auckl NZ) 34(1):1–8

  20. 20.

    Friedman PJ (1990) Gait recovery after hemiplegic stroke. Int Disabil Stud 12(3):119–122

  21. 21.

    Bland MD, Sturmoski A, Whitson M, Connor LT, Fucetola R, Huskey T et al (2012) Prediction of discharge walking ability from initial assessment in a stroke inpatient rehabilitation facility population. Arch Phys Med Rehabil 93(8):1441–1447

  22. 22.

    Jones PS, Pomeroy VM, Wang J, Schlaug G, Tulasi Marrapu S, Geva S et al (2016) Does stroke location predict walk speed response to gait rehabilitation? Hum Brain Mapp 37(2):689–703

  23. 23.

    Yelnik AP, Quintaine V, Andriantsifanetra C, Wannepain M, Reiner P, Marnef H et al (2017) AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial. Stroke 48(2):400–405

  24. 24.

    Bernhardt J, Langhorne P, Lindley RI, Thrift AG, Ellery F, Collier J et al (2015) Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet (Lond Engl) 386(9988):46–55

  25. 25.

    Stroke Foundation (2019) Clinical Guidelines for Stroke Management. Melbourne Australia

  26. 26.

    Mehrholz J, Thomas S, Elsner B (2017) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD002840.pub3

  27. 27.

    Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J (2005) Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med 37(2):75–82

  28. 28.

    Perera S, Mody SH, Woodman RC, Studenski SA (2006) Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 54(5):743–749

  29. 29.

    Eng JJ, Dawson AS, Chu KS (2004) Submaximal exercise in persons with stroke: test–retest reliability and concurrent validity with maximal oxygen consumption. Arch Phys Med Rehabil 85(1):113–118

  30. 30.

    Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B (2017) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006185.pub3

  31. 31.

    de Rooij IJ, van de Port IG, Meijer JG (2016) Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther 96(12):1905–1918

  32. 32.

    Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge, London

  33. 33.

    Faraone SV (2008) Interpreting estimates of treatment effects: implications for managed care. P T Peer Rev J Formul Manag 33(12):700–711

  34. 34.

    English C, Hillier SL, Lynch EA (2017) Circuit class therapy for improving mobility after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007513.pub2

  35. 35.

    Aaslund MK, Moe-Nilssen R, Gjelsvik BB, Bogen B, Naess H, Hofstad H et al (2017) A longitudinal study investigating how stroke severity, disability, and physical function the first week post-stroke are associated with walking speed six months post-stroke. Physiother Theory Pract 33(12):932–942

  36. 36.

    Cumming TB, Thrift AG, Collier JM, Churilov L, Dewey HM, Donnan GA et al (2011) Very early mobilization after stroke fast-tracks return to walking: further results from the phase II AVERT randomized controlled trial. Stroke 42(1):153–158

  37. 37.

    de Rooij IJM, van de Port IGL, Visser-Meily JMA, Meijer JG (2019) Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial. Trials 20(1):89

  38. 38.

    Cook DJ, Mulrow CD, Haynes RB (1998) Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med 126(5):376–380

  39. 39.

    Rother ET (2007) Systematic literature review × narrative review. Acta Paul Enferm 20:v–vi

Download references

via Gait rehabilitation after stroke: review of the evidence of predictors, clinical outcomes and timing for interventions | SpringerLink

 

, , , ,

Leave a comment

[Abstract + References] Do powered over-ground lower limb robotic exoskeletons affect outcomes in the rehabilitation of people with acquired brain injury?

Abstract

Purpose: To assess the effects of lower limb robotic exoskeletons on outcomes in the rehabilitation of people with acquired brain injury.

Materials and methods: A systematic review of seven electronic databases was conducted. The primary outcome of interest was neuromuscular function. Secondary outcomes included quality of life, mood, acceptability and safety. Studies were assessed for methodological quality and recommendations were made using the GRADE system.

Results: Of 2469 identified studies, 13 (n = 322) were included in the review. Five contained data suitable for meta-analysis. When the data were pooled, there were no differences between exoskeleton and control for 6-Minute Walk Test, Timed Up and Go or 10-Meter Walk Test. Berg Balance Scale outcomes were significantly better in controls (MD = 2.74, CI = 1.12–4.36, p = 0.0009). There were no severe adverse events but drop-outs were 11.5% (n = 37). No studies reported the effect of robotic therapy on quality of life or mood. Methodological quality was on average fair (15.6/27 on Downs and Black Scale).

Conclusions: Only small numbers of people with acquired brain injury had data suitable for analysis. The available data suggests no more benefit for gait or balance with robotic therapy than conventional therapy. However, some important outcomes have not been studied and further well-conducted research is needed to determine whether such devices offer benefit over conventional therapy, in particular subgroups of those with acquired brain injury.

  • Implications for Rehabilitation
  • There is adequate evidence to recommend that powered over-ground lower limb robotic exoskeletons should not be used clinically in those with ABI, and that use should be restricted to research.
  • Further research (controlled trials) with dependent ambulators is recommended.
  • Research of other outcomes such as acceptability, spasticity, sitting posture, cardiorespiratory and psychological function, should be considered.

References

Source: https://doi.org/10.1080/17483107.2018.1499137

, , , , ,

Leave a comment

[Abstract] GAMEREHAB@HOME: a new engineering system using serious game and multi-sensor fusion for functional rehabilitation at home

Abstract

Biomedical connected objects like kinematic sensors have been commonly used for patient monitoring in many clinical applications. Moreover, serious games have become widely used to improve patients‘ motivation during functional rehabilitation.
In this work, we developed and evaluated a new engineering system as a solution for functional rehabilitation at home. A multi-sensor fusion between Kinect camera and inertial sensors was developed to animate a 3D avatar during rehabilitation and to estimate kinematic data of different joints for clinical monitoring.
Two serious game scenarios were designed for upper and lower limb rehabilitation. The developed system was evaluated through patient kinematic data and a questionnaire-based approach with a panel of eight post-stroke patients and four clinical experts. The evaluation of the system showed that multi-sensor fusion provides useful data for clinical follow-up. The virtual game scenarios lead to a high level of immersion for patients. Feedbacks from clinical experts concerning the system’s GUIs and the clinical relevance of the acquired data for each rehabilitation session are positive. The developed system paves the way to deploy recent technologies, such as multi-sensor fusion and serious games, as a solution for home-based rehabilitation, which can optimize the benefit of the involved patients and medical experts.

via GAMEREHAB@HOME: a new engineering system using serious game and multi-sensor fusion for functional rehabilitation at home – IEEE Journals & Magazine

, , , , , , , , ,

Leave a comment

[Abstract] Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial

 

BACKGROUND: Lower limb support ability is important for steady and efficient mobility, but previous data commonly involved training during double stance positions, with or without external feedback, using a complex and costly machine.
AIM: To compare the effects of stepping training with or without external feedback in relation to the lower limb support ability of the affected limb on the functional ability necessary for independence in individuals with stroke.
DESIGN: A single-blinded, randomised controlled trial.
SETTING: Tertiary rehabilitation centres.
POPULATION: Ambulatory participants with stroke who walked independently over at least 10 meters with or without walking devices.
METHODS: Thirty-six participants were randomly arranged to be involved in a program of stepping training with or without external feedback related to the lower limb support ability of the affected limb (18 participants/group) for 30 minutes, followed by overground walking training for 10 minutes, 5 days/week over 4 weeks. The outcomes, including the lower limb support ability of the affected legs during stepping, functional ability and spatial walking data, were assessed prior to training, immediately after the first training session, and after 2- and 4- week training.
RESULTS: Participants demonstrated significant improvement in the amount of lower limb support ability, immediately after the first training with external feedback. Then, these participants showed further improvement in both the amount and duration of lower limb support ability, as well as the timed up and go data after 2 and 4 weeks of training (p < 0.05). This improvement was not found following control training.
CONCLUSIONS: The external feedback relating to lower limb support ability during stepping training effectively improved the movement stability and complex motor activity of ambulatory individuals with stroke who had long post-stroke time (approximately 3 years).
CLINICAL REHABILITATION IMPACT: Stepping training protocols and feedback can be easily applied in various settings using the amount of body-weight from an upright digital bathroom scale. Thus, the findings offer an alternative rehabilitation strategy for clinical, community and home-based settings for stroke individuals.

Full Text PDF

via Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial – European Journal of Physical and Rehabilitation Medicine 2019 Oct 15 – Minerva Medica – Journals

, , , , , , , ,

Leave a comment

[Abstract] Ergometer training in stroke rehabilitation: systematic review and meta-analysis

Abstract

Objective

Ergometer training is routinely used in stroke rehabilitation. How robust is the evidence of its effects?

Data source

The PubMed database and PEDro database were reviewed prior to 22/01/2019.

Study selection

Randomized controlled trials investigating the effects of ergometer training on stroke recovery were selected.

Data extraction

Two reviewers independently selected the studies, performed independent data extraction, and assessed the risk of bias.

Data synthesis

A total of 28 studies (including 1115 stroke subjects) were included. The data indicates that

(1) ergometer training leads to a significant improvement of walking ability, cardiorespiratory fitness, motor function and muscular force of lower limbs, balance and postural control, spasticity, cognitive abilities, as well as the brain’s resistance to damage and degeneration,

(2) neuromuscular functional electrical stimulation assisted ergometer training is more efficient than ergometer training alone,

(3) high-intensity ergometer training is more efficient that low-intensity ergometer training, and

(4) ergometer training is more efficient than other therapies in supporting cardiorespiratory fitness, independence in activities of daily living, and balance and postural control, but less efficient in improving walking ability.

Conclusion

Ergometer training can support motor recovery after stroke. However, current data is insufficient for evidence-based rehabilitation. More data is required about the effects of ergometer training on cognitive abilities, emotional status, and quality of life in stroke subjects.

via Ergometer training in stroke rehabilitation: systematic review and meta-analysis – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , , ,

Leave a comment

[Abstract] A Method for Self-Service Rehabilitation Training of Human Lower Limbs – IEEE Conference Publication

Abstract

Recently, rehabilitation robot technologies have been paid more attention by the researchers in the fields of rehabilitation medicine engineering and robotics. To assist active rehabilitation of patients with unilateral lower extremity injury, we propose a new self-service rehabilitation training method in which the injured lower limbs are controlled by using the contralateral healthy upper ones. First, the movement data of upper and lower limbs of a healthy person in normal walk are acquired by gait measurement experiments. Second, the eigenvectors of upper and lower limb movements in a cycle are extracted in turn. Third, the linear relationship between the movement of upper and lower limbs is identified using the least squares method. Finally, the results of simulation experiments show that the established linear mapping can achieve good accuracy and adaptability, and the self-service rehabilitation training method is effective.

via A Method for Self-Service Rehabilitation Training of Human Lower Limbs – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: