Posts Tagged lower limb

[ARTICLE] Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction – Full Text

Functional electrical stimulation (FES) is important in gait rehabilitation for patients with dropfoot. Since there are time-varying velocities during FES-assisted walking, it is difficult to achieve a good movement performance during walking. To account for the time-varying walking velocities, seven poststroke subjects were recruited and fuzzy logic control and a linear model were applied in FES-assisted walking to enable intensity- and duration-adaptive stimulation (IDAS) for poststroke subjects with dropfoot. In this study, the performance of IDAS was evaluated using kinematic data, and was compared with the performance under no stimulation (NS), FES-assisted walking triggered by heel-off stimulation (HOS), and speed-adaptive stimulation. A larger maximum ankle dorsiflexion angle in the IDAS condition than those in other conditions was observed. The ankle plantar flexion angle in the IDAS condition was similar to that of normal walking. Improvement in the maximum ankle dorsiflexion and plantar flexion angles in the IDAS condition could be attributed to having the appropriate stimulation intensity and duration. In summary, the intensity- and duration-adaptive controller can attain better movement performance and may have great potential in future clinical applications.

Introduction

Stroke is a leading cause of disability in the lower limb, such as dropfoot (1). A typical cause of dropfoot is muscle weakness, which results in a limited ability to lift the foot voluntarily and an increased risk of falls (24). Great effort is made toward the recovery of walking ability for poststroke patients with dropfoot, such as ankle–foot orthoses (5), physical therapy (6), and rehabilitation robot (7).

Functional electrical stimulation (FES) is a representative intervention to correct dropfoot and to generate foot lift during walking (89). The electrical pulses were implemented via a pair of electrodes to activate the tibialis anterior (TA) muscle and to increase the ankle dorsiflexion angle. The footswitch or manual switch was used to time the FES-assisted hemiplegic walking in previous studies, while they were only based on open-loop architectures. The output parameters of the FES required repeated manual re-setting and could not achieve an adaptive adjustment during walking (1011). Some researchers have found that the maximum ankle dorsiflexion angle by using FES with a certain stimulation intensity had individual differences due to the varying muscle tone and residual voluntary muscle activity and varied during gait cycles (1213). If the stimulation intensity was set to a constant value during the whole gait cycle, the result could be that the muscle fatigues rapidly (14). Another important problem was that the FES using fixed stimulation duration from the heel-off event to the heel-strike event would affect the ankle plantar flexion angle (1516).

Closed-loop control was an effective way to adjust the stimulation parameters automatically, and several control techniques have been proposed (1718). Negård et al. applied a PI controller to regulate the stimulation intensity and obtain the optimal ankle dorsiflexion angle during the swing phase (19). A similar controller was also used in Benedict et al.’s study, and the controller was tested in simulation experiments (20). Cho et al. used a brain–computer interface to detect a patient’s motion imagery in real time and used this information to control the output of the FES (21). Laursen et al. used the electromechanical gait trainer Lokomat combined with FES to correct the foot drop problems for patients, and there were significant improvements in the maximum ankle dorsiflexion angles compared to the pre-training evaluations (22). There were also several studies that used trajectory tracking control to regulate the output and regulate the pulse width and pulse amplitude of the stimulation (23). The module was based on an adaptive fuzzy terminal sliding mode control and fuzzy logic control (FLC) to determine the stimulation output and force the ankle joint to track the reference trajectories. In their study, FES applied to TA was triggered before the heel-off event. Because the TA activation has been proven to occur after the heel-off event and the duration of the TA activation changed with the walking speed (2425), a time interval should be implemented after the heel-off event (26). In Thomas et al.’s study, the ankle angle trajectory of the paretic foot was modulated by an iterative learning control method to achieve the desired foot pitch angles (27). The non-linear relationship between the FES settings and the ankle angle influenced the responses of the ankle motion (28). FLC represents a promising technology to handle the non-linearity and uncertainty without the need for a mathematical model of the plant, which has been widely used in robotic control (29). Ibrahim et al. used FLC to regulate the stimulation intensity of the FES (30), and the same control was used on the regulation of the stimulation duration to obtain a maximum knee extension angle in Watanabe et al.’s study (31). However, most closed-loop controls adjust only one stimulation parameter, and few FES controls considered both varying the stimulation intensity and duration while accounting for the changing walking velocities.

In the present study, an intensity- and duration-adaptive FES was established, the FLC and a linear model were used to regulate the stimulation intensity and duration, respectively. The performance of the intensity- and duration-adaptive stimulation (IDAS) was compared with those of stimulation triggered by no stimulation (NS), heel-off stimulation (HOS), and speed-adaptive stimulation (SAS) for poststroke patients walking on a treadmill. The objective of this study is to find an appropriate FES control strategy to realize a more adaptive ankle joint motion for poststroke subjects.[…]

 

Continue —> Frontiers | Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction | Neurology

Figure 4(A) Ankle angles during the gait cycle for one poststroke subject at free speed; (B) knee angles during the gait cycle for the same poststroke subject at free speed.

Advertisements

, , , , , , , ,

Leave a comment

[Abstract] Long-term safety of repeated high doses of incobotulinumtoxinA injections for the treatment of upper and lower limb spasticity after stroke

Highlights

    Current guidelines suggested a dosage up to 600 units (U) of botulinum toxin type A (BoNT-A) in post-stroke spasticityHigh doses of incobotulinumtoxinA (840U) showed efficacy and safety in severe post-stroke upper and lower limb spasticityIn a 2-year follow-up on 20 patients, a reduction of spasticity/disability was found with repeated high doses of incobotulinumtoxinAOne month after the last BoNT-A administration, the efficacy on spasticity/disability was similar to that at baselineLong-term treatment with high doses of incobotulinumtoxinA was safe and effective in post-stroke upper and lower limb spasticity

Abstract

Current guidelines suggested a dosage up to 600 units (U) of botulinum toxin type A (BoNT-A) (onabotulinumtoxinA or incobotulinumtoxinA) in reducing spastic hypertonia with low prevalence of complications, although a growing body of evidence showed efficacy with the use of high doses (> 800 U). The available evidence mainly referred to a single set of injections evaluating the efficacy and safety of the neurotoxin 30 days after the treatment. In a prospective, non-randomized, open-label study, we studied the safety of repeated higher doses of incobotulinumtoxinA in post-stroke upper and lower limb spasticity.

Two years after the first set of injections, we evaluated in 20 stroke survivors with upper and lower limb spasticity the long-term safety of repeated high doses of incobotulinumtoxinA (up to 840 U) for a total of eight sets of injections.

Patients reported an improvement of their clinical picture concerning a reduction of spasticity measured with the Asworth Scale (AS) for elbow, wrist, fingers and ankle flexor muscles and disability measured with the Disability Assessment Scale (DAS) 30 days after the last set of injections (eighth set) compared to the baseline (p < 0.0001). No difference in AS and DAS scores has been found between t1 (30 days after the first injection set) and t2 (30 days after the eighth set of injections), with also similar safety.

In a two-year follow-up, repeated high doses of incobotulinumtoxinA, administered for eight sets of injections, appeared to be safe in patients with upper and lower limb spasticity after stroke without general adverse effects.

Keywords

via Long-term safety of repeated high doses of incobotulinumtoxinA injections for the treatment of upper and lower limb spasticity after stroke – ScienceDirect

, , , , , , ,

Leave a comment

[ARTICLE] Botulinum toxin type A in post-stroke lower limb spasticity: a multicenter, double-blind, placebo-controlled trial – Full Text

Abstract

Lower limb spasticity in post-stroke patients can impair ambulation and reduces activities of daily living (ADL) performance of patients. Botulinum toxin type A (BoNTA) has been shown effective for upper limb spasticity. This study assesses the treatment of lower limb spasticity in a large placebo-controlled clinical trial. In this multicenter, randomized, double-blind, parallel-group, placebo-controlled study, we evaluate the efficacy and safety of one-time injections of botulinum toxin type A (BoNTA) in Japanese patients with post-stroke lower limb spasticity. One hundred twenty patients with lower limb spasticity were randomized to a single treatment with BoNTA 300 U or placebo. The tone of the ankle flexor was assessed at baseline and through 12 weeks using the Modified Ashworth Scale (MAS). Gait pattern and speed of gait were also assessed. The primary endpoint was area under the curve (AUC) of the change from baseline in the MAS ankle score. Significant improvement in spasticity with BoNTA 300 U was demonstrated by a mean difference in the AUC of the change from baseline in the MAS ankle score between the BoNTA and placebo groups (−3.428; 95% CIs, −5.841 to −1.016; p = 0.006; t test). A significantly greater decrease from baseline in the MAS ankle score was noted at weeks 4, 6 and 8 in the BoNTA group compared to the placebo group (p < 0.001). Significant improvement in the Clinicians Global Impression was noted by the investigator at weeks 4, 6 and 8 (p = 0.016–0.048, Wilcoxon test), but not by the patient or physical/occupational therapist. Assessments of gait pattern using the Physician’s Rating Scale and speed of gait revealed no significant treatment differences but showed a tendency towards improvement with BoNTA. No marked difference was noted in the frequency of treatment-related adverse events between BoNTA and placebo groups. This was the first large-scale trial to indicate that BoNTA significantly reduced spasticity in lower limb muscles.

Introduction

Spasticity is defined by Lance as a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex, as one of the components of upper motor neuron syndrome [1].

BoNTA (botulinum toxin type A, onabotulinumtoxinA1) is a specific formulation of a locally injected muscle relaxant whose active ingredient is botulinum toxin type A produced by Clostridium botulinum. Botulinum toxin type A binds to the receptors in the presynaptic, cholinergic motor nerve terminal and is taken up by the nerve cells where the light chain of toxin cleaves a synaptosome-associated protein (SNAP-25) to inhibit acetylcholine release from the nerve terminal. As its muscle relaxant effect is exerted in the hypertonic muscle, BoNTA offers an alternative treatment for spastic patients who have difficulty with oral muscle relaxants that can produce generalized weakness and drowsiness, cognitive impairment, and/or a reduced level of arousal. Locally injected BoNTA is expected to improve limb position and functional ability, and reduce pain in patients with spasticity. Moreover, BoNTA has no sedative action, unlike existing oral antispastic treatments, and therefore can be used in patients with cognitive impairment or a reduced level of arousal. Based on these considerations, BoNTA is a first-line treatment choice if the upper and lower limb spasticity is focal and reversible without contracture [2].

The efficacy and safety of BoNTA in patients with post-stroke lower limb spasticity have been suggested by randomized-controlled trials of limited scale [345678] and meta-analysis [9]. The efficacy of BoNTA in patients with severe brain injury has also been demonstrated in a randomized-control trial [10]. Approved treatments of spasticity in Japan include peripheral and central muscle relaxants, alcohol, phenol block, and intrathecal baclofen (only in cases of severe spastic paralysis). We conducted a clinical study to evaluate the efficacy and safety of BoNTA in Japanese patients with post-stroke lower limb spasticity who received a single placebo-controlled injection of BoNTA followed by open-label repeated treatment of up to three sessions. This article reports the efficacy and safety results of the double-blind phase. […]

 

Continue —->  Botulinum toxin type A in post-stroke lower limb spasticity: a multicenter, double-blind, placebo-controlled trial | SpringerLink

, , , , ,

Leave a comment

[Abstract] Effectiveness of Neuromuscular Electrical Stimulation on Lower Limb Hemiplegic Patients following Chronic Stroke: A Systematic Review

Abstract

Objective

To investigate the effectiveness of neuromuscular electrical stimulation (NMES) with or without other interventions in improving lower limb activity after chronic stroke.

Data Source

Electronic databases including PubMed, EMBase, Cochrane Library, PEDro (Physiotherapy Evidence Database) and PsycINFO were searched from the inception to January, 2017.

Study Selection

We selected the randomized controlled trials (RCTs) involving chronic stroke survivors with lower limb dysfunction and comparing NMES or combined with other interventions with control of no electrical-stimulated treatment.

Data Extraction

The primary outcome was defined as lower limb motor function, and the secondary outcomes included gait speed, Berg Balance scale, Timed Up and Go, Six-Minute Walk Test, Modified Ashworth Scale and Range of Motion .

Data Synthesis

Twenty-one RCTs involving 1,481 participants were identified from 5,759 retrieved articles. Pooled analysis showed that NMES had a moderate but statistically significant benefits on lower limb motor function (SMD 0.42, 95% CI 0.26 to 0.58), especially when NMES combined with other interventions or treatment time within either 6 or 12 weeks. NMES also had significant benefits on gait speed, balance, spasticity and range of motion but had no significant difference in walking endurance after NMES.

Conclusion

NMES combined with or without other interventions has beneficial effects in lower limb motor function in chronic stroke survivors. These data suggest that NMES should be a promising therapy to apply in chronic stroke rehabilitation to improve the capability of lower extremity in performing activities.

via Effectiveness of Neuromuscular Electrical Stimulation on Lower Limb Hemiplegic Patients following Chronic Stroke: A Systematic Review – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

[Abstract] OnabotulinumtoxinA for the Treatment of Post-Stroke Distal Lower-Limb Spasticity: A Randomized Trial

Abstract

Background

Post-stroke distal lower limb spasticity impairs mobility, limiting activities of daily living, requiring additional caregiver time.

Objective

To evaluate the efficacy, safety, and sustained benefit of onabotulinumtoxinA in adults with post-stroke lower limb spasticity (PSLLS).

Design

A multicenter, randomized, double-blind, phase 3, placebo-controlled trial.

Setting

60 study centers across North America, Europe, Russia the United Kingdom, and South Korea.

Patients

Adult patients (18 to 65 years of age) with PSLLS (Modified Ashworth Scale [MAS] ≥3) of the ankle plantar flexors and the most recent stroke ≥3 months prior to study enrollment. .

Interventions

During the open-label phase, patients received ≤3 onabotulinumtoxinA treatments (≤400 U) or placebo at approximately 12-week intervals. Treatments were into the ankle plantar flexors (onabotulinumtoxinA 300 U into ankle plantar flexors; ≤100 U, optional lower limb muscles).

Main Outcome Measurements

The double-blind primary endpoint was MAS change from baseline (average score at weeks 4 and 6). Secondary measures included physician-assessed Clinical Global Impression of Change (CGI), MAS change from baseline in optional muscles, Goal Attainment Scale (GAS), and pain scale.

Results

Of 468 patients enrolled, 450 (96%) completed the double-blind phase and 413 (88%) completed the study. Small improvements in MAS observed with onabotulinumtoxinA during the double-blind phase (onabotulinumtoxinA, –0.8; placebo, –0.6, P=0.01) were further enhanced with additional treatments through week 6 of the third open-label treatment cycle (onabotulinumtoxinA/onabotulinumtoxinA, –1.2; placebo/onabotulinumtoxinA, –1.4). Small improvements in CGI observed during the double-blind phase (onabotulinumtoxinA, 0.9; placebo, 0.7, P=0.01) were also further enhanced through week 6 of the third open-label treatment cycle (onabotulinumtoxinA/onabotulinumtoxinA, 1.6; placebo/onabotulinumtoxinA, 1.6). Physician- and patient-assessed GAS scores improved with each subsequent treatment. No new safety signals emerged.

Conclusions

OnabotulinumtoxinA significantly improved ankle MAS, CGI, and GAS scores compared with placebo; improvements were consistent and increased with repeated treatments of onabotulinumtoxinA over 1 year in patients with PSLLS.

 

via OnabotulinumtoxinA for the Treatment of Post-Stroke Distal Lower-Limb Spasticity: A Randomized Trial – PM&R

, , , ,

Leave a comment

[ARTICLE] A systematic review: efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity – Full Text

Abstract

Background

Improved walking is one of the highest priorities in people living with stroke. Post-stroke lower limb spasticity (PSLLS) impedes walking and quality of life (QOL). The understanding of the evidence of improved walking and QOL following botulinum toxin (BoNTA) injection is not clear. We performed a systematic review of the randomized control trials (RCT) to evaluate the effectiveness of BoNTA injection on walking and QOL in PSLLS.

Methods

We searched PubMed, Web of Science, Embase, CINAHL, ProQuest Thesis and Dissertation checks, Google Scholar, WHO International Clinical Trial Registry Platform, ClinicalTrials.gov, Cochrane, and ANZ and EU Clinical Trials Register for RCTs looking at improvement in walking and QOL following injection of BoNTA in PSLLS. The original search was carried out prior to 16 September 2015. We conducted an additional verifying search on CINHAL, EMBASE, and MEDLINE (via PubMed) from 16 September 2015 to 6 June 2017 using the same clauses as the previous search. Methodological quality of the individual studies was critically appraised using Joanna Briggs Institute’s instrument. Only placebo-controlled RCTs looking at improvement in walking and QOL were included in the review.

Results

Of 2026 records, we found 107 full-text records. Amongst them, we found five RCTs qualifying our criteria. No new trials were found from the verifying search. Two independent reviewers assessed methodological validity prior to inclusion in the review using Joanna Briggs Institute’s appraisal instrument. Two studies reported significant improvement in gait velocity (p = 0.020) and < 0.05, respectively. One study showed significant improvement in 2-min-walking distance (p < 0.05). QOL was recorded in one study without any significant improvement. Meta-analysis of reviewed studies could not be performed because of different methods of assessing walking ability, small sample size with large confidence interval and issues such as lack of power calculations in some studies. Findings from our systematic and detailed study identify the need for a well-designed RCT to adequately investigate the issues highlighted.

Conclusions

This review could not conclude there was sufficient evidence to support or refute improvement on walking or QOL following BoNTA injection. Reasons for this are discussed, and methods for future RCTs are developed.

Background

Stroke is a common cause of adult disability worldwide [1]. More than two thirds of the stroke survivors develop post-stroke sequelae including impaired motor functions and spasticity [2]. The prevalence of post-stroke spasticity ranges from 19.0 to 42.6% [3]. There have been many recent developments in diagnosis, management, and prevention of stroke, while advances in rehabilitation have been modest [4]. There has, however, been progress with the use of botulinum toxin (BoNTA) as a treatment to improve spasticity in the upper limb [567]. Three systematic reviews [8910] have addressed research progress on both the upper and lower limbs, with the conclusion from two of these that the effect on the upper and lower limbs spasticity favored BoNTA [89]; however, these reviews did not fulfill the criteria for inclusion in this study.

As far as the lower limb is concerned, improvement in spasticity while important is only a first stage in post-stroke improvement, and the aim of RCTs should be to address the more important questions of functional activity including walking. How well this outcome has been addressed is the aim of this study. This is also an important question for many countries to resolve, because to date, botulinum toxin A is not approved for use in the post-stroke lower limb spasticity (PSLLS) by the pharmaceutical authorities except in the USA [11].

Lower limb spasticity most commonly involves the foot and the ankle leading to equinovarus (plantarflexion and inversion) deformity. Post-stroke patients with equinovarus deformity fail to achieve optimal contact with the ground leading to a poor stance, loss of heel to toe rhythm while walking and post-stroke patients walk predominantly with plantarflexion/inversion of the foot. Transfers and walking are essentially bipedal activity involving phases like balancing on one leg and swinging the other leg forward. The awkward position of the foot in addition to spasticity impairs balance, transfer, stride, gait, and mobility, besides causing spasm and pain. In many cases, complications like falls, fractures, deep vein thrombosis, and pressure ulcers may also result [12]. Inability to walk is associated with loss of independence and premature residential aged care placement [1314] and in the older population contributes substantially to adverse health outcomes including activities of daily living and mortality [15]. Improving and maintaining walking ability and activities of daily living are therefore vital for post-stroke survivors [16] and a major contributor to functional improvements. The overall human and economic cost of spasticity is, therefore, considerable, and interventions potentially can deliver significant benefits [17].

Given the evidence for efficacy of BoNTA in reducing spasticity, the objective of this review was to assess the available evidence of BoNTA injection: (1) to improve mobility (using gait velocity and walking distance as measuring parameters) and quality of life (QOL) and (2) to make appropriate recommendations for further research regarding these questions. […]

 

Continue —> A systematic review: efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity | Systematic Reviews | Full Text

, , , ,

Leave a comment

[Abstract] Effect of activity-based mirror therapy on lower limb motor-recovery and gait in stroke: A randomised controlled trial

Objective: To determine the effect of activity-based mirror therapy (MT) on motor recovery and gait in chronic poststroke hemiparetic subjects.

Design: A randomised, controlled, assessor-blinded trial.

Setting: Rehabilitation institute.

Participants: Thirty-six chronic poststroke (15.89 ± 9.01 months) hemiparetic subjects (age: 46.44 ± 7.89 years, 30 men and functional ambulation classification of median level 3).

Interventions: Activity-based MT comprised movements such as ball-rolling, rocker-board, and pedalling. The activities were provided on the less-affected side in front of the mirror while hiding the affected limb. The movement of the less-affected lower limb was projected as over the affected limb. Conventional motor therapy based on neurophysiological approaches was also provided to the experimental group. The control group received only conventional management.

Main outcome measures: Brunnstrom recovery stages (BRS), Fugl-Meyer assessment lower extremity (FMA-LE), Rivermead visual gait assessment (RVGA), and 10-metre walk test (10-MWT).

Results: Postintervention, the experimental group exhibited significant and favourable changes for FMA-LE (mean difference = 3.29, 95% CI = 1.23–5.35, p = .003) and RVGA (mean difference = 5.41, 95% CI = 1.12–9.71, p = .015) in comparison to the control group. No considerable changes were observed on 10-MWT.

Conclusions: Activity-based MT facilitates motor recovery of the lower limb as well as reduces gait deviations among chronic poststroke hemiparetic subjects.

 

via Effect of activity-based mirror therapy on lower limb motor-recovery and gait in stroke: A randomised controlled trial: Neuropsychological Rehabilitation: Vol 0, No 0

, , , , , , ,

Leave a comment

[ARTICLE] Assessment of the correlations between gait speed in post-stroke patients and the time from stroke onset, the level of motor control in the paretic lower limb, proprioception, visual field impairment and functional independence – Full Text PDF

Abstract

Introduction: Gait recovery is one of the main objectives in the rehabilitation of post-stroke patients. The study aim was to assess the correlations between gait speed in post-stroke hemiparetic patients and the level of motor control in the paretic lower limb, the time from stroke onset, the subjects’ age as well as the impairment of proprioception and visual field.

Materials and methods: This retrospective study was performed at the Clinical Rehabilitation Ward of the Regional Hospital No. 2 in Rzeszow. The study group consisted of 600 patients after a first stroke who walked independently. The measurements focused on gait speed assessed in a 10-meter walking test, motor control in the lower limb according to Brunnström recovery stages, proprioception in lower limbs, visual field as well as functional independence according to The Barthel Index.

Results: The study revealed a slight negative correlation between gait speed and the subjects’ age (r = − 0.25). No correlation was found between mean gait speed and the time from stroke onset. On the other hand, gait speed strongly correlated both with the level of motor control in the lower limb (p = 0.0008) and the incidence of impaired proprioception. Additionally, a strong statistically significant correlation between the patients’ gait speed and the level of functional independence was found with the use of The Barthel Index.

Conclusions: The level of motor control in the paretic lower limb and proprioception are vital factors affecting gait speed and functional independence. Patients with a higher level of functional independence demonstrated higher gait speed.

References

  • 1. Olney SJ, Richards CL. Hemiplegic gait following stroke: Part I. Characteristics. Gait Posture 1996:4(2):136-48.CrossrefGoogle Scholar
  • 2. Van de Port IG, Kwakkel G, Van Wijk I, Lindeman E. Susceptibility to deterioration of mobility long-term after stroke: a prospective cohort study. Stroke 2006;37(1):167-71.CrossrefGoogle Scholar
  • 3. Kollen B, van de Port I, Lindeman E et al. Predicting improvement in gait after stroke: a longitudinal prospective study. Stroke 2005;36(12):2676-80.CrossrefGoogle Scholar
  • 4. Harris JE, Eng JJ. Goal priorities identified by individuals with chronic stroke: implications for rehabilitation professionals. Physiother Can 2004;56(3):171-6.CrossrefGoogle Scholar
  • 5. Schmid A, Duncan PW, Studenski S, et al. Improvements in speed-based gait classifications are meaningful. Stroke 2007;38(7):2096-100.Web of ScienceCrossrefGoogle Scholar
  • 6. Patterson SL, Forrester LW, Rodgers MM, et al. Determinants of walking function after stroke: differences by deficit severity. Arch Phys Med Rehabil 2007;88(1):115-9.CrossrefWeb of ScienceGoogle Scholar
  • 7. Dobkin BH. Short-distance walking speed and timed walking distance: redundant measures for clinical trials? Neurology 2006;66(4):584-6.CrossrefGoogle Scholar
  • 8. Olney SJ, Nymark J, Brouwer B et al. A randomized controlled trial of supervised versus unsupervised exercise programs for ambulatory stroke survivors. Stroke 2006;37(2):476-81.CrossrefGoogle Scholar
  • 9. Kollen B, Kwakkel G, Lindeman E. Hemiplegic gait after stroke: Is measurement of maximum speed required? Arch Phys Med Rehab 2006;87(3):358-63.CrossrefGoogle Scholar
  • 10. Van Bloemendaal M, Van de Water ATM, Van de Port JGL. Walking tests for stroke survivors: a systematic review of their measurement properties. DisabilRehabil 2012;34(26):2207-21.Google Scholar
  • 11. Perry J, Garrett M, Gronley JK et al. Classification of walking handicap in the stroke population. Stroke 1995;26(6):982-9.CrossrefGoogle Scholar
  • 12. Schmid A, Duncan PW, Studenski S, et al. Improvements in speed-based gait classifications are meaningful. Stroke 2007;38(7):2096-100.Web of ScienceCrossrefGoogle Scholar
  • 13. Hsu A-L, Tang P-F, Jan M-H. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil 2003;84(8):1185-93.CrossrefGoogle Scholar
  • 14. Nadeau S, Arsenault AB, Gravel D, Bourbonnais D. Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil 1999;78(2):123-30.CrossrefGoogle Scholar
  • 15. Collen FM, Wade DT, Bradshaw CM. Mobility after stroke: reliability of measures of impairment and disability. IntDisabil Stud 1990;12(1):6-9.Google Scholar
  • 16. Brunnström S. Movement Therapy in Hemiplegia: A Neurophysiological Approach. Hagerstown, Md: HarpeRow; 1970.Google Scholar
  • 17. Mahoney FI, The Barthel DW. Functional evaluation: the The Barthel Index. Md State Med J 1965;14:61-5.Google Scholar
  • 18. Kwakkel G, Kollen B J, R C Wagenaar R C. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J NeurolNeurosurg Psychiatry 2002;72(4):473-9.Google Scholar
  • 19. Taylor-Piliae RE, Latt LD, Hepworth JT, Coull BM. Predictors of gait velocity among community-dwelling stroke survivors. Gait Posture 2012;35(3):395-9.CrossrefWeb of ScienceGoogle Scholar
  • 20. Kollen B, Kwakkel G, Lindeman E. Longitudinal robustness of variables predicting independent gait following severe middle cerebral artery stroke: a prospective cohort study. ClinRehabil 2006;20(3):262-8.Google Scholar
  • 21. Bohannon RW, Walsh S. Nature, reliability, and predictive value of muscle performance measures in patients with hemiparesis following stroke. Arch Phys Med Rehabil 1992;73(8):721-5.Google Scholar
  • 22. Dettmann MA, Linder MT, Sepic SB. Relationship among gait performance, postural stability, and function assessments of the hemiplegic patient. Am J Phys Med 1987;66(2):77-90.Google Scholar
  • 23. Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil 2005;86(8):1552-6.CrossrefGoogle Scholar
  • 24. Van de Port IG, Kwakkel G, Lindeman E. Community ambulation in patients with chronic stroke: how is it related to gait speed? J Rehabil Med 2008;40(1):23-7.CrossrefWeb of ScienceGoogle Scholar

 DOWNLOAD Full Text PDF

 

via Assessment of the correlations between gait speed in post-stroke patients and the time from stroke onset, the level of motor control in the paretic lower limb, proprioception, visual field impairment and functional independence : Advances in Rehabilitation

, , , , ,

Leave a comment

[Abstract] Recent Advances on Lower Limb Exoskeleton Rehabilitation Robot

Abstract

Background: Lower limb exoskeleton rehabilitation robot is a bionic robot, which is the product of the combination of medical technology and robot technology, simulating human walking movement. It can be mainly used for rehabilitation training of patients with lower limb dysfunction.

Objective: To provide an overview of recent lower limb exoskeleton rehabilitation robot and introduce their respective characteristics and development.

Method: A recent lower limb exoskeleton rehabilitation robot is divided into passive drive, pneumatic drive, hydraulic drive and motor drive. This paper reviews various representative patents related to lower limb exoskeleton rehabilitation robot. The structural characteristics and applications of the typical lower limb exoskeleton rehabilitation robots are introduced.

Results: The differences between different types of lower limb exoskeleton rehabilitation robots are compared and analyzed, and the structural characteristics are concluded. The main problems in its development are analyzed, the development trend is foreseen, and the current and future research of the patents on lower limb exoskeleton rehabilitation robot is discussed.

Conclusion: There are a lot of patents and articles about the exoskeleton rehabilitation robots, however, if these problems can be solved, such as small size, light weight and high power output are solved at the same time, the consistency with human body will be advanced, with the combination of traditional rehabilitation medicine. It will be possible to maximize the rehabilitation of the lower limbs.

Source: Recent Advances on Lower Limb Exoskeleton Rehabilitation Robot: Ingenta Connect

, , , , , , ,

Leave a comment

[Abstract] EEG-guided robotic mirror therapy system for lower limb rehabilitation – IEEE Conference Publication

Abstract:

Lower extremity function recovery is one of the most important goals in stroke rehabilitation. Many paradigms and technologies have been introduced for the lower limb rehabilitation over the past decades, but their outcomes indicate a need to develop a complementary approach. One attempt to accomplish a better functional recovery is to combine bottom-up and top-down approaches by means of brain-computer interfaces (BCIs). In this study, a BCI-controlled robotic mirror therapy system is proposed for lower limb recovery following stroke. An experimental paradigm including four states is introduced to combine robotic training (bottom-up) and mirror therapy (top-down) approaches. A BCI system is presented to classify the electroencephalography (EEG) evidence. In addition, a probabilistic model is presented to assist patients in transition across the experiment states based on their intent. To demonstrate the feasibility of the system, both offline and online analyses are performed for five healthy subjects. The experiment results show a promising performance for the system, with average accuracy of 94% in offline and 75% in online sessions.

Source: EEG-guided robotic mirror therapy system for lower limb rehabilitation – IEEE Conference Publication

, , , , , , ,

Leave a comment

%d bloggers like this: