Posts Tagged Lower Limp

[WEB SITE] Transcutaneous electrical stimulation (TENS) may help lower limb spasticity after stroke

Adult using TENS machine for lower limb pain

Published on 26 February 2019

doi: 10.3310/signal-000738

Transcutaneous electrical stimulation (TENS) delivered alongside standard physical therapies could reduce spasticity in the lower limbs following a stroke.

Spasticity is a muscle control disorder characterised by tight muscles. It is common after stroke and accounts for significant disability. TENS is often used to treat pain and can affect nervous stimulation of the muscles.

The main evidence in this systematic review came from five trials which suggested that TENS combined with other physical therapies has moderate effect on lower limb spasticity compared with placebo.

The review has limitations, with small studies and little evidence on use for upper limbs or comparing with other therapies. However, TENS machines are portable, inexpensive and widely accessible making them an appealing addition to other care.

NICE does not currently recommend the use of TENS in stroke rehabilitation, though guidance covers use of other types of electrical stimulation in certain other contexts.

Why was this study needed?

More than 1.2 million people in the UK are living with the effects of stroke. About two-thirds of stroke survivors leave hospital with residual disability and one quarter experience spasticity.

Electrical stimulation is sometimes used as treatment after a stroke. It includes functional electrical stimulation and neuromuscular electrical stimulation, which both focus on muscle contraction. Transcutaneous electrical stimulation (TENS) targets the sensory nerves in a different way.

Transcutaneous electrical stimulation has been suggested as an adjunct to other rehabilitation therapy to try and reduce spasticity. The device is portable and can be self-administered at home, so its potential for managing spasticity is appealing.

There have been a number of small studies of TENS with conflicting results. This review aimed to combine the results to see if there was evidence for its use to treat spasticity after stroke.

What did this study do?

This systematic review identified 15 studies (10 randomised controlled trials) reporting the effectiveness of TENS on spasticity after stroke.

Studies compared TENS, used alone or alongside other therapies such as functional exercises, with placebo, no treatment or other treatments. Thirteen studies assessed lower limb spasticity, with 11 targeting the ability to flex the foot. Most assessed use in the chronic rather than acute phase of stroke.

Transcutaneous electrical stimulation regimen varied widely. Intervention periods ranged from one day to 12 weeks, the number of TENS sessions from one to seven per week, and the duration of sessions ranged from less than 20 minutes up to 60 minutes.

Trials were small with maximum participant size 80. The quality of randomised controlled trials was good overall, with lack of participant blinding being the most likely source of bias. Seven trials were pooled in meta-analysis.

What did it find?

  • Transcutaneous electrical stimulation used alongside other physical therapies was moderately effective in reducing spasticity in the lower limbs compared with placebo (standard mean difference [SMD] -0.64, 95% confidence interval [CI] -0.98 to -0.31). This was from meta-analysis of five trials (221 adults) with broadly similar results.
  • Pooled results of two trials (60 adults) also found that TENS alongside other physical therapies was more effective at reducing spasticity than no TENS (SMD -0.83, 95% CI -1.51 to -0.15).
  • Five studies assessed longer-term effects on spasticity. Three studies found the effects were maintained for a period of two to five weeks whilst two studies found the effects lasted for less than a day and that spasticity returned to baseline levels immediately following the intervention.
  • None of the studies reported any adverse effects of TENS.

What does current guidance say on this issue?

The NICE guideline on stroke rehabilitation (2013) does not currently include recommendations for use of TENS. NICE advises against the routine use of electrical stimulation for the hand and arm but suggests a trial of treatment may be considered if there is sign of muscle contraction, and the person cannot move their arm against resistance.

NICE guidance from 2009 advises that there is sufficient evidence that functional electrical stimulation can improve walking in people with drop foot following a stroke, provided the normal arrangements are in place for clinical governance, consent and audit.

What are the implications?

This review suggests that TENS, when delivered alongside other physical therapies, could be considered for lower limb spasticity as part of a stroke rehabilitation programme.

The findings are similar to a 2015 systematic review which found that electrical stimulation gave small but significant improvements in spasticity following stroke. Again this earlier review was limited by small sample sizes, varied treatment regimens and few studies that could be pooled in meta-analysis.

There was insufficient evidence to support use for upper limbs.

Cost was not assessed, but TENS is a non-invasive therapy and devices are widely available and could easily be used at home.

Citation and Funding

Mahmood A, Veluswamy SK, Hombali A, et al. Effect of transcutaneous electrical nerve stimulation on spasticity in adults with stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018; 16 November. doi: 10.1016/j.apmr.2018.10.016. [Epub ahead of print].

No funding information was provided for this study.

Bibliography

NICE. Functional electrical stimulation for drop foot of central neurological origin. IPG278. London: National Institute for Health and Care Excellence; 2009.

NICE. Stroke rehabilitation in adults. CG162. London: National Institute for Health and Care Excellence; 2013.

NICE. Spasticity (after stroke) – botulinum toxin type A. ID768. London: National Institute for Health and Care Excellence; in development.

Stein C, Fritsch CG, Robinson C et al. Effects of electrical stimulation in spastic muscles after stroke: systematic review and meta-analysis of randomized controlled trials. Stroke. 2015;46(8):2197-205.

Stroke Association. State of the nation: stroke statistics. London: Stroke Association; 2018.

 

  1. Analysis of the Faster Knee-Jerk In the Hemiplegic Limb
    TAKAO NAKANISHI et al., JAMA Neurology, 1965
  2. Transcutaneous Electrical Stimulation
    WILLIAM BAUER et al., JAMA Otolaryngology Head Neck Surgery, 1986

via Transcutaneous electrical stimulation (TENS) may help lower limb spasticity after stroke

, , , , , , , , ,

Leave a comment

[ARTICLE] Experiences of treadmill walking with non-immersive virtual reality after stroke or acquired brain injury : A qualitative study – Full Text

Abstract

Objectives

It is well known that physical activity levels for persons after stroke or acquired brain injuries do not reach existing recommendations. Walking training is highly important since the ability to walk is considered to be a meaningful occupation for most people, and is often reduced after a brain injury. This suggests a need to innovate stroke rehabilitation, so that forms of walking training that are user-friendly and enjoyable can be provided.

Method

An interview study was carried out with persons after stroke (n = 8), or acquired brain injury (n = 2) at a rehabilitation unit at Sahlgrenska University Hospital. We used a semi-structured interview guide to investigate experiences and thoughts about walking on a treadmill with non-immersive virtual reality feedback. The contents were analyzed through an inductive approach, using qualitative content analysis.

Results

The virtual reality experience was perceived as enjoyable, exciting, and challenging. Participants stressed that the visual and auditory feedback increased their motivation to walk on a treadmill. However, for some participants, the virtual reality experience was too challenging, and extreme tiredness or fatigue were reported after the walking session.

Conclusions

Participants’ thoughts and experiences indicated that the Virtual Reality walking system could serve as a complement to more traditional forms of walking training. Early after a brain injury, virtual reality could be a way to train the ability to handle individually adapted multisensory input while walking. Obvious benefits were that participants perceived it as engaging and exciting.

Introduction

In general, physical activity levels in rehabilitation units are low [] and do not reach the recommendations for persons with stroke or acquired brain injury (ABI) []. There are also indications that the intensity of physiotherapy sessions after stroke is mostly at low levels []. Several barriers may contribute to inactivity, such as neurological deficits, cognitive impairment, environmental factors, and lack of motivation [].

A dose-response effect on exercise outcome after stroke has been shown, and training should be highly repetitive and task oriented []. Walking training is important and considered to be a meaningful occupation for most people. To increase walking exercise intensity, treadmill walking has been proposed as a means of task-oriented training that gives the opportunity for many repetitions, and has shown to promote a more normal walking pattern []. Walking on a moving surface like a treadmill is more demanding than walking on the ground in terms of sensory processing, postural control and movement coordination. From a motivational perspective, treadmill walking may be perceived as boring the long run.

Training of goal-specific activities with a high number of repetitions may be offered using virtual reality (VR) applications, which have been introduced in neurological rehabilitation []. Training using VR has also been suggested to enhance neuroplasticity after stroke [] by means of offering multisensory stimulation at a high intensity. VR comprises computer-based real-time simulation of an environment with user interaction [] visually displayed on a screen or through head-mounted devices. Differences in technology and visual presentations in 2D or 3D enable varying types of feedback, levels of immersion and sense of presence in the virtual environment []. VR feedback can be mediated through vision, hearing, touch, movement, or smell. The technique provides performance feedback–both directly experienced and objectively quantified, and may thereby increase exercise motivation, and improve motor performance [].

Following stroke, VR training has been mostly described for the upper limb but also for the lower limb; balance and walking as well as for perceptual/cognitive skills []. VR has shown a potential for positive effects on walking and balance abilities, although the number of studies are low and the evidence for its superiority to other methods is low [].

Although few adverse events from VR training have been described, some participants have reported headache or dizziness [] and knowledge is lacking regarding how persons affected by brain injuries perceive the exposure of multisensory input, during a complex activity such as treadmill walking with VR. The potential effects on motivation and participant experience of VR are scarcely investigated [] and mostly focused on upper limb activities and games []. Based on this, we wanted to investigate patients’ overall experiences of a VR concept in walking training.

The aim of the present study was to explore the experiences of VR in addition to walking on a treadmill in persons with stroke or acquired brain injuries. Participants’ overall experiences and suggestions for development of the exercise method were areas of interest.[…]

 

Continue —>  Experiences of treadmill walking with non-immersive virtual reality after stroke or acquired brain injury – A qualitative study

, , , , , , ,

Leave a comment

[Abstract] Novel multi-pad functional electrical stimulation in stroke patients: A single-blind randomized study

via Novel multi-pad functional electrical stimulation in stroke patients: A single-blind randomized study – IOS Press

, , , , , , , , ,

Leave a comment

[Abstract] Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study

 

To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke.

Randomized controlled study.

Inpatient rehabilitation center of a teaching hospital.

Sixty-nine patients with foot drop.

Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks.

10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period.

After four weeks of intervention, Brunnstrom stage (P = 0.04), 10-meter walk test (P < 0.05), and passive range of motion (P < 0.05) showed obvious improvements between patients in the mirror therapy and control groups. Patients in the mirror therapy + neuromuscular electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test (P < 0.05). There was no significant difference in spasticity between patients in the two intervention groups. However, compared with patients in the control group, patients in the mirror therapy + neuromuscular electrical stimulation group showed a significant decrease in spasticity (P < 0.001).

Therapy combining mirror therapy and neuromuscular electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.

via Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study – Qun Xu, Feng Guo, Hassan M Abo Salem, Hong Chen, Xiaolin Huang, 2017

, , , , ,

Leave a comment

[Abstract] Repetitive task training for improving functional ability after stroke – The Cochrane Library

Abstract

Background

Repetitive task training (RTT) involves the active practice of task-specific motor activities and is a component of current therapy approaches in stroke rehabilitation.

Objectives

Primary objective: To determine if RTT improves upper limb function/reach and lower limb function/balance in adults after stroke.

Secondary objectives: 1) To determine the effect of RTT on secondary outcome measures including activities of daily living, global motor function, quality of life/health status and adverse events. 2) To determine the factors that could influence primary and secondary outcome measures, including the effect of ‘dose’ of task practice; type of task (whole therapy, mixed or single task); timing of the intervention and type of intervention.

Search methods

We searched the Cochrane Stroke Group Trials Register (4 March 2016); the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 5: 1 October 2006 to 24 June 2016); MEDLINE (1 October 2006 to 8 March 2016); Embase (1 October 2006 to 8 March 2016); CINAHL (2006 to 23 June 2016); AMED (2006 to 21 June 2016) and SPORTSDiscus (2006 to 21 June 2016).

Selection criteria

Randomised/quasi-randomised trials in adults after stroke, where the intervention was an active motor sequence performed repetitively within a single training session, aimed towards a clear functional goal.

Data collection and analysis

Two review authors independently screened abstracts, extracted data and appraised trials. We determined the quality of evidence within each study and outcome group using the Cochrane ‘Risk of bias’ tool and GRADE (Grades of Recommendation, Assessment, Development and Evaluation) criteria. We did not assess follow-up outcome data using GRADE. We contacted trial authors for additional information.

Main results

We included 33 trials with 36 intervention-control pairs and 1853 participants. The risk of bias present in many studies was unclear due to poor reporting; the evidence has therefore been rated ‘moderate’ or ‘low’ when using the GRADE system.

There is low-quality evidence that RTT improves arm function (standardised mean difference (SMD) 0.25, 95% confidence interval (CI) 0.01 to 0.49; 11 studies, number of participants analysed = 749), hand function (SMD 0.25, 95% CI 0.00 to 0.51; eight studies, number of participants analysed = 619), and lower limb functional measures (SMD 0.29, 95% CI 0.10 to 0.48; five trials, number of participants analysed = 419).

There is moderate-quality evidence that RTT improves walking distance (mean difference (MD) 34.80, 95% CI 18.19 to 51.41; nine studies, number of participants analysed = 610) and functional ambulation (SMD 0.35, 95% CI 0.04 to 0.66; eight studies, number of participants analysed = 525). We found significant differences between groups for both upper-limb (SMD 0.92, 95% CI 0.58 to 1.26; three studies, number of participants analysed = 153) and lower-limb (SMD 0.34, 95% CI 0.16 to 0.52; eight studies, number of participants analysed = 471) outcomes up to six months post treatment but not after six months. Effects were not modified by intervention type, dosage of task practice or time since stroke for upper or lower limb. There was insufficient evidence to be certain about the risk of adverse events.

Authors’ conclusions

There is low- to moderate-quality evidence that RTT improves upper and lower limb function; improvements were sustained up to six months post treatment. Further research should focus on the type and amount of training, including ways of measuring the number of repetitions actually performed by participants. The definition of RTT will need revisiting prior to further updates of this review in order to ensure it remains clinically meaningful and distinguishable from other interventions.

Plain language summary

Repetitive task training for improving functional ability after stroke

Review question: What are the effects of repeated practice of functional tasks on recovery after stroke when compared with usual care or placebo treatments?

Background: Stroke can cause problems with movement, often down one side of the body. While some recovery is common over time, about one third of people have continuing problems. Repeated practice of functional tasks (e.g. lifting a cup) is a treatment approach used to help with recovery of movement after stroke. This approach is based on the simple idea that in order to improve our ability to perform tasks we need to practice doing that particular task numerous times, like when we first learned to write. The types of practice that people do, and the time that they spend practicing, may affect how well this treatment works. To explore this further we also looked at different aspects of repetitive practice that may influence how well it works.

Study characteristics: We identified 33 studies with 1853 participants. Studies included a wide range of tasks to practice, including lifting a ball, walking, standing up from sitting and circuit training with a different task at each station. The evidence is current to June 2016.

Key results: In comparison with usual care (standard physiotherapy) or placebo groups, people who practiced functional tasks showed small improvements in arm function, hand function, walking distance and measures of walking ability. Improvements in arm and leg function were maintained up to six months later. There was not enough evidence to be certain about the risk of adverse events, for example falls. Further research is needed to determine the best type of task practice, and whether more sustained practice could show better results.

Quality of the evidence: We classified the quality of the evidence as low for arm function, hand function and lower limb functional measures, and as moderate for walking distance and functional ambulation. The quality of the evidence for each outcome was limited due poor reporting of study details (particularly in earlier studies), inconsistent results across studies and small numbers of study participants in some comparisons.

Source: Repetitive task training for improving functional ability after stroke – French – 2016 – The Cochrane Library – Wiley Online Library

, , , , , , , , ,

Leave a comment

[Doctoral Project] OUTPATIENT REHABILITATION FOR A PATIENT WITH A CHRONIC LEFT ISCHEMIC STROKE – Full Text PDF

ABSTRACT

A patient with a left middle cerebral artery stroke was seen for physical therapy treatment for 8 sessions from 4/17/15 to 5/15/15 at the Department of Physical Therapy at California State University, Sacramento. Treatment was provided by a student physical therapist under the supervision of a licensed physical therapist.

The patient was evaluated at the initial encounter with the Five Times Sit to Stand to assess lower extremity muscular strength, the Six Minute Walk Test to assess cardiovascular endurance, the 10 Meter Walk Test to measure ambulatory status and gait speed, the Timed Up and Go test to measure fall risk, and the Falls Efficacy ScaleInternational to measure fall risk, and a plan of care was established. Main goals for the patient were to improve lower extremity strength, neuromuscular control, cardiovascular endurance, gait speed, and decrease risk for falls. Main interventions used were repetition, task-specific training, over-ground gait training, and neuromuscular control training.

The patient improved lower extremity strength, cardiovascular endurance, gait speed, and reduced her risk for falls. The patient was discharged to remain living at home with a home exercise program.

Full Text PDF

, , , , , , ,

Leave a comment

[Abstract] Lower Limb Strength Is Significantly Impaired in All Muscle Groups in Ambulatory People With Chronic Stroke: A Cross-Sectional Study – Archives of Physical Medicine and Rehabilitation

Abstract

Objective

To measure the strength of the major muscle groups of the affected and intact lower limbs in people with stroke compared with age-matched controls.

Design

Cross-sectional study.

Setting

University laboratory.

Participants

Ambulatory stroke survivors (n=60; mean age, 69±11y), who had had a stroke between 1 and 6 years previously, and age-matched controls (n=35; mean age, 65±9y) (N=95).

Interventions

Not applicable.

Main Outcome Measures

The maximum isometric strength of 12 muscle groups (hip flexors and extensors, hip adductors and abductors, hip internal rotators and external rotators, knee flexors and extensors, ankle dorsiflexors and plantarflexors, ankle invertors and evertors) of both lower limbs was measured using handheld dynamometry. All strength measurements were taken in standardized positions by 1 rater.

Results

The affected lower limb of the participants with stroke was significantly weaker than that of the control participants for all muscle groups (P<.01). Strength (adjusted for age, sex, and body weight) was 48% (range, 34%–62%) of that of the control participants. The most severely affected muscle groups were hip extensors (34% of controls), ankle dorsiflexors (35%), and hip adductors (38%), and the least severely affected muscle groups were ankle invertors (62%), ankle plantarflexors (57%), and hip flexors (55%). The intact lower limb of the participants with stroke was significantly weaker than that of the control participants for all muscle groups (P<.05) except for ankle invertors (P=.25). Strength (adjusted for age, sex, and body weight) was 66% (range, 44%–91%) of that of the control participants. The most severely affected muscle groups were hip extensors (44% of controls), ankle dorsiflexors (52%), and knee flexors (54%).

Conclusions

Ambulatory people with chronic stroke have a marked loss of strength in most of the major muscle groups of both lower limbs compared with age-matched controls.

Source: Lower Limb Strength Is Significantly Impaired in All Muscle Groups in Ambulatory People With Chronic Stroke: A Cross-Sectional Study – Archives of Physical Medicine and Rehabilitation

, , , ,

Leave a comment

[WEB SITE] Modular mirror box therapy system for the lower extremity – Patent

Abstract:

The disclosed systems and methods provide for a mirror box therapy system as a therapeutic tool for treating patients having one healthy and one unhealthy limb. This can include stroke patients or those whom otherwise have full or partial paralysis. Also suitable patients include amputees with phantom limb pain or those with intact legs whom have unilateral chronic lower extremity pain. The system is designed to be used with patients in the short sit position or long sit position and can be alternated between each position including switching between left side and right side limb treatment. The methods of treatment with the disclosed system are designed to provide for positive visual feedback and induce brain plasticity with the improvement of neural connections leading to pain and/or motor rehabilitation of the impaired limb.

Continue —> Modular mirror box therapy system for the lower extremity – Hyslop, Amanda

, , ,

Leave a comment

[ARTICLE] Development of a lower limb rehabilitation exoskeleton based on real-time gait detection and gait tracking. – Full Text HTML/PDF

Figure 10.

Walking process conducted in the laboratory environment.

Abstract

Hemiplegia, apoplexia, or traffic accidents often lead to unilateral lower limb movement disorders. Traditional lower limb rehabilitation equipments usually execute walk training based on fixed gait trajectory; however, this type is unsuitable for unilateral lower limb disorders because they still have athletic ability and initiative walking intention on the healthy side.

This article describes a wearable lower limb rehabilitation exoskeleton with a walk-assisting platform for safety and anti-gravity support. The exoskeleton detects and tracks the motion of the healthy leg, which is then used as the control input of the dyskinetic leg with half a gate-cycle delay. The patient can undergo walk training on his own intention, including individual walking habit, stride length, and stride frequency, which likely contribute to the training initiative. The series elastic actuator is chosen for the exoskeleton because the torque output can be accurately detected and used to calculate the assisted torque on the dyskinetic leg. This parameter corresponds to the recovery level of a patient’s muscle force.

Finally, the walk-assisting experiments reveal that the rehabilitation exoskeleton in this article can provide the necessary assisting torques on the dyskinetic leg, which can be accurately monitored in real time to evaluate a patient’s rehabilitation status.

Introduction

Human walking is the most basic mode of coordinated and voluntary movement with smooth transition, appropriate step length, and stable energy consumption.1Exercise therapy based on neurodevelopment facilitation theory is a fundamental rehabilitation method for lower limb movement disorders caused by hemiplegia, apoplexia, or accidental disability resulting from traffic accidents or natural disasters.2The application of rehabilitation exoskeletons can free physiotherapists from heavy manual labor and improve training efficiency in terms of the precise motion control and real-time recording of training parameters; this application contributes to the evaluation of rehabilitation. Rehabilitation exoskeletons can be broadly categorized into two types: lower limb wearable style and foot pedal style.

With the exoskeletons of the first type, patients usually undergo training on a treadmill; during training, both legs are tied to the exoskeleton and the upper body is supported by anti-gravity bundling belts. A suspension device is applied to balance the weight of the exoskeleton and part of the patient’s body weight. The exoskeletons of this style generally comprise a walk-assisting platform, an exoskeleton of the upper body, and two legs. Foot parts are usually not considered in these exoskeletons, such as WalkTrainer3 and Lokomat4 developed in Switzerland, SUBAR developed at Sogang University,5 ALEX developed at the University of Delaware,6 and lower limb walking assistant robot developed at Zhejiang University.7

For the second type, a pair of multi-variant pedal structures is connected to a patient’s feet for the rehabilitation training. The advantage of this approach is that uneven ground and changing terrains can be simulated to achieve training diversity. The Skywalker by MIT,8 the 6-degree-of-freedom (DOF) gait rehabilitation robot by Sogang University,9 and the Haptic Walker by Benjamin Franklin University10 are significant examples of the second type of exoskeletons.

Traditional lower limb rehabilitation equipments usually execute walk training by driving the legs on the basis of the fixed gait trajectory, which precludes a patient’s initiative. As such, they seem unsuitable for unilateral lower limb disorders because the equipment may interfere between the fixed gait trajectory and the initiative walking intention of the healthy leg.

This article proposes a wearable lower limb exoskeleton for the rehabilitation training of unilateral lower limb disorders. A wearable exoskeleton with a walk-assisting device has been designed to help during walk training. The exoskeleton detects and tracks the healthy leg’s motion in real time; the exoskeleton also provides the necessary assisting torque of the dyskinetic leg. The main design goals of this article are as follows: to improve the training initiative and to dynamically calculate the muscle torques on the dyskinetic leg, and these torques can be used as an evaluation index of rehabilitation training.

Full Text (PDF)

Continue (HTML) —> Development of a lower limb rehabilitation exoskeleton based on real-time gait detection and gait tracking

, , , ,

3 Comments

[WEB SITE] Articles about Botulinum Toxin A and Spasticity

 

, , , , , , ,

Leave a comment

%d bloggers like this: