Posts Tagged MAS

[ARTICLE] Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available) – Full Text

Abstract
Telerehabilitation in older adults is most needed in the patient environments, rather than in formal ambulatories or hospitals. Supporting such practices brings significant advantages to patients, their family, formal and informal caregivers, clinicians, and researchers. Several techniques and technologies have been developed aiming at facilitating and enhancing the effectiveness of telerehabilitation. This paper gives a quick overview of the state of the art, investigating video-based, wear-able, robotic, distributed, and gamified telerehabilitation solutions. In particular, agent-based solutions are analyzed and discussed addressing strength, limitations, and future challenges. Elaborating on functional requirements expressed by professional physiotherapists and researchers, the need for extending multi-agent systems (MAS) peculiarities at the sensing level in wearable solutions establishes new research challenges. Employed in cyber-physical scenarios with users-sensors and sensors-sensors interactions, MAS are requested to handle timing constraints, scarcity of resources and new communication means, which are crucial for providing real-time feedback and coaching.
1 Introduction
Healthcare institutions are facing the strain of a significantly larger elderly population [1]. Lengthening life expectancy is met by an increasing demand for medical and technological contributions to extend the ”good-health”, and disability free period.
The major factor catalyzing the elderly’s impairing process is the progres-
sive reduction of mobility, due to the natural aging process, inactivity, dis-
eases such as osteoarthritis, stroke or other neurological conditions, falls with its consequences, such as fear of falls (leading to inactivity), or fractures (needing surgery).Despite the emergence of less-invasive surgical techniques, post-intervention rehabilitation still requires extended periods and tailored therapies, which usually involve complications. Performing traditional rehabilitative practices is leading to a significant increase in public-health costs and, in some cases a lack of resources, thus worsening the services’ quality. Rehabilitation is often a long process and needs to be sustained long after the end of the acute care. Simplifying the access to health services [2] can raise the number of patients, maintaining (or even increasing) the quality of care. For example, patients requiring support, such as continuous or selective monitoring, can benefit from systems that automatically transmit the information gathered in their domestic environment to the health clinics, thus enabling telemonitoring on their health conditions [3].
Although in traditional solutions telemonitoring is a self-contained practice
limited to passively observing the patients, the need for remote sensing is crucially coupled with the need for coaching older adults in their daily living [4,5].
For example, a critical activity such as telerehabilitation cannot be limited
to observing the patients’ behaviors. Indeed, patient adherence and acceptability of rehabilitative practices need to be actively enhanced, overcoming pitfalls due to motor (e.g., endurance), non-motor (e.g., fatigue, pain, dysautonomic symptoms, and motivational), and cognitive deficits. According to Rodriguez et al. [6], telerehabilitation can be formally defined as:
“the application of telecommunication, remote sensing and operation tech-
nologies, and computing technologies to assist with the provision of med-
ical rehabilitation services at a distance.”
Patients, physiotherapists, and health institutes can gain several benefits
from an extensive adoption of telerehabilitation systems [7]. Considering the
economical point of view, Mozaffarian et al. [8] figured out that the total cost
of stroke in the US was estimable to be 34.3 billion dollars in 2008, rising up to 69.1 billion dollars in 2016.
Even though to date they are not precisely quantifiable due to insufficient evidence [9], Mutingi et al. [10] presented as “inevitable advantages”
(i) a substantial cost saving primarily due to the reduction of specialized human resources,
(ii) an enhancement of patient comfort and lifestyle, and (iii) improvements of therapy and decision making processes. Moreover, Morreale et al. [11] mentioned one of the most appreciated benefits: the increase of adherence to rehabilitation protocols.
The multitude of scientific contributions fostering telerehabilitation exploits
new technologies and various architectures to better understand and serve user requirements. However, due to technological or technical limitations, physiotherapists’ needs have not yet been completely satisfied. To fill this gap, a system evolution is required. For example, telerehabilitation systems cannot offer the same behavior to users with diverse conditions. Viceversa, according to the environment condition, they must rather be able to adapt themselves to the user needs [6].
Telerehabilitation is characterized by a very delicate equilibrium between
environment, devices, and users. Thus, the capabilities such as self adaptation, flexibility, and ubiquity are crucial to facilitate and promote the usability and then the actual practices.
Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available). Available from: https://www.researchgate.net/publication/316790326_Agent-based_systems_for_telerehabilitation_strengths_limitations_and_future_challenges [accessed May 26, 2017].

Continue —> Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available)

Fig. 2. Agent-based sensing: future challenge for telerehabilitation MAS. 

, , , , , ,

Leave a comment

[Poster] A Toolkit for Objective Clinical Outcome Measures of Muscle Tone – Archives of Physical Medicine and Rehabilitation

To evaluate a wearable sensor-based toolkit for quantifying muscle tone in patients with upper motor neuron syndrome (UMNS).

Source: A Toolkit for Objective Clinical Outcome Measures of Muscle Tone – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[Abstract] Kinect V2 as a tool for stroke recovery: Pilot study of motion scale monitoring

Abstract:

This paper investigates Kinect device application during rehabilitation of people with an ischemic stroke. There are many similar application using Kinect as a tool during rehabilitation. This paper is focused on measurement of Kinect’s spatial accuracy and proposition of body states and exercises according to the Motor assessment scale for stroke (MAS). The system observes the whole rehabilitation process and objectively compares ranges of movement during each exercise. Angles between limbs are computed in the skeletal body joints projection to three anatomical planes, which enables a better insight to subject performance. The system is easily implemented with a consumer-grade computer and a low-cost Kinect device. Selected exercises are presented together with the angles evolution, body states recognition and the MAS Scale after the stroke classification.

Source: Kinect V2 as a tool for stroke recovery: Pilot study of motion scale monitoring – IEEE Xplore Document

, , , , , , , , , ,

Leave a comment

[ARTICLE] The Effects of Mirror Therapy on Clinical Improvement in Hemiplegic Lower Extremity Rehabilitation in Subjects with Chronic Stroke – Full Text PDF

Abstract

Background: The effectiveness of mirror therapy (MT) has been investigated in acute hemiplegia. The present study examines whether MT, given during chronic stroke, was more effective in promoting motor recovery of the lower extremity and walking speed than standard rehabilitation alone.

Methods: The study enrolled 30 patients with chronic stroke. Fifteen patients each were assigned to the treatment group and the control group. All patients received a conventional rehabilitation program for a 4-week period. In addition to this rehabilitation program, patients in the treatment group received mirror therapy for 4 weeks, 5 days a week.

Main measures: Passive ankle joint dorsiflexion range of motion, gait speed, Brunnstrom stages of motor recovery, plantar flexor muscle tone by Modified Ashworth Scale.

Results: No significant difference was found in the outcome measures among groups before treatment. When compared with standard rehabilitation, mirror therapy improved Ankle ROM, Brunnstrom stages and waking speed (p < 0.05). However, there were no significant differences between two groups on MAS (P > 0.05).

Conclusion: Mirror therapy combined with a conventional stroke rehabilitation program enhances lowerextremity motor recovery and walking speed in chronic stroke patients.

Full Text PDF

, , , , , , ,

Leave a comment

%d bloggers like this: