Posts Tagged mCIT

[Abstract + References] Project Star Catcher: A Novel Immersive Virtual Reality Experience for Upper Limb Rehabilitation


Modern immersive virtual reality experiences have the unique potential to motivate patients undergoing physical therapy for performing intensive repetitive task-based treatment and can be utilized to collect real-time user data to track adherence and compliance rates. This article reports the design and evaluation of an immersive virtual reality game using the HTC Vive for upper limb rehabilitation, titled “Project Star Catcher” (PSC), aimed at users with hemiparesis. The game mechanics were adapted from modified Constraint Induced Therapy (mCIT), an established therapy method where users are asked to use the weaker arm by physically binding the stronger arm. Our adaptation changes the physical to psychological binding by providing various types of immersive stimulation to influence the use of the weaker arm. PSC was evaluated by users with combined developmental and physical impairments as well as stroke survivors. The results suggest that we were successful in providing a motivating experience for performing mCIT as well as a cost-effective solution for real-time data capture during therapy. We conclude the article with a set of considerations for immersive virtual reality therapy game design.


Gilda Aparecida de Assis, Ana Grasielle Dionísio Corrêa, Maria Bernardete Rodrigues Martins, Wendel Goes Pedrozo, and Roseli de Deus Lopes. 2016. An augmented reality system for upper-limb post-stroke motor rehabilitation: A feasibility study. Disabil. Rehabil. Assist. Technol. 11, 6 (2016), 521–528.
Alejandro Baldominos, Yago Saez, and Cristina García del Pozo. 2015. An approach to physical rehabilitation using state-of-the-art virtual reality and motion tracking technologies. Proced. Comput. Sci. 64 (2015), 10–16.
Stacy J. Morris Bamberg, Ari Y. Benbasat, Donna Moxley Scarborough, David E. Krebs, and Joseph A. Paradiso. 2008. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12, 4 (2008), 413–423.
Rosa María Baños, Cristina Botella, Mariano Alcañiz, Víctor Liaño, Belén Guerrero, and Beatriz Rey. 2004. Immersion and emotion: Their impact on the sense of presence. CyberPsychol. Behav. 7, 6 (2004), 734–741.
Corey J. Bohil, Bradly Alicea, and Frank A. Biocca. 2011. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12, 12 (2011), 752–762.
Nancy N. Byl, Gary M. Abrams, Erica Pitsch, Irina Fedulow, Hyunchul Kim, Matt Simkins, Srikantan Nagarajan, and Jacob Rosen. 2013. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. J. Hand Ther. 26, 4 (2013), 343–352.
Mónica S. Cameirão, S. Bermúdez, and P. F. M. J. Verschure. 2008. Virtual reality based upper extremity rehabilitation following stroke: A review. J. CyberTher. Rehabil. 1, 1 (2008), 63–74.
R. Campbell, M. Evans, M. Tucker, B. Quilty, P. Dieppe, and J. L. Donovan. 2001. Why don’t patients do their exercises? Understanding non-compliance with physiotherapy in patients with osteoarthritis of the knee. J. Epidemiol. Commun. Health 55, 2 (2001), 132–138.
Stephanie K. Carter and John A. Rizzo. 2007. Use of outpatient physical therapy services by people with musculoskeletal conditions. Phys. Ther. 87, 5 (2007), 497.
Derwin K. Chan, Chris Lonsdale, Po Y. Ho, Patrick S. Yung, and Kai M. Chan. 2009. Patient motivation and adherence to postsurgery rehabilitation exercise recommendations: The influence of physiotherapists’ autonomy-supportive behaviors. Arch. Phys. Med. Rehabil. 90, 12 (2009), 1977–1982.
Luca Chittaro, Riccardo Sioni, Cristiano Crescentini, and Franco Fabbro. 2017. Mortality salience in virtual reality experiences and its effects on users attitudes towards risk. Int. J. Hum.-Comput. Stud. 101 (2017), 10–22.
Davide Corbetta, Federico Imeri, and Roberto Gatti. 2015. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. J. Physiother. 61, 3 (2015), 117–124.
GSV Capital Corp. 2013. GSV Capital Corp. The Pioneer Building. Retrieved from
Patrick J. Costello. 1997. Health and Safety Issues Associated with Virtual Reality: A Review of Current Literature. Advisory Group on Computer Graphics.
J. H. Crosbie, S. Lennon, J. R. Basford, and S. M. McDonough. 2007. Virtual reality in stroke rehabilitation: Still more virtual than real. Disabil. Rehabil. 29, 14 (2007), 1139–1146.
Mónica da Silva Cameirão, Sergi Bermúdez i Badia, Esther Duarte, and Paul F. M. J. Verschure. 2011. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: A randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor. Neurol. Neurosci. 29, 5 (2011), 287–298.
Julieta Dascal, Mark Reid, Waguih William IsHak, Brennan Spiegel, Jennifer Recacho, Bradley Rosen, and Itai Danovitch. 2017. Virtual reality and medical inpatients: A systematic review of randomized, controlled trials. Inn. Clin. Neurosci. 14, 1–2 (2017), 14.
Judith E. Deutsch, Jeffrey A. Lewis, and Grigore Burdea. 2007. Technical and patient performance using a virtual reality-integrated telerehabilitation system: Preliminary finding. IEEE Trans. Neur. Syst. Rehabil. Eng. 15, 1 (2007), 30–35.
Julia Diemer, Georg W. Alpers, Henrik M. Peperkorn, Youssef Shiban, and Andreas Mühlberger. 2015. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 6, Article 26 (2015), 1–9.
Sheryl Flynn, Phyllis Palma, and Anneke Bender. 2007. Feasibility of using the sony playstation 2 gaming platform for an individual poststroke: A case report. J. Neurol. Phys. Therapy 31, 4 (2007), 180–189.
AMP New Ventures Follow. 2016. Virtual Reality (VR) Continuum—AMP New Ventures. Retrieved from
Centers for Medicare and Medicaid Services. 2016. U.S. Department of Health and Human Services Centers for Medicare 8 Medicaid Services (CMS). Report to the Congress: Medicare Payment Policy. Technical Report, 2016. Retrieved February 7, 2016 from
Helena Grillon, Françoise Riquier, Bruno Herbelin, and Daniel Thalmann. 2006. Virtual reality as a therapeutic tool in the confines of social anxiety disorder treatment. Int. J. Disabil. Hum. Dev. 5, 3 (2006), 243–250.
Diane Gromala, Xin Tong, Amber Choo, Mehdi Karamnejad, and Chris D. Shaw. 2015. The virtual meditative walk: Virtual reality therapy for chronic pain management. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 521–524.
Sophie Heins, Stéphanie Dehem, Vincenza Montedoro, Franz Rocca, Pierre-Henri de Deken, Martin Edwards, Bruno Dehez, Matei Mancas, Gaëtan Stoquart, Thierry Lejeune, et al. 2017. Robotic-assisted serious game for motor and cognitive post-stroke rehabilitation. In Proceedings of the 5th IEEE Conference on Serious Games and Applications for Health.
Hunter G. Hoffman, Gloria T. Chambers, Walter J. Meyer, Lisa L. Arceneaux, William J. Russell, Eric J. Seibel, Todd L. Richards, Sam R. Sharar, and David R. Patterson. 2011. Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Ann. Behav. Med. 41, 2 (2011), 183–191.
Jerome Iruthayarajah, Amanda McIntyre, Andreea Cotoi, Steven Macaluso, and Robert Teasell. 2017. The use of virtual reality for balance among individuals with chronic stroke: A systematic review and meta-analysis. Top. Stroke Rehabil. 24, 1 (2017), 68–79.
Kirsten Jack, Sionnadh Mairi McLean, Jennifer Klaber Moffett, and Eric Gardiner. 2010. Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review. Manual Therapy 15, 3 (2010), 220–228.
Eun-Kyu Ji and Sang-Heon Lee. 2016. Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: A preliminary study. J. Phys. Ther. Sci. 28, 11 (2016), 3168–3172.
Dahlia Kairy, Michel Tousignant, Nancy Leclerc, Anne-Marie Côté, Mélanie Levasseur, et al. 2013. The patients perspective of in-home telerehabilitation physiotherapy services following total knee arthroplasty. Int. J. Environ. Res. Publ. Health 10, 9 (2013), 3998–4011.
Michelle R. Kandalaft, Nyaz Didehbani, Daniel C. Krawczyk, Tandra T. Allen, and Sandra B. Chapman. 2013. Virtual reality social cognition training for young adults with high-functioning autism. J. Autism Dev. Disord. 43, 1 (2013), 34–44.
Oliver Kreylos. 2016. Lighthouse tracking examined. Retrieved from
Danielle E. Levac, Stephanie M. N. Glegg, Heidi Sveistrup, Heather Colquhoun, Patricia Miller, Hillel Finestone, Vincent DePaul, Jocelyn E. Harris, and Diana Velikonja. 2016. Promoting therapists use of motor learning strategies within virtual reality-based stroke rehabilitation. PloS One 11, 12 (2016), e0168311.
Mindy F. Levin, Osnat Snir, Dario G. Liebermann, Harold Weingarden, and Patrice L. Weiss. 2012. Virtual reality versus conventional treatment of reaching ability in chronic stroke: Clinical feasibility study. Neurol. Ther. 1, 1 (2012), 3.
Robert W. Lindeman, Yasuyuki Yanagida, Kenichi Hosaka, and Shinji Abe. 2006. The tactapack: A wireless sensor/actuator package for physical therapy applications. In Proceedings of the 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 337–341.
Roberto Lloréns, Enrique Noé, Carolina Colomer, and Mariano Alcañiz. 2015. Effectiveness, usability, and cost-benefit of a virtual reality–based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 96, 3 (2015), 418–425.
Keith R. Lohse, Courtney G. E. Hilderman, Katharine L. Cheung, Sandy Tatla, and H. F. Machiel Van der Loos. 2014. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS One 9, 3 (2014), e93318.
Peter S. Lum, Gitendra Uswatte, Edward Taub, Phillip Hardin, and Victor W. Mark. 2006. A telerehabilitation approach to delivery of constraint-induced movement therapy. J. Rehabil. Res. Dev. 43, 3 (2006), 391.
Victor W. Mark and Edward Taub. 2004. Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities. Restor. Neurol. Neurosci. 22, 3–5 (2004), 317–336.
Gary Marshall. 2016. Best VR controller: HTC Vive vs Oculus Rift vs PlayStation VR vs Gear VR. Retrieved April 30, 2017 from
R. R. Mellecker and A. M. McManus. 2014. Active video games and physical activity recommendations: A comparison of the Gamercize Stepper, XBOX Kinect and XaviX J-Mat. J. Sci. Med. Sport 17, 3 (2014), 288–292.
Nexhmedin Morina, Hiske Ijntema, Katharina Meyerbröker, and Paul M. G. Emmelkamp. 2015. Can virtual reality exposure therapy gains be generalized to real-life? A meta-analysis of studies applying behavioral assessments. Behav. Res. Ther. 74 (2015), 18–24.
Hossein Mousavi Hondori and Maryam Khademi. 2014. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. 2014 (2014).
Maria V. Nararro-Haro, Hunter G. Hoffman, Azucena Garcia-Palacios, Mariana Sampaio, Wadee Alhalabi, Karyn Hall, and Marsha Linehan. 2016. The use of virtual reality to facilitate mindfulness skills training in dialectical behavioral therapy for borderline personality disorder: A case study. Front. Psychol. 7, Article 1573 (2016), 1–9.
Diederick C. Niehorster, Li Li, and Markus Lappe. 2017. The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception 8, 3 (2017), 2041669517708205.
NINDS. 2014. Post-Stroke Rehabilitation. NIH Publication No. 14 1846. Retrieved April 30, 2017 from
Stephen J. Page, Peter Levine, Sueann Sisto, Quin Bond, and Mark V. Johnston. 2002. Stroke patients’ and therapists’ opinions of constraint-induced movement therapy. Clin. Rehabil. 16, 1 (2002), 55–60.
Marco Pasch, Nadia Berthouze, Betsy Dijk, and Anton Nijholt. 2008. Motivations, strategies, and movement patterns of video gamers playing Nintendo Wii boxing. In Proceedings of the Facial and Bodily Expressions for Control and Adaptation of Games Workshop.
Lamberto Piron, Andrea Turolla, Michela Agostini, Carla Zucconi, Feliciana Cortese, Mauro Zampolini, Mara Zannini, Mauro Dam, Laura Ventura, Michela Battauz, et al. 2009. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. J. Rehabil. Med. 41, 12 (2009), 1016–1020.
Barbara Olasov Rothbaum, Matthew Price, Tanja Jovanovic, Seth D. Norrholm, Maryrose Gerardi, Boadie Dunlop, Michael Davis, Bekh Bradley, Erica J. Duncan, Albert Rizzo, et al. 2014. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am. J. Psychiat. 171, 6 (2014), 640–648.
Anil K. Roy, Yash Soni, and Sonali Dubey. 2013. Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In Proceedings of the 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS’13). IEEE, 298–304.
Mar Rus-Calafell, José Gutiérrez-Maldonado, and Joan Ribas-Sabaté. 2014. A virtual reality-integrated program for improving social skills in patients with schizophrenia: A pilot study. J. Behav. Ther. Exp. Psychiat. 45, 1 (2014), 81–89.
Yasser Salem, Stacy Jaffee Gropack, Dale Coffin, and Ellen M. Godwin. 2012. Effectiveness of a low-cost virtual reality system for children with developmental delay: A preliminary randomised single-blind controlled trial. Physiotherapy 98, 3 (2012), 189–195.
Gustavo Saposnik, Mindy Levin, Stroke Outcome Research Canada (SORCan) Working Group, et al. 2011. Virtual reality in stroke rehabilitation. Stroke 42, 5 (2011), 1380–1386.
Gustavo Saposnik, Robert Teasell, Muhammad Mamdani, Judith Hall, William McIlroy, Donna Cheung, Kevin E. Thorpe, Leonardo G. Cohen, Mark Bayley, et al. 2010. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke 41, 7 (2010), 1477–1484.
Dante D’Orazio Savov and Vlad. 2015. Valve’s VR headset is called the Vive and it’s made by HTC. Retrieved from
Yue X. Shi, Jin H. Tian, Ke H. Yang, and Yue Zhao. 2011. Modified constraint-induced movement therapy versus traditional rehabilitation in patients with upper-extremity dysfunction after stroke: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 92, 6 (2011), 972–982.
Youssef Shiban, Iris Schelhorn, Paul Pauli, and Andreas Mühlberger. 2015. Effect of combined multiple contexts and multiple stimuli exposure in spider phobia: A randomized clinical trial in virtual reality. Behav. Res. Ther. 71 (2015), 45–53.
Fabian Soffel, Markus Zank, and Andreas Kunz. 2016. Postural stability analysis in virtual reality using the HTC vive. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. ACM, 351–352.
Digital Trends Staff. 2017. Oculus Rift vs. HTC Vive. Retrieved from
Sofia Straudi, Giacomo Severini, Amira Sabbagh Charabati, Claudia Pavarelli, Giulia Gamberini, Anna Scotti, and Nino Basaglia. 2017. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: An exploratory study. BMC Neurol. 17, 1 (2017), 86.
Daria Tsoupikova, Kristen Triandafilou, Saumya Solanki, Alex Barry, Fabian Preuss, and Derek Kamper. 2016. Real-time diagnostic data in multi-user virtual reality post-stroke therapy. In Proceedings of the SIGGRAPH ASIA 2016 VR Showcase (SA’16). ACM, New York, NY. DOI:
Pan Wang, Gerald Choon Huat Koh, Christian Gilles Boucharenc, Tian Ma Xu, Hamasaki, and Ching Chiuan Yen. 2017. Developing a tangible gaming board for post-stroke upper limb functional training. In Proceedings of the 11th International Conference on Tangible, Embedded, and Embodied Interaction (TEI’17). ACM, New York, NY, 617–624. DOI:

via Project Star Catcher

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke | Full Text

Journal of NeuroEngineering and Rehabilitation (JNER)

Published: 22 March 2016



The combination of robot-assisted therapy (RT) and a modified form of constraint-induced therapy (mCIT) shows promise for improving motor function of patients with stroke. However, whether the changes of motor control strategies are concomitant with the improvements in motor function after combination of RT and mCIT (RT + mCIT) is unclear. This study investigated the effects of the sequential combination of RT + mCIT compared with RT alone on the strategies of motor control measured by kinematic analysis and on motor function and daily performance measured by clinical scales.


The study enrolled 34 patients with chronic stroke. The data were derived from part of a single-blinded randomized controlled trial. Participants in the RT + mCIT and RT groups received 20 therapy sessions (90 to 105 min/day, 5 days for 4 weeks). Patients in the RT + mCIT group received 10 RT sessions for first 2 weeks and 10 mCIT sessions for the next 2 weeks. The Bi-Manu-Track was used in RT sessions to provide bilateral practice of wrist and forearm movements. The primary outcome was kinematic variables in a task of reaching to press a desk bell. Secondary outcomes included scores on the Wolf Motor Function Test, Functional Independence Measure, and Nottingham Extended Activities of Daily Living. All outcome measures were administered before and after intervention.


RT + mCIT and RT demonstrated different benefits on motor control strategies. RT + mCIT uniquely improved motor control strategies by reducing shoulder abduction, increasing elbow extension, and decreasing trunk compensatory movement during the reaching task. Motor function and quality of the affected limb was improved, and patients achieved greater independence in instrumental activities of daily living. Force generation at movement initiation was improved in the patients who received RT.


A combination of RT and mCIT could be an effective approach to improve stroke rehabilitation outcomes, achieving better motor control strategies, motor function, and functional independence of instrumental activities of daily living.

Trial registration NCT01727648


Stroke remains a leading cause of permanent motor disability worldwide [1]. Persistent impairment of the upper extremity (UE) occurs in up to two-thirds of patients after stroke [2]. UE paresis can lead to deficits in motor control [3], motor dysfunction [4], and participation in activities of daily living (ADL) [5]. Developing and providing effective therapeutic techniques to improve UE motor control and recovery is crucial.

Robot-assisted therapy (RT) is an emerging intervention approach that provides high-intensity, high-repetition, and task-specific training to enhance motor learning and control in patients with stroke [6, 7]. Systemic reviews have indicated that RT improves UE muscle strength and motor function of patients with moderate to severe motor impairment after stroke [8,9]. A recent review suggested that the assessment of movement kinematics should be included in RT studies to identify modulation in motor control strategies [10]. Previous studies found that RT can improve motor control strategies in patients with stroke, including greater movement efficacy [1113], better movement smoothness of the affected UE [13], and more use of the preplanned control strategy [13]. However, no consistent findings on patients’ participation in ADL were observed after RT [8, 1417]. How to optimize or transfer the treatment benefits of RT on motor function and motor control strategies into participation in ADL warrants further investigation. An approach using RT monotherapy may not optimally address this need.

Constraint-induced therapy (CIT), one most investigated approaches to rehabilitation, was developed to overcome the learned nonuse phenomenon and enhance functional use of the affected arm after stroke [18, 19]. Treatment components of CIT include repetitive and intensive task practice, behavioral shaping techniques, restraint of the unaffected UE, and transfer package [20, 21]. Modified and distributed CIT, which are not as intensive as the original CIT, have been developed and validated [20, 22, 23]. The benefits of the original CIT and its modified versions have been well demonstrated to improve motor function, arm-hand activities, and daily performance of patients with stroke [19, 24, 25].

Therapies that combine RT with other rehabilitation approaches have been developed to optimize the treatment effects of RT [2629]. The combination of RT and conventional therapy led to significant gains in arm function of patients, but different combination sequences showed benefits in different outcomes [27]. In addition, RT combined with repetitive task practice was effective in enhancing hand function and stroke recovery of patients [28]. To the best of our knowledge, only one study has investigated the treatment effects of sequencing the combination of RT and a modified form of CIT (mCIT) in patients with stroke [29]. The results indicated that the sequential combination of RT and mCIT led to better motor and functional ability measured by clinical scales compared with RT alone or conventional rehabilitation [29]. However, whether the changes in motor control strategies are responsible for the improvements in motor function after the sequential combination therapy remains unclear.

Kinematic analysis has been recommended as a sound measure to provide objective and sensitive evaluations on spatial and temporal characteristics of UE movements [8]. More importantly, kinematics can capture motor control strategies that cannot be detected by clinical scales [30]. Thus, kinematic analysis enables us to understand whether the behavioral improvement is due to a true change in the end point control and joint motion or is a result of compensation. Kinematic measures, along with clinical assessments, can better clarify the motor control strategies underlying the motor improvements of stroke patients [31, 32].

This study investigated the effects of the sequential combination of RT and mCIT (RT + mCIT), compared with RT alone, focusing on motor control strategies measured by kinematic analysis and on motor and ADL functions using clinical measures. We hypothesized that (1) RT + mCIT would lead to different benefits on the motor control strategies compared with and RT alone and that (2) RT + mCIT would contribute to better performances in ADL than RT alone.

Continue —-> Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 Graphic representation of the angular strategy variables: (a) shoulder flexion (ShFlex) in the sagittal plane and elbow extension (ElbExt) in the sagittal plane; (b) shoulder abduction (ShAbd) in the frontal plane; and (c) trunk flexion in sagittal (TrunkFlex) plane

Download PDF

, , , , ,

Leave a comment

[ARTICLE] The effects of modified constraint-induced therapy combined with mental practice on patients with chronic stroke – Full Text PDF


[Purpose] The purpose of this study was to investigate the effects of the modified constraint-induced therapy (mCIT) combined with mental practice (MP) on patients with chronic stroke.

[Subjects] The subjects were 26 patients with chronic stroke.

[Methods] Patients were randomly assigned to the mCIMT + MP group or the MP group. All subjects were administered mCIT consisting of (1) therapy emphasizing affected arm use in functional activities 5 days/week for 6 weeks and (2) 4 hours of restraint of the less affected arm 5 days/week. The mCIT + MP subjects received 30-minute MP sessions provided directly after therapy sessions. To compare the two groups, the Action Research Arm Test (ARAT), Fugl-Meyer Assessment of Motor Recovery after stroke (FM), and Korean version of Modified Barthel Index (K-MBI) were performed.

[Results] Both groups showed significant improvement in ARAT, FM, and K-MBI after the interventions. Also, there were significant difference in ARAT, FM, and K-MBI between the two groups.

[Conclusion] mCIT remains a promising intervention. However, its efficacy appears to be enhanced by use of MP after mCIT clinical sessions.

via The effects of modified constraint-induced therapy combined with mental practice on patients with chronic stroke.

, , , , ,

Leave a comment

ARTICLE: Modified Constraint-Induced Therapy in Patients With Chronic Stroke Exhibiting Minimal Movement Ability in the Affected Arm – Full Text

…The results of this study suggest that this reimbursable outpatient mCIT program increases use of the affected arm and function in patients with chronic stroke who do not meet traditional motor inclusion criteria. Before intervention, the subjects were barely able to lift a washrag off a tabletop using any type of prehension they could manage, and then release the rag; after intervention, the subjects were able to perform valued ADL tasks with their affected hands. These results add to a growing body of evidence suggesting that this reimbursable outpatient regimen increases limb use and function, even years after stroke…

via Modified Constraint-Induced Therapy in Patients With Chronic Stroke Exhibiting Minimal Movement Ability in the Affected Arm.

, ,

Leave a comment

%d bloggers like this: