Posts Tagged Medical treatment

[Abstract + References] Towards a framework for rehabilitation and assessment of upper limb motor function based on Serious Games – IEEE Conference Publication

Abstract

 Serious Games and Virtual Reality (VR) are being considered at present as an alternative to traditional rehabilitation therapies. In this paper, the ongoing development of a framework focused on rehabilitation and assessment of the upper limb motor function based on serious games as a source of entertainment for physiotherapy patients is described. A set of OpenSource Serious Games for rehabilitation has been developed, using the last version of Microsoft1® Kinect™ as low cost monitoring sensor and the software Unity. These Serious Games captures 3D human body data and it stored them in the patient database to facilitate a later clinical analysis to the therapist. Also, a VR-based system for the automated assessment of motor function based on Fugl-Meyer Assessment Test (FMA) is addressed. The proposed system attempts to be an useful therapeutic tool for tele-rehabilitation in order to reduce the number of patients, time spent and cost to
hospitals.

I. Introduction

Biomechanical analysis is an important feature during the evaluation and clinical diagnosis of motor deficits caused by traumas or neurological diseases. For that reason Motion capture (MoCap) systems are widely used in biomechanical studies, in order to collect position data from anatomical landmarks with high accuracy. Their results are used to estimate joint movements, positions, and muscle forces. These quantitative results improve the tracking of changes in motor functions over time, being more accurately than clinical ratings [1]. For clinical applications, these results are usually transformed into clinically meaningful and interpretable parameters, such as gait speed, motion range of joints and body balance.

References

1.
D. A. Heldman, A. J. Espay, P. A. LeWitt, J. P. Giuffrida, “Clinician versus machine: reliability and responsiveness of motor endpoints in parkinson’s disease”, Parkinsonism & related disorders, vol. 20, no. 6, pp. 590-595, 2014.
2.
K. Otte, B. Kayser, S. Mansow-Model, J. Verrel, F. Paul, A. U. Brandt, T. Schmitz- Hubsch, “Accuracy and reliability of the kinect version 2 for clinical measurement of motor function”, PloS one, vol. 11, no. 11, pp. e0166532, 2016.
3.
O. O’Neil, C. Gatzidis, I. Swain, “A state of the art survey in the use of video games for upper limb stroke rehabilitation” in Virtual Augmented Reality and Serious Games for Healthcare 1, Springer, pp. 345-370, 2014.
4.
H. Mousavi Hondori, M. Khademi, “A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation”, Journal of medical engineering, vol. 2014, no. 846514, 2014.
5.
J. A. Gil-Gomez, R. Lloréns, M. Alcafiiz, C. Colomer, “Effectiveness of a wii balance board-based system (ebavir) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury”, Journal of neuroengineering and rehabilitation, vol. 8, no. 1, pp. 30, 2011.
6.
E. D. Ofia, C. Balaguer, R. Cano de la Cuerda, S. Collado Vázquez, A. Jardon, “Effectiveness of serious games for leap motion on the functionality of the upper limb in parkinsons disease: A feasibility study”, Computational Intelligence and Neuroscience, vol. 2018, 2018.
7.
K. Salter, N. Campbell, M. Richardson et al., “Outcome measures in stroke rehabilitation”, Evidence-Based Review of Stroke Rehabilitation. Heart and Stroke Foundation. Canadian Partnership for Stroke Recovery, 2014.
8.
E. D. Ofia, R. Cano de la Cuerda, P. Sanchez-Herrera, C. Balaguer, A. Jardon, “A review of robotics in neurorehabilitation: Towards an automated process for upper limb”, Journal of Healthcare Engineering, vol. 2018, 2018.
9.
Medicaa balance for life, [online] Available: http://www.medicaa.com.
10.
Virtual Rehab, Virtual rehabilitation system.
11.
K. Tanaka, J. Parker, G. Baradoy, D. Sheehan, J. R. Holash, L. Katz, “A comparison of exergaming interfaces for use in rehabilitation programs and research”, Loading…, vol. 6, no. 9, 2012.
12.
J. E. Deutsch, M. Borbely, J. Filler, K. Huhn, P. Guarrera-Bowlby, “Use of a low-cost commercially available gaming console (wii) for rehabilitation of an adolescent with cerebral palsy”, Physical therapy, vol. 88, no. 10, pp. 1196-1207, 2008.
13.
H. Sin, G. Lee, “Additional virtual reality training using xbox kinect in stroke survivors with hemiplegia”, American Journal of Physical Medicine & Rehabilitation, vol. 92, no. 10, pp. 871-880, 2013.
14.
J. Wiemeyer, A. Kliem, “Serious games in prevention and rehabil-itationa new panacea for elderly people?”, European Review of Aging and Physical Activity, vol. 9, no. 1, pp. 41, 2011.
15.
A. Pfister, A. M. West, S. Bronner, J. A. Noah, “Comparative abilities of microsoft kinect and vicon 3d motion capture for gait analysis”, Journal of medical engineering & technology, vol. 38, no. 5, pp. 274-280, 2014.
16.
S. K. Jun, X. Zhou, D. K. Ramsey, V. N. Krovi, “A comparative study of human motion capture and computational analysis tools”, The 2nd International Digital Human Modeling Symposium, 2003.
17.
A. M. d. C. Souza, M. A. Gadelha, E. A. Coutinho, S. R. d. Santos, A. Pantoja, A. Pereira, “A video-tracking based serious game for motor rehabilitation of post-stroke hand impairment”, SBC Journal on 3D Interactive Systems, vol. 3, no. 2, pp. 37-46, 2012.
18.
Z. Luo, C. K. Lim, I. M. Chen, S. H. Yeo, “A virtual reality system for arm and hand rehabilitation”, Frontiers of Mechanical Engineering, vol. 6, no. 1, pp. 23-32, 2011.
19.
O. Wasenmuller, D. Stricker, “Comparison of kinect v l and v2 depth images in terms of accuracy and precision”, Asian Conference on Computer Vision Workshop (ACCV workshop), 2016.
20.
J. Van der Putten, J. Hobart, J. Freeman, A. Thompson, “Measuring change in disability after inpatient rehabilitation: comparison of the responsiveness of the barthel index and the functional independencemeasure”, Journal of Neurology Neurosurgery & Psychiatry, vol. 66, no. 4, pp. 480-484, 1999.
21.
E. D. Ofia, A. Jardon, C. Balaguer, Y. Gao, S. Fallah, Y. Jin, C. Lekakou, “The automated box and blocks test an autonomous assessment method of gross manual dexterity in stroke rehabilitation” in Towards Autonomous Robotic Systems TAROS 2017, Cham: Springer, vol. 10454, pp. 101-114, 2017.
22.
C. Rodriguez-de Pablo, J. C. Perry, F. I. Cavallaro, H. Zabaleta, T. Keller, “Development of computer games for assessment and training in post-stroke arm telerehabilitation”, Engineering in Medicine and Biology Society (EMBC) 2012 Annual International Conference of the IEEE, pp. 4571-4574, 2012.
23.
V. Vallejo, P. Wyss, A. Chesham, A. V. Mitache, R. M. Muri, U. P. Mosimann, T. Nef, “Evaluation of a new serious game based multitasking assessment tool for cognition and activities of daily living: Comparison with a real cooking task”, Computers in human behavior, vol. 70, pp. 500-506, 2017.
24.
B. Bonnechere, V. Sholukha, L. Omelina, M. Van Vooren, B. Jansen, S. V. S. Jan, “Suitability of functional evaluation embedded in serious game rehabilitation exercises to assess motor development across lifespan”, Gait & posture, vol. 57, pp. 35-39, 2017.
25.
E. van der Meulen, M. A. Cidota, S. G. Lukosch, P. J. Bank, A. J. van der Helm, V. T. Visch, “A haptic serious augmented reality game for motor assessment of parkinson’s disease patients”, Mixed and Augmented Reality (ISMAR-Adjunct) 2016 IEEE International Symposium on, pp. 102-104, 2016.
26.
C. Bosecker, L. Dipietro, B. Volpe, H. Igo Krebs, “Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke”, Neu-rorehabilitation and neural repair, vol. 24, no. 1, pp. 62-69, 2010.
28.
L. Santisteban, M. Teremetz, J. P. Bleton, J. C. Baron, M. A. Maier, P. G. Lindberg, “Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review”, PloS one, vol. 11, no. 5, pp. e0154792, 2016.
29.
J. W. Burke, M. McNeill, D. K. Charles, P. J. Morrow, J. H. Crosbie, S. M. McDonough, “Optimising engagement for stroke rehabilitation using serious games”, The Visual Computer, vol. 25, no. 12, pp. 1085-1099, 2009.
30.
K. Sathian, L. J. Buxbaum, L. G. Cohen, J. W. Krakauer, C. E. Lang, M. Corbetta, S. M. Fitzpatrick, “Neurological principles and rehabilitation of action disorders common clinical deficits”, Neu-rorehabilitation and neural repair, vol. 25, no. 5 suppl, pp. 21S-32S, 2011.
31.
P. W. Duncan, M. Propst, S. G. Nelson, “Reliability of the fugl-meyer assessment of sensorimotor recovery following cerebrovascular accident”, Physical therapy, vol. 63, no. 10, pp. 1606-1610, 1983.
32.
J. Sanford, J. Moreland, L. R. Swanson, P. W. Stratford, C. Gow-land, “Reliability of the fugl-meyer assessment for testing motor performance in patients following stroke”, Physical therapy, vol. 73, no. 7, pp. 447-454, 1993.
33.
A. Deakin, H. Hill, V. M. Pomeroy, “Rough guide to the fugl-meyer assessment: Upper limb section”, Physiotherapy, vol. 89, no. 12, pp. 751-763, 2003.
34.
D. J. Gladstone, C. J. Danells, S. E. Black, “The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties”, Neurorehabilitation and neural repair, vol. 16, no. 3, pp. 232-240, 2002.
35.
W. S. Kim, S. Cho, D. Baek, H. Bang, N. J. Paik, “Upper extremity functional evaluation by fugl-meyer assessment scoring using depth-sensing camera in hemiplegic stroke patients”, PloS one, vol. 11, no. 7, pp. e0158640, 2016.

via Towards a framework for rehabilitation and assessment of upper limb motor function based on Serious Games – IEEE Conference Publication

Advertisements

, , , , , , , , , , ,

Leave a comment

[Abstract] sEMG Bias-driven Functional Electrical Stimulation System for Upper Limb Stroke Rehabilitation

Abstract:

It is evident that the dominant therapy of functional electrical stimulation (FES) for stroke rehabilitation suffers from heavy dependency on therapists experience and lack of feedback from patients status, which decrease the patients’ voluntary participation, reducing the rehabilitation efficacy. This paper proposes a closed loop FES system using surface electromyography (sEMG) bias feedback from bilateral arms for enhancing upper-limb stroke rehabilitation. This wireless portable system consists of sEMG data acquisition and FES modules, the former is used to measure and analyze the subject’s bilateral arm motion intention and neuromuscular states in terms of their sEMG, the latter of multi-channel FES output is controlled via the sEMG bias of the bilateral arms. The system has been evaluated with experiments proving that the system can achieve 39.9 dB signal-to-noise ratio (SNR) in the lab environment, outperforming existing similar systems. The results also show that voluntary and active participation can be effectively employed to achieve different FES intensity for FES-assisted hand motions, demonstrating the potential for active stroke rehabilitation.
Published in: IEEE Sensors Journal ( Early Access ) Date of Publication: 18 June 2018

Related Articles

via sEMG Bias-driven Functional Electrical Stimulation System for Upper-Limb Stroke Rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Development of a Minimal-Intervention-Based Admittance Control Strategy for Upper Extremity Rehabilitation Exoskeleton

Abstract:

The applications of robotics to the rehabilitation training of neuromuscular impairments have received increasing attention due to their promising prospects. The effectiveness of robot-assisted training directly depends on the control strategy applied in the therapy program. This paper presents an upper extremity exoskeleton for the functional recovery training of disabled patients. A minimal-intervention-based admittance control strategy is developed to induce the active participation of patients and maximize the use of recovered motor functions during training. The proposed control strategy can transit among three control modes, including human-conduct mode, robot-assist mode, and motion-restricted mode, based on the real-time position tracking errors of the end-effector. The human-robot interaction in different working areas can be modulated according to the motion intention of patient. Graphical guidance developed in Unity-3-D environment is introduced to provide visual training instructions. Furthermore, to improve training performance, the controller parameters should be adjusted in accordance with the hemiplegia degree of patients. For the patients with severe paralysis, robotic assistance should be increased to guarantee the accomplishment of training. For the patients recovering parts of motor functions, robotic assistance should be reduced to enhance the training intensity of effected limb and improve therapeutic effectiveness. The feasibility and effectiveness of the proposed control scheme are validated via training experiments with two healthy subjects and six stroke patients with different degrees of hemiplegia.

via Development of a Minimal-Intervention-Based Admittance Control Strategy for Upper Extremity Rehabilitation Exoskeleton – IEEE Journals & Magazine

, , , , , , , , ,

Leave a comment

[Abstract] Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation

Abstract:

The paper suggests a therapeutic device for hemiparesis that combines robot-assisted rehabilitation and mirror therapy. The robot, which consists of a motor, a position sensor, and a torque sensor, is provided not only to the paralyzed wrist, but also to the unaffected wrist to induce a symmetric movement between the joints. As a user rotates his healthy wrist to the direction of either flexion or extension, the motor on the damaged side rotates and reflects the motion of the normal side to the symmetric angular position. To verify performance of the device, five stroke patients joined a clinical experiment to practice a 10-minute mirroring exercise. Subjects on Brunnstrom stage 3 had shown relatively high repulsive torques due to severe spasticity toward their neutral wrist positions with a maximum magnitude of 0.300kgfm, which was reduced to 0.161kgfm after the exercise. Subjects on stage 5 practiced active bilateral exercises using both wrists with a small repulsive torque of 0.052kgfm only at the extreme extensional angle. The range of motion of affected wrist increased as a result of decrease in spasticity. The therapeutic device not only guided a voluntary exercise to loose spasticity and increase ROM of affected wrist, but also helped distinguish patients with different Brunnstrom stages according to the size of repulsive torque and phase difference between the torque and the wrist position.

Source: Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

[Abstract] EEG-guided robotic mirror therapy system for lower limb rehabilitation – IEEE Conference Publication

Abstract:

Lower extremity function recovery is one of the most important goals in stroke rehabilitation. Many paradigms and technologies have been introduced for the lower limb rehabilitation over the past decades, but their outcomes indicate a need to develop a complementary approach. One attempt to accomplish a better functional recovery is to combine bottom-up and top-down approaches by means of brain-computer interfaces (BCIs). In this study, a BCI-controlled robotic mirror therapy system is proposed for lower limb recovery following stroke. An experimental paradigm including four states is introduced to combine robotic training (bottom-up) and mirror therapy (top-down) approaches. A BCI system is presented to classify the electroencephalography (EEG) evidence. In addition, a probabilistic model is presented to assist patients in transition across the experiment states based on their intent. To demonstrate the feasibility of the system, both offline and online analyses are performed for five healthy subjects. The experiment results show a promising performance for the system, with average accuracy of 94% in offline and 75% in online sessions.

Source: EEG-guided robotic mirror therapy system for lower limb rehabilitation – IEEE Conference Publication

, , , , , , ,

Leave a comment

[Abstract] Enhancing clinical implementation of virtual reality

Abstract:

Despite an emerging evidence base and rapid increases in the development of clinically accessible virtual reality (VR) technologies for rehabilitation, clinical adoption remains low. This paper uses the Theoretical Domains Framework to structure an overview of the known barriers and facilitators to clinical uptake of VR and discusses knowledge translation strategies that have been identified or used to target these factors to facilitate adoption. Based on this discussion, we issue a ‘call to action’ to address identified gaps by providing actionable recommendations for development, research and clinical implementation.

Source: Enhancing clinical implementation of virtual reality – IEEE Xplore Document

, , , , , , , , ,

Leave a comment

[Abstract] Design factors and opportunities of rehabilitation robots in upper-limb training after stroke

Abstract:

The occurrence of strokes has been progressively increasing. Upper limb recovery after stroke is more difficult than lower limb. One of the rapidly expanding technologies in post-stroke rehabilitation is robot-aided therapy. The advantage of robots is that they are able to deliver highly repetitive therapeutic tasks with minimal supervision of a therapist. However, from the literature, the focus of robotic design in stroke rehabilitation has been technology-driven. Clinical and therapeutic requirements were not seriously considered in the design of rehabilitation robots. The purpose of this study was twofold: (1) demonstrate the missing elements of current robot-aided therapy; (2) identify design factors and opportunities of rehabilitation robots (in upper-limb training after stroke). In this study, we performed a literature review on articles relevant to rehabilitation robots in upper-limb training after stroke. We identified the design foci of current rehabilitation robots for upper limb stroke recovery. Using the therapeutic framework for stroke rehabilitation in occupational therapy, we highlighted design factors and opportunities of rehabilitation robots. The outcomes of this study benefit the robotics design community in the design of rehabilitation robots.

1. Introduction

A robot is defined as a machine programmable to perform and modify tasks in response to changes in the environment [1]. The benefits of robots are noticeable in productivity, safety, and in saving time and money. The advancement of robot technologies in the past decade caused the wide adoption of robots in our lives and in the society. For instance, in education, robots were implemented in undergraduate courses to teach core artificial intelligence concepts, e.g., algorithms for searching tree data structures [2]. In agriculture, robotic milking systems (being able to reduce labor/operational costs) were installed to replace conventional milking that gave cows the freedom to be milked throughout the day [3]. In healthcare, service robots were implemented to provide functional assistance for the elderly in home environments, e.g., bringing medication for the emergency and picking up heavy objects low on the ground [4].

Source: Design factors and opportunities of rehabilitation robots in upper-limb training after stroke – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[Abstract] Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects  

Abstract:

Rehabilitation robots have become increasingly popular for stroke rehabilitation. However, the high cost of robots hampers their implementation on a large scale. This study implements the concept of a modular and reconfigurable robot, reducing its cost and size by adopting different therapeutic end effectors for different training movements using a single robot. The challenge is to increase the robot’s portability and identify appropriate kinds of modular tools and configurations. Because literature on the effectiveness of this kind of rehabilitation robot is still scarce, this paper presents the design of a portable and reconfigurable rehabilitation robot and describes its use with a group of post-stroke patients for wrist and forearm training. Seven stroke subjects received training using a reconfigurable robot for 30 sessions, lasting 30 minutes per session. Post-training, statistical analysis showed significant improvement of 3.29 points (16.20%, p = 0.027) on the Fugl-Meyer Assessment Scale for forearm and wrist components (FMA-FW). Significant improvement of active range of motion (AROM) was detected in both pronation-supination (75.59%, p = 0.018) and wrist flexion-extension (56.12%, p = 0.018) after the training. These preliminary results demonstrate that the developed reconfigurable robot could improve subjects’ wrist and forearm movement.

Source: Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects – IEEE Xplore Document

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Gamification of Hand Rehabilitation Process Using Virtual Reality Tools: Using Leap Motion for Hand Rehabilitation

Abstract:

Nowadays virtual reality (VR) technology give us the considerable opportunities to develop new methods to supplement traditional physiotherapy with sustain beneficial quantity and quality of rehabilitation. VR tools, like Leap motion have received great attention in the recent few years because of their immeasurable applications, whish include gaming, robotics, education, medicine etc. In this paper we present a game for hand rehabilitation using the Leap Motion controller. The main idea of gamification of hand rehabilitation is to help develop the muscle tonus and increase precision in gestures using the opportunities that VR offer by making the rehabilitation process more effective and motivating for patients.

Related Articles

Source: Gamification of Hand Rehabilitation Process Using Virtual Reality Tools: Using Leap Motion for Hand Rehabilitation – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[Abstract] Technical validation of an integrated robotic hand rehabilitation device: Finger independent movement, EMG control, and EEG-based biofeedback

Abstract:

The objective of this work was to design and experiment a robotic hand rehabilitation device integrated with a wireless EEG system, going towards patient active participation maximization during the exercise. This has been done through i) hand movement actively triggered by patients muscular activity as revealed by electromyographic signals (i.e., a target hand movement for the rehabilitation session is defined, the patient is required to start the movement and only when the muscular activity overcomes a predefined threshold, the patient-initiated movement is supported); ii) an EEG-based biofeedback implemented to make the user aware of his/her level of engagement (i.e., brain rhythms power ratio Beta/Alpha). The designed system is composed by the Gloreha hand rehabilitation glove, a device for electromyographic signals recording, and a wireless EEG headset. A strong multidisciplinary approach was the base to reach this goal, which is the fruitful background of the Think and Go project. Within this project, research institutes (Politecnico di Milano), clinical centers (INRCA-IRCCS), and companies (ab medica s.p.a., Idrogent, SXT) have worked together throughout the development of the integrated robotic hand rehabilitation device. The integrated device has been tested on a small pilot group of healthy volunteers. All the users were able to calibrate and correctly use the system, and they reported that the system was more challenging to be used with respect to the standard passive hand mobilization session, and required more attention and involvement. The results obtained during the preliminary tests are encouraging, and demonstrate the feasibility of the proposed approach.

Source: Technical validation of an integrated robotic hand rehabilitation device: Finger independent movement, EMG control, and EEG-based biofeedback – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: