Posts Tagged Medical treatment

[Abstract] Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation

Abstract:

The paper suggests a therapeutic device for hemiparesis that combines robot-assisted rehabilitation and mirror therapy. The robot, which consists of a motor, a position sensor, and a torque sensor, is provided not only to the paralyzed wrist, but also to the unaffected wrist to induce a symmetric movement between the joints. As a user rotates his healthy wrist to the direction of either flexion or extension, the motor on the damaged side rotates and reflects the motion of the normal side to the symmetric angular position. To verify performance of the device, five stroke patients joined a clinical experiment to practice a 10-minute mirroring exercise. Subjects on Brunnstrom stage 3 had shown relatively high repulsive torques due to severe spasticity toward their neutral wrist positions with a maximum magnitude of 0.300kgfm, which was reduced to 0.161kgfm after the exercise. Subjects on stage 5 practiced active bilateral exercises using both wrists with a small repulsive torque of 0.052kgfm only at the extreme extensional angle. The range of motion of affected wrist increased as a result of decrease in spasticity. The therapeutic device not only guided a voluntary exercise to loose spasticity and increase ROM of affected wrist, but also helped distinguish patients with different Brunnstrom stages according to the size of repulsive torque and phase difference between the torque and the wrist position.

Source: Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation – IEEE Conference Publication

Advertisements

, , , , , , , , ,

Leave a comment

[Abstract] EEG-guided robotic mirror therapy system for lower limb rehabilitation – IEEE Conference Publication

Abstract:

Lower extremity function recovery is one of the most important goals in stroke rehabilitation. Many paradigms and technologies have been introduced for the lower limb rehabilitation over the past decades, but their outcomes indicate a need to develop a complementary approach. One attempt to accomplish a better functional recovery is to combine bottom-up and top-down approaches by means of brain-computer interfaces (BCIs). In this study, a BCI-controlled robotic mirror therapy system is proposed for lower limb recovery following stroke. An experimental paradigm including four states is introduced to combine robotic training (bottom-up) and mirror therapy (top-down) approaches. A BCI system is presented to classify the electroencephalography (EEG) evidence. In addition, a probabilistic model is presented to assist patients in transition across the experiment states based on their intent. To demonstrate the feasibility of the system, both offline and online analyses are performed for five healthy subjects. The experiment results show a promising performance for the system, with average accuracy of 94% in offline and 75% in online sessions.

Source: EEG-guided robotic mirror therapy system for lower limb rehabilitation – IEEE Conference Publication

, , , , , , ,

Leave a comment

[Abstract] Enhancing clinical implementation of virtual reality

Abstract:

Despite an emerging evidence base and rapid increases in the development of clinically accessible virtual reality (VR) technologies for rehabilitation, clinical adoption remains low. This paper uses the Theoretical Domains Framework to structure an overview of the known barriers and facilitators to clinical uptake of VR and discusses knowledge translation strategies that have been identified or used to target these factors to facilitate adoption. Based on this discussion, we issue a ‘call to action’ to address identified gaps by providing actionable recommendations for development, research and clinical implementation.

Source: Enhancing clinical implementation of virtual reality – IEEE Xplore Document

, , , , , , , , ,

Leave a comment

[Abstract] Design factors and opportunities of rehabilitation robots in upper-limb training after stroke

Abstract:

The occurrence of strokes has been progressively increasing. Upper limb recovery after stroke is more difficult than lower limb. One of the rapidly expanding technologies in post-stroke rehabilitation is robot-aided therapy. The advantage of robots is that they are able to deliver highly repetitive therapeutic tasks with minimal supervision of a therapist. However, from the literature, the focus of robotic design in stroke rehabilitation has been technology-driven. Clinical and therapeutic requirements were not seriously considered in the design of rehabilitation robots. The purpose of this study was twofold: (1) demonstrate the missing elements of current robot-aided therapy; (2) identify design factors and opportunities of rehabilitation robots (in upper-limb training after stroke). In this study, we performed a literature review on articles relevant to rehabilitation robots in upper-limb training after stroke. We identified the design foci of current rehabilitation robots for upper limb stroke recovery. Using the therapeutic framework for stroke rehabilitation in occupational therapy, we highlighted design factors and opportunities of rehabilitation robots. The outcomes of this study benefit the robotics design community in the design of rehabilitation robots.

1. Introduction

A robot is defined as a machine programmable to perform and modify tasks in response to changes in the environment [1]. The benefits of robots are noticeable in productivity, safety, and in saving time and money. The advancement of robot technologies in the past decade caused the wide adoption of robots in our lives and in the society. For instance, in education, robots were implemented in undergraduate courses to teach core artificial intelligence concepts, e.g., algorithms for searching tree data structures [2]. In agriculture, robotic milking systems (being able to reduce labor/operational costs) were installed to replace conventional milking that gave cows the freedom to be milked throughout the day [3]. In healthcare, service robots were implemented to provide functional assistance for the elderly in home environments, e.g., bringing medication for the emergency and picking up heavy objects low on the ground [4].

Source: Design factors and opportunities of rehabilitation robots in upper-limb training after stroke – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[Abstract] Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects  

Abstract:

Rehabilitation robots have become increasingly popular for stroke rehabilitation. However, the high cost of robots hampers their implementation on a large scale. This study implements the concept of a modular and reconfigurable robot, reducing its cost and size by adopting different therapeutic end effectors for different training movements using a single robot. The challenge is to increase the robot’s portability and identify appropriate kinds of modular tools and configurations. Because literature on the effectiveness of this kind of rehabilitation robot is still scarce, this paper presents the design of a portable and reconfigurable rehabilitation robot and describes its use with a group of post-stroke patients for wrist and forearm training. Seven stroke subjects received training using a reconfigurable robot for 30 sessions, lasting 30 minutes per session. Post-training, statistical analysis showed significant improvement of 3.29 points (16.20%, p = 0.027) on the Fugl-Meyer Assessment Scale for forearm and wrist components (FMA-FW). Significant improvement of active range of motion (AROM) was detected in both pronation-supination (75.59%, p = 0.018) and wrist flexion-extension (56.12%, p = 0.018) after the training. These preliminary results demonstrate that the developed reconfigurable robot could improve subjects’ wrist and forearm movement.

Source: Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects – IEEE Xplore Document

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Gamification of Hand Rehabilitation Process Using Virtual Reality Tools: Using Leap Motion for Hand Rehabilitation

Abstract:

Nowadays virtual reality (VR) technology give us the considerable opportunities to develop new methods to supplement traditional physiotherapy with sustain beneficial quantity and quality of rehabilitation. VR tools, like Leap motion have received great attention in the recent few years because of their immeasurable applications, whish include gaming, robotics, education, medicine etc. In this paper we present a game for hand rehabilitation using the Leap Motion controller. The main idea of gamification of hand rehabilitation is to help develop the muscle tonus and increase precision in gestures using the opportunities that VR offer by making the rehabilitation process more effective and motivating for patients.

Related Articles

Source: Gamification of Hand Rehabilitation Process Using Virtual Reality Tools: Using Leap Motion for Hand Rehabilitation – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[Abstract] Technical validation of an integrated robotic hand rehabilitation device: Finger independent movement, EMG control, and EEG-based biofeedback

Abstract:

The objective of this work was to design and experiment a robotic hand rehabilitation device integrated with a wireless EEG system, going towards patient active participation maximization during the exercise. This has been done through i) hand movement actively triggered by patients muscular activity as revealed by electromyographic signals (i.e., a target hand movement for the rehabilitation session is defined, the patient is required to start the movement and only when the muscular activity overcomes a predefined threshold, the patient-initiated movement is supported); ii) an EEG-based biofeedback implemented to make the user aware of his/her level of engagement (i.e., brain rhythms power ratio Beta/Alpha). The designed system is composed by the Gloreha hand rehabilitation glove, a device for electromyographic signals recording, and a wireless EEG headset. A strong multidisciplinary approach was the base to reach this goal, which is the fruitful background of the Think and Go project. Within this project, research institutes (Politecnico di Milano), clinical centers (INRCA-IRCCS), and companies (ab medica s.p.a., Idrogent, SXT) have worked together throughout the development of the integrated robotic hand rehabilitation device. The integrated device has been tested on a small pilot group of healthy volunteers. All the users were able to calibrate and correctly use the system, and they reported that the system was more challenging to be used with respect to the standard passive hand mobilization session, and required more attention and involvement. The results obtained during the preliminary tests are encouraging, and demonstrate the feasibility of the proposed approach.

Source: Technical validation of an integrated robotic hand rehabilitation device: Finger independent movement, EMG control, and EEG-based biofeedback – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[Abstract] Design of a thumb module for the FINGER rehabilitation robot

Abstract:

This paper describes the design and initial prototype of a thumb curling exoskeleton for movement therapy. This add-on device for the Finger INdividuating Grasp Exercise Robot (FINGER) guides the thumb through a single-degree-of-freedom naturalistic grasping motion. This motion complements the grasping motions of the index and middle fingers provided by FINGER. The kinematic design and mechanism synthesis described herein utilized 3D motion capture and included the determination of the principle plane of the thumb motion for the simple grasping movement. The results of the design process and the creation of a first prototype indicate that this thumb module for finger allows naturalistic thumb motion that expands the capabilities of the FINGER device.

Source: IEEE Xplore Document – Design of a thumb module for the FINGER rehabilitation robot

, , , , , ,

Leave a comment

[Abstract] Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot

Abstract:

Stroke is one of the leading causes of disability worldwide. Consequently, many stroke survivors exhibit difficulties undergoing voluntary movement in their affected upper limb, compromising their functional performance and level of independence. To minimize the negative impact of stroke disabilities, exercises are recognized as a key element in post-stroke rehabilitation.
In order to provide the practice of exercises in a uniform and controlled manner as well as increasing the efficiency of therapists’ interventions, robotic training has been found, and continues to prove itself, as an innovative intervention for post-stroke rehabilitation. However, the complexity as well as the limited degrees of freedom and workspace of currently commercially available robots can limit their use in clinical settings. Up to now, user-friendly robots covering a sufficiently large workspace for training of the upper limb in its full range of motion are lacking.
This paper presents the design and implementation of ERA, an upper-limb 3-DOF force-controlled exerciser robot, which presents a workspace covering the entire range of motion of the upper limb. The ERA robot provides 3D reaching movements in a haptic virtual environment. A description of the hardware and software components of the ERA robot is also presented along with a demonstration of its capabilities in one of the three operational modes that were developed.

Source: IEEE Xplore Document – Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot

, , , , , , , , , , , ,

Leave a comment

[Abstract] Detecting voluntary gait intention of chronic stroke patients towards top-down gait rehabilitation using EEG

Abstract:

One of the recent trends in gait rehabilitation is to incorporate bio-signals, such as electromyography (EMG) or electroencephalography (EEG), for facilitating neuroplasticity, i.e. top-down approach. In this study, we investigated decoding stroke patients’ gait intention through a wireless EEG system. To overcome patient-specific EEG patterns due to impaired cerebral cortices, common spatial patterns (CSP) was employed. We demonstrated that CSP filter can be used to maximize the EEG signal variance-ratio of gait and standing conditions. Finally, linear discriminant analysis (LDA) classification was conducted, whereby the average accuracy of 73.2% and the average delay of 0.13 s were achieved for 3 chronic stroke patients. Additionally, we also found out that the inverse CSP matrix topography of stroke patients’ EEG showed good agreement with the patients’ paretic side.

Source: IEEE Xplore Document – Detecting voluntary gait intention of chronic stroke patients towards top-down gait rehabilitation using EEG

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: