Posts Tagged mental practice

[BLOG POST] Hand Rehab after Stroke: The Top 5 Evidenced-Based Methods

After a stroke, it’s challenging enough to navigate the medical system to find what services you need, let alone the right treatment approach for you.

You’ve probably heard a lot of recommendations on how to recover hand function after stroke, and everyone seems to give different advice. That’s why we sifted through the research for you. We’ll explain the top 5 evidence-based methods for hand rehabilitation, why they work, and who they work for.

The top 5 evidence-based treatments for improving hand function after stroke:

  1. Constraint‐induced movement therapy (CIMT)
  2. Mental practice
  3. Mirror therapy
  4. Virtual reality
  5. High dose repetitive task practice

Constraint-Induced Movement Therapy

Unaffected arm wearing oven mitt for at-home constraint therapy.
You can restrict your unaffected side at home by wearing an oven mitt or placing it inside your pants or sweatshirt pocket. This will help remind you to rely on your affected side when completing therapy tasks.

What it is:

Constraint-Induced Movement Therapy (CIMT) is a neuro-rehabilitation method where the non-affected hand is constrained or restricted in order to force the brain to use the affected hand, thereby increasing neuroplasticity.

There are two key components: constraint and shaping.

Constraint refers to the way in which the hand is restricted. Therapists have used casts, splints, and mitts to restrict the use of the non-affected hand. None of them have been shown to be more effective than the other.

Shaping involves repetitive movements or activities at the patient’s ability level which become progressively harder. Therapists use shaping techniques to avoid overwhelming the motor system.

Why it works:

Our brain automatically completes a task in the easiest way possible. Our brain is more interested in completing a task than in how it is accomplished.

After a stroke, it’s easier for our brain to do tasks one-handed. This leads to “learned non-use”.

When we constrain our non-affected hand, suddenly our stronger hand becomes the weaker, less functional hand and we’re forced to use our affected hand. Our affected hand might not have much movement, but to our brain any movement is better than no movement, and the brain is highly motivated to figure out how to accomplish a task.

This is where the “shaping” piece is so important. If you are presented with rehab tasks that overwhelm the motor system or are higher level than your affected hand can functionally do, you’ll be more likely to knock the table over than to participate in picking up pennies from the table.

If you knock the table over with your affected hand, your occupational therapist might actually be excited about it; but in practical life finding that balance of not being too easy and not being so hard that you give up is an important lesson for every human being, not just those after stroke.

Who it’s for:

This approach is used for people who have at least 10 degrees of active wrist and finger extension, as well as 10 degrees of thumb abduction (the ability of the thumb to move out of the palm).

It’s been shown to be effective even years after stroke. Lower intensity CIMT is better than higher intensity in the very early stages after stroke.

Mental Practice

Man in headphones listening to mental practice recordings.
You might listen to an audio recording describing the sequence of throwing a ball, imagining yourself doing it. After listening, actually practice throwing the ball the way you envisioned!

What it is:

Mental practice, sometimes called motor imagery or mental imagery, is a training method for improving your hand and arm function without moving a muscle!

Mental practice is typically done by listening to pre-recorded audio that describes in detail the motor movement of a specific task. The listener imagines their hand and arm moving in a “typical” way, and the instructor provides cues to extend their arm or open their fingers, as well as the entire sensory experience of the task.

While it’s true that you can do mental practice on its own, it’s best combined with physical practice immediately following.

Why it works:

Brain scans show that similar parts of the brain are activated whether movement is actual, observed or imagined.

It’s a separate area of the brain that’s responsible for actually triggering the muscle movement, but it goes to show that there’s a lot more required of the brain to complete a task than just sending a signal to the muscle.

Who it’s for:

Mental practice has been shown to improve arm movement and functional use in patients after stroke of all levels of abilities and as a treatment approach for people months or years after stroke!

Mirror Therapy

Unaffected hand and its mirror image reflected in mirror box.
It is critical to stay focused on the reflected image of your hand during mirror therapy, imagining that it is your affected side performing the target movements.

What it is:

Mirror therapy is another voodoo-seeming approach that has a lot of scientific evidence to back it up. It essentially tricks your brain into thinking your affected hand is moving.

You position a mirror to reflect your non-affected hand, while hiding your affected hand. Any movement of your non-affected hand will be reflected in the mirror and make it seem as though you are actually moving your affected hand.

Why it works:

The approach is centered around mirror neurons, which fire in your brain when you see your arm move. Typically, we think about motor neurons being sent from the brain to the muscle, but we don’t realize that mirror neurons are connected to the motor neurons.

After a stroke you lose the ability to access your motor neurons, but not your mirror neurons. By accessing your mirror neurons through seeing your movement (even if the movement is fake), you are tapping into the network between the neurons.

It’s like trying to reconnect with an old friend on Facebook by finding the friends they’re connected with. It might not be the most direct approach in a real life situation, but in stroke rehab that friend of a friend might be your strongest connection.

Who it’s for:

Mirror therapy can be used for people with no movement of the hand or smaller movements of the hand and shoulder, but not functional movement of the hand.

If you have functional movement of your hand, meaning individual finger movement and wrist movement, you have surpassed the benefit that mirror therapy can provide.

It can be used early after stroke, as well as in the chronic stages of stroke.

Virtual Reality

Neofect Smart Board virtual reality arm exercise system.
The Neofect Smart Board is a non-immersive virtual reality rehabilitation system.

What it is:

Virtual reality uses a computer interface to simulate a real life objects and events. It’s become an increasingly more prevalent rehabilitation technique to provide motivation and engagement in therapy.

There are two types:

  1. Immersive: goggles are placed over the eyes and the patient is visually in a different environment than their actual physical one
  2. Non-immersive: sensors are placed on the body and track the movement of the body and the movements are shown on a screen

Why it works:

Virtual reality works best when paired with traditional therapy. It’s theorized to provide more motivation and engagement for the intensity of therapeutic exercise needed for neuroplasticity. It’s been shown to beneficial in high doses, meaning more than 20 hours.

Another possible factor of why virtual reality works are the same mechanisms that make mirror therapy effective (tapping into the mirror neurons) could be similar.

Virtual reality also creates a biofeedback loop: your brain sends a signal to the muscle, the brain receives a signal back in the form of visual or auditory input. Basically, you get rewarded for your effort.

Who it’s for:

Virtual reality can be used with people who have mild to severe impairments, and from early after stroke to years out.

When deciding what’s right for you, it’s important to look at the adjustability of the device to meet you where you’re at and also to increase in difficulty as you improve.

If you have minimal movements, you’ll want a virtual reality tool specifically for stroke rehabilitation. If you have more movement, it’s possible to use gaming systems not specifically designed for rehab, but make sure you have the support to optimize it for rehab.

High Dose Repetitive Task Practice

Putting coins in a piggy bank during repetitive task practice.
There are many ways to do task-specific training at home. Placing coins into a piggy bank is just one of them!

What it is:

Repetitive Task Practice is when you practice a task or a part of a task over and over. Task-specific training is a type of repetitive task practice, and refers to the task we complete that is relevant to our daily life.

“Reach to grasp, transport and release” is a type of task-specific training because it is one of the common motor requirements for many functional daily tasks.

The keys for repetitive task practice:

  • Task must be meaningful
  • Participant must be an active problem-solver
  • Real life objects are used
  • Difficulty level is not too high and not too low
  • Repetition is key

Why it works:

Repetitive Task Practice is based on motor learning theory. Our brains are driven by function. We’re able to achieve neuroplasticity with development of skills, as our brain processes the demands of the task, which have motor and cognitive components.

It’s often used with other treatments, such as virtual reality, to increase the 15 hour dosage that has been shown to be beneficial.

Who it’s for:

Task-specific practice is generally used and is studied in people who have some functional ability of their hand. It’s been shown to be beneficial throughout the rehabilitation process.

Even though the research has been focused on “functional ability” of the hand by practicing reach, grasp, transport, release; there’s potential for recovery by using the same principles of task-specific practice: real life objects, functional tasks, and problem-solving even without the ability to grasp.

Functionally, we can use our affected upper extremity as a stabilizer, an assist, or for manipulation. There are lots of ways to get that side involved to prevent “learned non-use” and to improve your problem-solving skills.

Now what?

There are two key factors to any hand recovery method: support and meaning.

Neofect aims to support and inspire you to live your best life with virtual reality tools that can be used as part of a constraint-induced movement therapy program or with repetitive task practice.

Our comprehensive recovery and wellness app: Neofect Connect and our YouTube Channel: Find What Works are based on the principles of repetitive task practice and aim to give you the tools to live your best life.

Now the only question is, what are you waiting for?

Pollock  A, Farmer  SE, Brady  MC, Langhorne  P, Mead  GE, Mehrholz  J, van Wijck  F. Interventions for improving upper limb function after stroke. Cochrane Database of Systematic Reviews 2014, Issue 11. Art. No.: CD010820. DOI: 10.1002/14651858.CD010820.pub2.

via Hand Rehab after Stroke: The Top 5 Evidenced-Based Methods

, , , , , , , , , , , , ,

Leave a comment

[BLOG POST] Hand Rehab after Stroke: The Top 5 Evidenced-Based Methods

You’ve probably heard a lot of recommendations on how to recover hand function after stroke. We sifted through the research for you to explain the top 5 medically proven methods for hand rehabilitation, why they work, and who they work for.

by CLARICE TORREY, 3 JUN 2020 • 8 MIN READ

Hand Rehab after Stroke: The Top 5 Evidenced-Based Methods

After a stroke, it’s challenging enough to navigate the medical system to find what services you need, let alone the right treatment approach for you.

You’ve probably heard a lot of recommendations on how to recover hand function after stroke, and everyone seems to give different advice. That’s why we sifted through the research for you. We’ll explain the top 5 evidence-based methods for hand rehabilitation, why they work, and who they work for.

The top 5 evidence-based treatments for improving hand function after stroke:

  1. Constraint‐induced movement therapy (CIMT)
  2. Mental practice
  3. Mirror therapy
  4. Virtual reality
  5. High dose repetitive task practice

Constraint-Induced Movement Therapy

Unaffected arm wearing oven mitt for at-home constraint therapy.
You can restrict your unaffected side at home by wearing an oven mitt or placing it inside your pants or sweatshirt pocket. This will help remind you to rely on your affected side when completing therapy tasks.


What it is:

Constraint-Induced Movement Therapy (CIMT) is a neuro-rehabilitation method where the non-affected hand is constrained or restricted in order to force the brain to use the affected hand, thereby increasing neuroplasticity.

There are two key components: constraint and shaping.

Constraint refers to the way in which the hand is restricted. Therapists have used casts, splints, and mitts to restrict the use of the non-affected hand. None of them have been shown to be more effective than the other.

Shaping involves repetitive movements or activities at the patient’s ability level which become progressively harder. Therapists use shaping techniques to avoid overwhelming the motor system.

Why it works:

Our brain automatically completes a task in the easiest way possible. Our brain is more interested in completing a task than in how it is accomplished.

After a stroke, it’s easier for our brain to do tasks one-handed. This leads to “learned non-use”.

When we constrain our non-affected hand, suddenly our stronger hand becomes the weaker, less functional hand and we’re forced to use our affected hand. Our affected hand might not have much movement, but to our brain any movement is better than no movement, and the brain is highly motivated to figure out how to accomplish a task.

This is where the “shaping” piece is so important. If you are presented with rehab tasks that overwhelm the motor system or are higher level than your affected hand can functionally do, you’ll be more likely to knock the table over than to participate in picking up pennies from the table.

If you knock the table over with your affected hand, your occupational therapist might actually be excited about it; but in practical life finding that balance of not being too easy and not being so hard that you give up is an important lesson for every human being, not just those after stroke.

Who it’s for:

This approach is used for people who have at least 10 degrees of active wrist and finger extension, as well as 10 degrees of thumb abduction (the ability of the thumb to move out of the palm).

It’s been shown to be effective even years after stroke. Lower intensity CIMT is better than higher intensity in the very early stages after stroke.

Mental Practice

Man in headphones listening to mental practice recordings.
You might listen to an audio recording describing the sequence of throwing a ball, imagining yourself doing it. After listening, actually practice throwing the ball the way you envisioned!


What it is:

Mental practice, sometimes called motor imagery or mental imagery, is a training method for improving your hand and arm function without moving a muscle!

Mental practice is typically done by listening to pre-recorded audio that describes in detail the motor movement of a specific task. The listener imagines their hand and arm moving in a “typical” way, and the instructor provides cues to extend their arm or open their fingers, as well as the entire sensory experience of the task.

While it’s true that you can do mental practice on its own, it’s best combined with physical practice immediately following.

Why it works:

Brain scans show that similar parts of the brain are activated whether movement is actual, observed or imagined.

It’s a separate area of the brain that’s responsible for actually triggering the muscle movement, but it goes to show that there’s a lot more required of the brain to complete a task than just sending a signal to the muscle.

Who it’s for:

Mental practice has been shown to improve arm movement and functional use in patients after stroke of all levels of abilities and as a treatment approach for people months or years after stroke!

Mirror Therapy

Unaffected hand and its mirror image reflected in mirror box.
It is critical to stay focused on the reflected image of your hand during mirror therapy, imagining that it is your affected side performing the target movements.


What it is:

Mirror therapy is another voodoo-seeming approach that has a lot of scientific evidence to back it up. It essentially tricks your brain into thinking your affected hand is moving.

You position a mirror to reflect your non-affected hand, while hiding your affected hand. Any movement of your non-affected hand will be reflected in the mirror and make it seem as though you are actually moving your affected hand.

Why it works:

The approach is centered around mirror neurons, which fire in your brain when you see your arm move. Typically, we think about motor neurons being sent from the brain to the muscle, but we don’t realize that mirror neurons are connected to the motor neurons.

After a stroke you lose the ability to access your motor neurons, but not your mirror neurons. By accessing your mirror neurons through seeing your movement (even if the movement is fake), you are tapping into the network between the neurons.

It’s like trying to reconnect with an old friend on Facebook by finding the friends they’re connected with. It might not be the most direct approach in a real life situation, but in stroke rehab that friend of a friend might be your strongest connection.

Who it’s for:

Mirror therapy can be used for people with no movement of the hand or smaller movements of the hand and shoulder, but not functional movement of the hand.

If you have functional movement of your hand, meaning individual finger movement and wrist movement, you have surpassed the benefit that mirror therapy can provide.

It can be used early after stroke, as well as in the chronic stages of stroke.

Virtual Reality

Neofect Smart Board virtual reality arm exercise system.
The Neofect Smart Board is a non-immersive virtual reality rehabilitation system.


What it is:

Virtual reality uses a computer interface to simulate a real life objects and events. It’s become an increasingly more prevalent rehabilitation technique to provide motivation and engagement in therapy.

There are two types:  

  1. Immersive: goggles are placed over the eyes and the patient is visually in a different environment than their actual physical one
  2. Non-immersive: sensors are placed on the body and track the movement of the body and the movements are shown on a screen

Why it works:

Virtual reality works best when paired with traditional therapy. It’s theorized to provide more motivation and engagement for the intensity of therapeutic exercise needed for neuroplasticity. It’s been shown to beneficial in high doses, meaning more than 20 hours.

Another possible factor of why virtual reality works are the same mechanisms that make mirror therapy effective (tapping into the mirror neurons) could be similar.

Virtual reality also creates a biofeedback loop: your brain sends a signal to the muscle, the brain receives a signal back in the form of visual or auditory input. Basically, you get rewarded for your effort.

Who it’s for:

Virtual reality can be used with people who have mild to severe impairments, and from early after stroke to years out.

When deciding what’s right for you, it’s important to look at the adjustability of the device to meet you where you’re at and also to increase in difficulty as you improve.

If you have minimal movements, you’ll want a virtual reality tool specifically for stroke rehabilitation. If you have more movement, it’s possible to use gaming systems not specifically designed for rehab, but make sure you have the support to optimize it for rehab.

High Dose Repetitive Task Practice

Putting coins in a piggy bank during repetitive task practice.
There are many ways to do task-specific training at home. Placing coins into a piggy bank is just one of them!


What it is:

Repetitive Task Practice is when you practice a task or a part of a task over and over. Task-specific training is a type of repetitive task practice, and refers to the task we complete that is relevant to our daily life.

“Reach to grasp, transport and release” is a type of task-specific training because it is one of the common motor requirements for many functional daily tasks.

The keys for repetitive task practice:

  • Task must be meaningful
  • Participant must be an active problem-solver
  • Real life objects are used
  • Difficulty level is not too high and not too low
  • Repetition is key

Why it works:

Repetitive Task Practice is based on motor learning theory. Our brains are driven by function. We’re able to achieve neuroplasticity with development of skills, as our brain processes the demands of the task, which have motor and cognitive components.

It’s often used with other treatments, such as virtual reality, to increase the 15 hour dosage that has been shown to be beneficial.

Who it’s for:

Task-specific practice is generally used and is studied in people who have some functional ability of their hand. It’s been shown to be beneficial throughout the rehabilitation process.

Even though the research has been focused on “functional ability” of the hand by practicing reach, grasp, transport, release; there’s potential for recovery by using the same principles of task-specific practice: real life objects, functional tasks, and problem-solving even without the ability to grasp.

Functionally, we can use our affected upper extremity as a stabilizer, an assist, or for manipulation. There are lots of ways to get that side involved to prevent “learned non-use” and to improve your problem-solving skills.

Now What?

There are two key factors to any hand recovery method: support and meaning.

Neofect aims to support and inspire you to live your best life with virtual reality tools that can be used as part of a constraint-induced movement therapy program or with repetitive task practice.

Our comprehensive recovery and wellness app: Neofect Connect and our YouTube Channel: Find What Works are based on the principles of repetitive task practice and aim to give you the tools to live your best life.

Now the only question is, what are you waiting for?

Pollock  A, Farmer  SE, Brady  MC, Langhorne  P, Mead  GE, Mehrholz  J, van Wijck  F. Interventions for improving upper limb function after stroke. Cochrane Database of Systematic Reviews 2014, Issue 11. Art. No.: CD010820. DOI: 10.1002/14651858.CD010820.pub2.

Source: https://us.blog.neofect.com/the-top-5-evidence-based-treatments-for-improving-hand-function-after-stroke/

, , , , , , , , , , ,

Leave a comment

[BLOG POST] Yes! There is Hope for Chronic Stroke!

A stroke is usually considered chronic at the six-month mark. This article reviews research on chronic stroke recovery and promising therapy treatment approaches that target improving limb function, even for an “old” stroke.

By Natalie Miller, Clinical Manager / Occupational Therapist. More posts by Natalie Miller.

27 MAR 2020 • 5 MIN READ

Yes! There is Hope for Chronic Stroke

What is a chronic stroke?

The term chronic stroke typically refers to a time frame of at least six months after the initial stroke incident occurred. As a person enters this stage and moves onward to years of stroke survival, he may start to encounter all new frustrations related to recovery, especially regarding motor recovery and use of the affected arm.

In the medical world, “most significant” recovery of movement is generally considered to happen within the first six months, with spontaneous recovery slowing after that time. There is a push for high-intensity and high-frequency of therapy while the stroke is still fairly fresh, in order to capitalize on the “critical window” of the highest responsiveness to treatment.

That doesn’t mean we should stop addressing motor recovery after six months. What if we still focus on intensive therapy early on in stroke rehab, but also find ways to promote motor recovery six or more months later? What if we don’t stop searching for new strategies to improve, or at the very least, not lose function of the weaker arm?

chronic

Can I still improve function if I am in the chronic stage of stroke?

Our understanding of the brain and its capabilities is constantly evolving. We used to think that adult brains couldn’t change at all after a certain age! Emerging research evidence suggests there are ways to challenge and improve the chronic stroke brain months and even years down the road. One large-scale study involving outcomes from 219 stroke survivors suggested the critical window for motor recovery may be as long as 18 months! Another recent case study highlighted motor recovery in a stroke survivor who was 23 years post-stroke!

What types of rehabilitation are effective for people with chronic stroke?

Stroke research suggests the following treatments are promising for individuals who are at least six months post-stroke:

  1. Mental Practice with Motor Imagery
  2. Constraint Induced Movement Therapy (CIMT)
  3. Virtual Reality (VR)
  4. Preventing Learned Non-Use

Mental Practice with Motor Imagery

This is a type of treatment where a specific movement is rehearsed mentally. Done best with a pre-recorded audio set, the person listens carefully as a task is described in detail. The details usually include every aspect of that task, including how the five senses may be experienced while performing it, as well as the exact movements that would be needed to complete the task. For example, if the task were “drinking a cup of water,” the recording would describe how to reach out with the arm, extend the fingers, feel the weight of the cup, experience the temperature and the liquid as it touches the mouth, and the exactness of the motion to set it back down gently.

Studies have shown that with this type of repetitive visualization and practice, actual movement and functional use of the arm can improve, such that an arm that was once fairly “useless” can now actually pick up a water cup and bring it to the mouth. The best part is, research also shows that this can be an effective treatment 12 months and beyond since when the stroke actually happened!

reach-for-glass

Constraint Induced Movement Therapy (CIMT)

This is a type of treatment that involves blocking the stronger arm (usually with a cast or mitt) to promote engagement of the hemiplegic, or weaker arm. The more a person uses the weaker arm, the less they are at risk of “learned non-use.” By “forcing” the weaker arm to participate more, and even to be the primary or only source of function, it has a lot more chance to stay the same or get better, even years after the stroke happened. In fact, patients in Constraint Induced studies reported and showed increased use of their arms during normal activities, even if their strokes happened years before!

Virtual Reality (VR)

Virtual reality is another name for video games! This type of treatment may be immersive (using a headset) or non-immersive, with a participant engaging in a game on a screen. VR technology focusing on strengthening and improving limb function is becoming more prevalent in clinics and in homes. These programs are able to quantify arm or leg movement to control gameplay and provide immediate performance feedback.

Research supports the use of VR therapy to enhance motor recovery for adults with acute and chronic stroke. Virtual reality technology can also improve motivation in addition to movement outcomes, helping users stick with their self-training programs and continue using their affected side. Research shows that chronic stroke patients often find self-training programs that use video games to be user friendly and enjoyable.

weight

Avoiding “learned non-use.”

We now know more about this phenomenon that affects many stroke survivors – especially those who are years out from a stroke. The stronger arm starts to take over to just get things accomplished, probably because there is a lot of positive feedback for using the stronger arm (It’s faster! It’s easier! I can just get it done!) and a lot of negative feedback for using the stroke-affected arm (It’s so frustrating! It takes me forever using it!). Research is showing that if people can still find motivation and dedication to actually trying to use the weaker arm, it is possible to still regain function – even years later.

The bottom line: don’t give up!

There IS hope. We can’t predict the exact amount of movement or strength that could come back, or what exactly you will be able to do with your affected arm or hand. But we are producing more research that is pointing us in the direction of believing recovery is still possible after that six month critical window. Don’t give up!

References:

Ballester, BR, et al. (2019). A critical time window for recovery extends beyond one-year post-stroke. Journal of Neurophysiology, 122: 350-357. doi: 10.1152/jn.00762.2018
Soros, P, et al. (2017). Motor recovery beginning 23 years after ischemic stroke. Journal of Neurophysiology, 118(2): 778-781. doi: 10.1152/jn.00868.2016
Page, S, Levine, P, and Leonard, A. (2007). Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke, 38(4): 1293-1297. doi: 10.1161/01.STR.0000260205.67348.2b
Kunkel, A, et al. (1999). Constraint-induced movement therapy for motor recovery in chronic stroke patients. Archives of Physical Medicine and Rehabilitation, 80, 624-628. doi:10.1016/s0003-9993(99)90163-6
5. Taub, E, et al. (1993). Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 74, 347-354.
Subramanian, SK, et al. (2013). Arm motor recovery using a virtual reality intervention in chronic stroke: Randomized control trial. Neurorehabilitation and Neural Repair, 27(1), 13-23. doi: 10.1177/1545968312449695.

Source: https://us.blog.neofect.com/chronic-stroke-is-there-any-hope/

, , , , , , ,

Leave a comment

[WEB PAGE] All in the Wrist: Wearables Help Treat Disease, Disability

Suffering a stroke can change how your body works in odd ways. Maybe you suddenly can’t lift your leg the way you did a few weeks before, or your arm doesn’t seem to extend properly. It’s different for every case.

Recovering from these disabilities can be an arduous process. A patient must not only struggle with his or her impairments, but also the conviction to overcome them. At the hospital, therapists coach rehabbing patients through intense exercise schedules, but after being sent home, patients won’t be monitored as closely and often stop using disabled limbs, favoring healthier body parts instead. This often results in more lost functionality.

Doctors have long been perplexed about how to effectively help patients who aren’t in the exam room or rehab clinic. Researchers and programmers are now developing a new generation of wearables that can monitor, encourage, and even treat people suffering from chronic neurological disorders like stroke, cerebral palsy, and epilepsy, as well as the essential tremors that come with Parkinson’s Disease.

Practice makes perfect

Around 2015, Belén Rubio Ballester, a researcher at Spain’s IBEC Institute for Bioengineering of Catalonia (IBEC), fixated on a specific challenge faced by patients recovering from stroke: Use it or lose it.

“You practice, you learn — if you quit practicing, you lose your skills,” says Ballester. “We see this everywhere, whether you’re playing an instrument or in sports. Stroke patients may similarly lose some motor function.”

It’s common for rehab patients to favor their stronger muscles, usually to the detriment of debilitated fingers, hands, and legs. To remedy this, Ballester launched a pilot experiment to see if a watch-like wearable connected to a smartphone could influence patient behavior. Subjects were fitted with a bracelet-like prototype that buzzed once an hour to remind stroke sufferers to use their arms, and an app installed on a paired phone checked for movement that confirmed the patient actually followed the advice. It was a small study, monitoring just four trainees over five days, but the results were consistent: The techno nudge helped.

rehab session
BSIP / Getty

In March, the same team launched a follow-up study that promises to be one of the largest experiments of its kind, training and tracking 100 recovering stroke patients with a combination of smartphones and Android Wear watches.

Similar to the original homegrown bracelets, the Android watches will buzz once an hour to remind patients not to forget they need to exercise their impaired limbs. Study participants will also be able to see their usage quantified on paired smartphones. The Android Wear gyroscope makes it easier for the researchers to track the type of movements. Each patient will be asked to regularly draw circles to check the fluidity of the gesture.

Employing Android Wear is more of a practical choice than tech preference. Android watches tend to be cheaper than Apple ones or other comparable gear, and since the researchers aren’t providing phones, they’re banking on patients owning compatible gear.

Ballester projects initial data for the study will be available by December 2020. The IBEC team also plans to track the patients after they’ve stopped wearing the watches to check if the habits developed by the recurring buzzes will stick. The full results should be completed by the middle of 2021.

Wearables to monitor neurological disorders

On the other side of the Atlantic, Rutgers University professor Jean-Francois Daneault is using wearables, phones, and robotics to monitor and treat patients with a range of neurological disorders, including stroke, cerebral palsy and essential tremor. In 2019, he won a $400,000 grant from the National Institutes of Health to develop a platform that will track patients over long periods to help diagnose those impairments.

“A lot of those ailments have overlapping symptoms,” said Daneault. “Doctors who aren’t specialists can have a hard time identifying the differences between the diseases.” A well-attuned wearable, in combination with a smartphone app, can capture those often imperceptible symptoms that give a doctor the necessary stats to make an informed diagnosis.

The platform will also potentially be used to measure how symptoms may change over months and years. “People may only see their neurologists or doctors once or twice a year, for a limited amount of time, so it can be difficult to know how they’re doing,” says Daneault. A well-done app can tell a doctor if a medication is working or if the treatment needs to be adjusted.

AliveCor

“There are very few specialists, and they’re always booked,” he says, underscoring the need for more monitoring of patient ailments.

Though Denault is attempting to build a platform that can work with Android Wear, Apple watches, and Fitbits, the wrist-worn tech can measure more than just arm and hand actions. Gait can also be tracked with a wearable or a smartphone placed in a pocket.

One of the big challenges of making a platform that works with multiple wearables is understanding the slight differences between the gyroscopes and accelerometers embedded into each. Daneault realizes the practical challenges such a platform must overcome: The app will need to pick through a wealth of data and parse out the most relevant information, and also find ways to integrate what is learned into numerous digital health systems.

Researchers are developing parallel tech and functionality at numerous schools, hospitals, and institutions. Doctors at the Cleveland Clinic are using iPads to measure the balance of multiple sclerosis (MS) patients. An A.I. expert at the Massachusetts Institute of Technology developed a smartwatch that can look for the signs of epilepsy seizures and predict their onset before they occur. There’s even a Google X project that uses Fitbits to help track the progression of MS symptoms.

Not all of these projects are ready for prime time, but the U.S. Food and Drug Administration (FDA) has already approved a few wearables that can monitor and treat neurological issues, and they are now commercially available. The Embrace wearable, for example, is a bracelet that monitors wearers for stress and potential seizures. A device called Trio, on the other hand, delivers peripheral nerve stimulation to ameliorate the symptoms of essential tremor. A clinical study of the device showed that using it decreases the amount of hand shaking, often caused by Parkinson’s disease, within three months.

Such products are just the early signs of how the treatment of neurological disorders is about to radically change.

“The future of motor rehab is not at the hospital,” says IBEC researcher Ballester. “You want patients to go home as soon as they feel safe and want to, and things are prepared at home. But you don’t want to lose track of them. You want rehab embedded in life. If it isn’t, it won’t be maintained … That’s why I see rehab in the life of the patient. Not at the hospital.”

Editors’ Recommendations

via All in the Wrist: Wearables Help Treat Disease, Disability | Digital Trends

, , , , , , , , , ,

Leave a comment

[Abstract] Motor imagery as a complementary technique for functional recovery after stroke: a systematic review.

Abstract

Background: Stroke is the leading cause of disability in adults, producing a major personal and economic impact on those affected. The scientific evidence regarding the use of Motor Imagery (MI) as a preparatory process for motor control reinforces the need to explore this method as a complement to physical therapy.

Objectives: The objectives of this systematic review were to determine the effectiveness of MI for functional recovery after stroke and to identify a possible intervention protocol, according to the level of existing scientific evidence.

Methods: A comprehensive literature search was performed using Medline, Cochrane Library and PEDro databases. Studies were limited to those published between 2007 and 2017, and restricted to English and/or Spanish language publications.

Results: Thirteen randomized clinical trials that met the inclusion criteria were included. The methodological quality of studies was determined using the Critical Review Form for Quantitative Studies, obtaining scores of 9-13 points out of 15. The level of evidence and strength of recommendations were assessed using the U.S. Preventive Services Task Force (USPSTF) assessment, obtaining levels IA and II-B1. Significant improvements were found in outcome measures evaluating upper limb functionality, balance and kinematic gait parameters.

Conclusions: The use of MI combined with conventional rehabilitation is an effective method for the recovery of functionality after stroke. Due to the great heterogeneity in the scientific literature available, new lines of research are necessary, in order to include well-designed studies of good methodological quality and to establish a consensus regarding the most appropriate protocols.

 

via Motor imagery as a complementary technique for functional recovery after stroke: a systematic review. – PubMed – NCBI

, , , , , ,

Leave a comment

[Abstract] Mental practice for upper limb motor restoration after stroke: an updated meta-analysis of randomized controlled trials

Abstract

OBJECTIVES:

Stroke is a common refractory disease that may cause dysfunctions in the motor system. The study aimed to evaluate the effects of mental practice (MP) compared with other methods on upper limb motor restoration after stroke.

METHODS:

Eligible studies were identified from Pubmed, Embase, and The Cochrane Library. The study quality was assessed with the Cochrane risk assessment tool and heterogeneity test was performed using I2 statistic and Q test. Random- and fixed-effects models were used and data were reported as weighted mean difference (WMD) and 95% confidence intervals (CIs). The publication bias was examined by Egger’s test and the sensitivity analysis was conducted by ignoring one literature at a time to observe whether this document could reverse the merged results.

RESULTS:

Total of 12 randomized controlled trials were identified. No evidence of publication bias was found. In a fixed-effect model, MP (experimental group) resulted in a significantly larger increase in Fugl-Meyer assessment (FMA) compared with other exercise methods (control group) (WMD = 2.0702, 95% CI: 1.2354-2.905, Z = 4.8606, P < 0.001). In a random-effect model, a significant pooled outcome was obtained for action research arm test (ARAT) (WMD = 4.0936, 95% CI: 1.9900-6.1971, Z = 3.8141, P < 0.001). Sensitivity analysis revealed that the merged WMDs of FMA and ARAT were not reversed.

CONCLUSIONS:

Mental practice is effective on upper limb motor restoration after stroke. It is recommended to treat with MP to improve the outcome of stroke.

 

via Mental practice for upper limb motor restoration after stroke: an updated meta-analysis of randomized controlled trials. – PubMed – NCBI

, , , , , , , , , ,

Leave a comment

[Abstract] Mental practice for upper limb rehabilitation after stroke: a systematic review and meta-analysis

Abstract

Mental practice (MP) is usually provided in combination with other therapies, and new developments for neurofeedback to support MP have been made recently. The objectives of this study were to evaluate the effectiveness of MP and to investigate the intervention characteristics including neurofeedback that may affect treatment outcome. The Cochrane Central Register of Controlled Trials, PubMed, Embase, KoreaMed, Scopus, Web of Science, PEDro, and CIRRIE were searched from inception to March 2017 for randomized controlled trials to assess the effect of MP for upper limb rehabilitation after stroke. Fugl-Meyer Assessment (FMA) was used as the outcome measure for meta-analysis. Twenty-five trials met the inclusion criteria, and 15 trials were eligible for meta-analysis. Among the trials selected for meta-analysis, MP was added to conventional therapy in eight trials or to modified constraint-induced movement therapy in one trial. The other trials provided neurofeedback to support MP: MP-guided neuromuscular electrical stimulation (NMES) in four trials and MP-guided robot-assisted therapy (RAT) in two trials. MP added to conventional therapy resulted in significantly higher FMA gain than conventional therapy alone. MP-guided NMES showed superior result than conventional NMES as well. However, the FMA gain of MP-guided RAT was not significantly higher than RAT alone. We suggest that MP is an effective complementary therapy either given with neurofeedback or not. Neurofeedback applied to MP showed different results depending on the therapy provided. This study has limitations because of heterogeneity and inadequate quality of trials. Further research is requested.

 

via Mental practice for upper limb rehabilitation after stroke:… : International Journal of Rehabilitation Research

, , , , ,

Leave a comment

[Abstract] Motor Imagery Training After Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials

Abstract

Background and Purpose: A number of studies have suggested that imagery training (motor imagery [MI]) has value for improving motor function in persons with neurologic conditions. We performed a systematic review and meta-analysis to assess the available literature related to efficacy of MI in the recovery of individuals after stroke.

Methods: We searched the following databases: PubMed, Web of Knowledge, Scopus, Cochrane, and PEDro. Two reviewers independently selected clinical trials that investigated the effect of MI on outcomes commonly investigated in studies of stroke recovery. Quality and risk of bias of each study were assessed.

Results: Of the 1156 articles found, 32 articles were included. There was a high heterogeneity of protocols among studies. Most studies showed benefits of MI, albeit with a large proportion of low-quality studies. The meta-analysis of all studies, regardless of quality, revealed significant differences on overall analysis for outcomes related to balance, lower limb/gait, and upper limb. However, when only high-quality studies were included, no significant difference was found. On subgroup analyses, MI was associated with balance gains on the Functional Reach Test and improved performance on the Timed Up and Go, gait speed, Action Research Arm Test, and the Fugl-Meyer Upper Limb subscale.

Discussion and Conclusions: Our review reported a high heterogeneity in methodological quality of the studies and conflicting results. More high-quality studies and greater standardization of interventions are needed to determine the value of MI for persons with stroke.

Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A188).

Source: Motor Imagery Training After Stroke: A Systematic Review an… : Journal of Neurologic Physical Therapy

, , , ,

Leave a comment

[Workshop] Evidence-Based Upper Limb Retraining after Stroke 2017 – Pre-Reading and Workshop Tasks – PDF

CHAPTER 40: Optimizing motor performance and sensation after brain impairment

ABSTRACT

This chapter provides a framework for optimizing motor performance and sensation in adults with brain impairment. Conditions such as stroke and traumatic brain injury are the main focus, however, the chapter content can apply to adults with other neurological conditions. The tasks of eating and drinking are used as examples throughout the chapter. Skills and knowledge required by graduates are identified, including knowledge of motor behaviour, the essential components of reaching to grasp and reaching in sitting, and how to identify compensatory strategies, develop and test movement hypotheses. Factors that enhance skill acquisition are discussed, including task specificity, practice intensity and timely feedback, with implications for therapists’ teaching skills. Finally, a summary is provided of evidence-based interventions to improve motor performance and sensation, including high intensity, task-specific training, mirror therapy, mental practice, electrical stimulation and constraint therapy.

Key Points:

  1. Essential knowledge in neurological rehabilitation includes an understanding of normal motor behaviour, muscle biology and skill acquisition.
  2. Abnormal motor performance can be observed during a task such as reaching for a cup, and compared with expected performance. Hypotheses about the cause(s) of observed movement differences can then be made and tested.

  3. Paralysis, weakness and loss of co-ordination affect upper limb motor performance. To improve performance after brain impairment, therapists should primarily focus on improving strength and co-ordination.

  4. Many people with brain impairment have difficulty understanding instructions, goals and feedback, and consequently may not practice well. To teach people to practice well and learn skills, therapists need to be good coaches.

  5. Motor performance and sensation can be improved using low-cost evidence-based strategies such as high intensity, repetitive, task-specific training, mirror therapy, mental practice, electrical stimulation and constraint-induced movement therapy.

1. Introduction

Upper motor neuron lesions typically cause impairments such as paralysis, muscle weakness and loss of sensation. These impairments can limit participation in everyday tasks such as eating a meal. Motor control is a term commonly used in rehabilitation (Shumway-Cook, 2012; van Vliet et al 2013) and refers to control of movements such as reaching to grasp a cup and standing up. Occupational therapists and physiotherapists retrain motor and sensory impairments that interfere with tasks such as grasping a cup and sitting safely on the toilet.

The aim of this chapter is to provide a framework that helps therapists to systematically observe, analyse and measure motor and sensory impairments. Targeted evidence-based interventions will be described that can drive neuroplasticity. Therapists need to proactively seek muscle activity and sensation. It is not enough to teach a person how to compensate using one-handed techniques, or to wait for recovery to possibly occur.[…]

Full Text PDF

 

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors – Full Text

Abstract

Objective: The purpose of this study was to evaluate the Role of Practice and Mental Imagery on Hand function improvement in stroke survivors

Method: We conducted systematic review of the previous studies and searched electronic databases for the years 1995 to 2016, studies were selected according to inclusion criteria, and critical appraisal was done for each study and summarized the use of mental practice for the improvement in hand function in stroke survivors.

Results: Studies differed in the various aspects like intervention protocols, outcome measures, design, and patient’s characteristics. The total number of practice hours to see the potential benefits from mental practice varied widely. Results suggest that mental practice has potential to improve the upper extremity function in stroke survivors.

Conclusion: Although the benefits of mental practice to improve upper extremity function looks promising, general guidelines for the clinical use of mental practice is difficult to make. Future research should explore the dosage, factors affecting the use of Mental Practice, effects of Mental Therapy alone without in combination with other interventions.

Introduction

Up to 85% stroke survivors experience hemi paresis resulting in impaired movement of the arm, and hand as reported by Nakayama et al. Loss of arm function adversely affects quality of life and functional motor recovery in affected upper extremity.

Sensorimotor deficits in the upper limb, such as weakness, decreased speed of movement, decreased angular excursion and impaired temporal coordination of the joints impaired upper-limb and trunk coordination.

Treatment interventions such as materials-based occupations constraint-induced movement therapy modified constraint-induced movement therapy and task-related or task-specific training are common training methods for remediating impairments and restoring function in the upper limb.

For the improvement of upper and lower functions, physical therapy provides training for functional improvement and fine motor. For most patients such rehabilitation training has many constraints of time, place and expense, accordingly in recent studies, clinical methods such as mental practice for improvement of the upper and lower functions have been suggested.

Mental practice is a training method during which a person cognitively rehearses a physical skill using motor imagery in the absence of overt, physical movements for the purpose of enhancing motor skill performance. For example, a review of the duration of mental movements found temporal equivalence for reaching; grasping; writing; and cyclical activities, such as walking and running.

Evidence for the idea that motor imagery training could enhance the recovery of hand function comes from several lines of research: the sports literature; neurophysiologic evidence; health psychology research; as well as preliminary findings using motor imagery techniques in stroke patients.

Much interest has been raised by the potential of Motor Practice of Motor task, also called “Motor Imagery” as a neuro rehabilitation technique to enhance Motor Recovery following Stroke.

Mental Practice is a training method during which a person cognitively rehearsals a physical skill using Motor Imagery in the absence of Physical movements for the purpose of enhancing Motor skill performance.

The merits of this intervention are that the patient concentration and motivation can be enhanced without regard to time and place and the training is possible without expensive equipment.

Researchers have speculated about its utility in neurorehabilitation. In fact, several review articles examining the impact of mental practice have been published. Two reviews examined stroke outcomes in general and did not limit their review to upper-extremity–focused outcomes. Both articles included studies that were published in 2005 or earlier.

Previous reviews, however, did not attempt to rate the studies reviewed in terms of the level of evidence. Thus, in this review, we determined whether mental practice is an effective intervention strategy to remediate impairments and improve upper-limb function after stroke by examining and rating the current evidence. […]

Continue –>  Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors | Insight Medical Publishing

, , , , , , , , , , , , ,

Leave a comment

%d bloggers like this: