Posts Tagged meta-analysis

[Abstract] Systematic Review and Meta-analysis of Home-Based Rehabilitation on Improving Physical Function Among Home-dwelling Patients with a Stroke

Abstract

Objective

To evaluate the effects of home-based rehabilitation on improving physical function in home-dwelling patients after a stroke.

Data sources

Various electronic databases, including PubMed, CINAL, Embase, the Cochrane Central Register of Controlled Trials, and two Chinese datasets (i.e., Chinese Electronic Periodical Services and China Knowledge Resource Integrated) were searched for studies published before March 20, 2019.

Study selection

Randomized controlled trials conducted to examine the effect of home-based rehabilitation on improving physical function in home-dwelling patients with a stroke and published in English or Chinese were included. In total, 49 articles in English (n=23) and Chinese (n=26) met the inclusion criteria.

Data extraction

Data related to patient characteristics, study characteristics, intervention details, and outcomes were extracted by two independent reviewers.

Data synthesis

A random-effects model with a sensitivity analysis showed that home-based rehabilitation exerted moderate improvements on physical function in home-dwelling patients with a stroke (g = 0.58, 95% confidence interval [CI] 0.45∼0.70). Moderator analyses revealed that those stroke patients of a younger age, of a male gender, with a first-ever stroke episode, in the acute stage, and receiving rehabilitation training from their caregiver showed greater improvements in physical function.

Conclusions

Home rehabilitation can improve functional outcome in stroke survivors and should be considered appropriate during discharge planning if continuation care is required.

via Systematic Review and Meta-analysis of Home-Based Rehabilitation on Improving Physical Function Among Home-dwelling Patients with a Stroke – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

[Abstract] High Intensity Exercise for Walking Competency in Individuals with Stroke: A Systematic Review and Meta-Analysis

Abstract

OBJECTIVE:

To assess the effects of high intensity exercise on walking competency in individuals with stroke.

DATA SOURCES:

A systematic electronic searching of the PubMed, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL (EBSCOhost), and SPORTSDiscus (EBSCOhost) was initially performed up to June 25, 2019.

STUDY SELECTION:

Randomized controlled trials or clinical controlled trials comparing any walking or gait parameters of the high intensity exercise to lower intensity exercise or usual physical activities were included. The risk of bias of included studies was assessed by the Cochrane risk of bias tool. The quality of evidence was assessed using GRADE (Grading of Recommendations, Assessment, Development and Evaluation) system.

DATA EXTRACTION:

Data were extracted by 2 independent coders. The mean and standard deviation of the baseline and endpoint scores after training for walking distance, comfortable gait speed, gait analysis (cadence, stride length, and the gait symmetry), cost of walking, Berg Balance Scale , Time Up&Go (TUG) Test and adverse events were extracted.

DATA SYNTHESIS:

A total of 22 (n = 952) studies were included. Standardized mean difference (SMD), weighted mean difference (WMD), and odds ratios (ORs) were used to compute effect size and subgroup analysis was conducted to test the consistency of results with different characteristics of exercise and time since stroke. Sensitivity analysis was used to assess the robustness of the results, which revealed significant differences on walking distance (SMD = .32, 95% CI, .17-.46, P < .01, I2 = 39%; WMD = 21.76 m), comfortable gait speed (SMD = .28, 95% CI, .06-.49, P = .01, I2 = 47%; WMD = .04 m/s), stride length (SMD = .51, 95% CI, .13-.88, P < .01, I2 = 0%; WMD = .12 m) and TUG (SMD = -.36, 95% CI, -.72 to .01, P = .05, I2 = 9%; WMD = -1.89 s) in favor of high intensity exercise versus control group. No significant differences were found between the high intensity exercise and control group in adverse events, including falls (OR = 1.40, 95% CI, .69-2.85, P = .35, I2 = 11%), pain (OR = 3.34, 95% CI, .82-13.51, P = .09, I2 = 0%), and skin injuries (OR = 1.08, 95% CI, .30-3.90, P = .90, I2 = 0%).

CONCLUSIONS:

This systematic review suggests that high intensity exercise could be safe and more potent stimulus in enhancing walking competency in stroke survivors, with a capacity to improve walking distance, comfortable gait speed, stride length, and TUG compared with low to moderate intensity exercise or usual physical activities.

 

via High Intensity Exercise for Walking Competency in Individuals with Stroke: A Systematic Review and Meta-Analysis. – PubMed – NCBI

, , , , , , , , ,

Leave a comment

[Abstract] Evaluating the effectiveness of aquatic therapy on mobility, balance, and level of functional independence in stroke rehabilitation: a systematic review and meta-analysis

To meta-analyze and systematically review the effectiveness of aquatic therapy in improving mobility, balance, and functional independence after stroke.

Articles published in Medline, Embase, CINAHL, PsycINFO, and Scopus up to 20 August 2019.

Studies met the following inclusion criteria: (1) English, (2) adult stroke population, (3) randomized or non-randomized prospectively controlled trial (RCT or PCT, respectively) study design, (4) the experimental group received >1 session of aquatic therapy, and (5) included a clinical outcome measure of mobility, balance, or functional independence.

Participant characteristics, treatment protocols, between-group outcomes, point measures, and measures of variability were extracted. Methodological quality was assessed using Physiotherapy Evidence Database (PEDro) tool, and pooled mean differences (MD) ± standard error and 95% confidence intervals (CI) were calculated for Functional Reach Test (FRT), Timed Up and Go Test (TUG), gait speed, and Berg Balance Scale (BBS).

Nineteen studies (17 RCTs and 2 PCTs) with a mean sample size of 36 participants and mean PEDro score of 5.6 (range 4–8) were included. Aquatic therapy demonstrated statistically significant improvements over land therapy on FRT (MD = 3.511 ± 1.597; 95% CI: 0.381–6.642; P = 0.028), TUG (MD = 2.229 ± 0.513; 95% CI: 1.224–3.234; P < 0.001), gait speed (MD = 0.049 ± 0.023; 95% CI: 0.005–0.094; P = 0.030), and BBS (MD = 2.252 ± 0.552; 95% CI: 1.171–3.334; P < 0.001).

While the effect of aquatic therapy on mobility and balance is statistically significant compared to land-based therapy, the clinical significance is less clear, highly variable, and outcome measure dependent.

via Evaluating the effectiveness of aquatic therapy on mobility, balance, and level of functional independence in stroke rehabilitation: a systematic review and meta-analysis – Alice Mary Iliescu, Amanda McIntyre, Joshua Wiener, Jerome Iruthayarajah, Andrea Lee, Sarah Caughlin, Robert Teasell,

, , , , ,

Leave a comment

[Abstract] Upper limb tendon/muscle vibration in persons with subacute and chronic stroke: a systematic review and meta-analysis

 

INTRODUCTION: Results of several recent studies suggest that tendon/muscle vibration treatment may improve motor performance and reduce spasticity in individuals with stroke. We performed a systematic review and meta-analysis to assess the efficacy of tendon/muscle vibration treatment for upper limb functional movements in persons with subacute and chronic stroke.

EVIDENCE ACQUISITION: We searched MEDLINE (Ovid), EMBASE (Ovid), and the Cochrane Central Register of Controlled Trials (Wiley) from inception to September 2017. We included randomized controlled trials comparing upper limb tendon/muscle vibration to sham treatment/rest or conventional interventions in persons with subacute and chronic stroke. Our primary outcome was upper limb functional movement at the end of the treatment period.

EVIDENCE SYNTHESIS: We included eight trials, enrolling a total of 211 participants. We found insufficient evidence to support a benefit for upper limb functional movement (standard mean difference -0.32, 95% confidence interval (CI) -0.74 to 0.10, I2 25%, 6 trials, 135 participants). Movement time for reaching tasks significantly decreased after using tendon/muscle vibration (standard mean difference -1.20, 95% CI -2.05 to -0.35, I2 65%, 2 trials, 74 participants). We also found that tendon/muscle vibration was not associated with a significant reduction in spasticity (4 trials).

CONCLUSIONS: Besides shorter movement time for reaching tasks, we did not identify evidence to support clinical improvement in upper limb functional movements after tendon/muscle vibration treatment in persons with subacute and chronic stroke. A small number of trials were identified; therefore, there is a need for larger, higher quality studies and to consider the clinical relevance of performance-based outcome measures that focus on time to complete a functional movement such as a reach.

via Upper limb tendon/muscle vibration in persons with subacute and chronic stroke: a systematic review and meta-analysis – European Journal of Physical and Rehabilitation Medicine 2019 October;55(5):558-69 – Minerva Medica – Journals

, , , , , , , , ,

Leave a comment

[Abstract] How to perform mirror therapy after stroke? Evidence from a meta-analysis

Abstract

BACKGROUND:

A recently updated Cochrane review for mirror therapy (MT) showed a high level of evidence in the treatment of hemiparesis after stroke. However, the therapeutic protocols used in the individual studies showed significant variability.

OBJECTIVE:

A secondary meta-analysis was performed to detect which parameters of these protocols may influence the effect of MT for upper limb paresis after stroke.

METHODS:

Trials included in the Cochrane review, which published data for motor function / impairment of the upper limb, were subjected to this analysis. Trials or trial arms that used MT as group therapy or combined it with electrical or magnetic stimulation were excluded. The analysis focused on the parameters mirror size, uni- or bilateral movement execution, and type of exercise. Data were pooled by calculating the total weighted standardized mean difference and the 95% confidence interval.

RESULTS:

Overall, 32 trials were included. The use of a large mirror compared to a small mirror showed a higher effect on motor function. Movements executed unilaterally showed a higher effect on motor function than a bilateral execution. MT exercises including manipulation of objects showed a minor effect on motor function compared to movements excluding the manipulation of objects. None of the subgroup differences reached statistical significance.

CONCLUSIONS:

The results of this analysis suggest that the effects on both motor function and impairment of the affected upper limb depend on the therapy protocol. They furthermore indicate that a large mirror, unilateral movement execution and exercises without objects may be parameters that enhance the effects of MT for improving motor function after stroke.

 

via How to perform mirror therapy after stroke? Evidence from a meta-analysis. – PubMed – NCBI

, , , , , , , , , ,

Leave a comment

[Abstract] Functional Balance and Postural Control Improvements in Patients with Stroke after Non-Invasive Brain Stimulation: A Meta-Analysis

Highlights

  • NIBS improved deficits in functional balance and postural control post stroke.
  • The treatment effects on postural imbalance were significant following rTMS.
  • The improvements after rTMS appeared in acute, subacute, and chronic patients.
  • A higher number of rTMS sessions significantly increased the treatment effects.

Abstract

Objectives

The postural imbalance post stroke limits individual’s walking abilities as well as increase the risk of falling. We investigated the short-term treatment effects of non-invasive brain stimulation (NIBS) on functional balance and postural control in patients with stroke.

Data Sources

We started the search via PubMed and ISI’s Web of Science on March 1, 2019 and concluded the search on April 30, 2019.

Study Selection

The meta-analysis included studies that used either repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) for the recovery of functional balance and postural control post stroke. All included studies used either randomized control trial or crossover designs with a sham control group.

Data Extraction

Three researchers independently performed data extraction and assessing methodological quality and publication bias. We calculated overall and individual effect sizes using random effects meta-analysis models.

Data Synthesis

The random effects meta-analysis model on the 18 qualified studies identified the significant positive effects relating to NIBS in terms of functional balance and postural control post stroke. The moderator variable analyses revealed that these treatment effects were only significant in rTMS across acute/subacute and chronic stroke patients whereas tDCS did not show any significant therapeutic effects. The meta-regression analysis showed that a higher number of rTMS sessions was significantly associated with more improvements in functional balance and postural control post stroke.

Conclusions

Our systematic review and meta-analysis confirmed that NIBS may be an effective option for restoring functional balance and postural control for patients with stroke.

via Functional Balance and Postural Control Improvements in Patients with Stroke after Non-Invasive Brain Stimulation: A Meta-Analysis – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[ARTICLE] What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes – Full Text

Abstract

Background

Virtual-reality based rehabilitation (VR) shows potential as an engaging and effective way to improve upper-limb function and cognitive abilities following a stroke. However, an updated synthesis of the literature is needed to capture growth in recent research and address gaps in our understanding of factors that may optimize training parameters and treatment effects.

Methods

Published randomized controlled trials comparing VR to conventional therapy were retrieved from seven electronic databases. Treatment effects (Hedge’s g) were estimated using a random effects model, with motor and functional outcomes between different protocols compared at the Body Structure/FunctionActivity, and Participation levels of the International Classification of Functioning.

Results

Thirty-three studies were identified, including 971 participants (492 VR participants). VR produced small to medium overall effects (g = 0.46; 95% CI: 0.33–0.59, p < 0.01), above and beyond conventional therapies. Small to medium effects were observed on Body Structure/Function (g = 0.41; 95% CI: 0.28–0.55; p < 0.01) and Activity outcomes (g = 0.47; 95% CI: 0.34–0.60, p < 0.01), while Participation outcomes failed to reach significance (g = 0.38; 95% CI: -0.29-1.04, p = 0.27). Superior benefits for Body Structure/Function (g = 0.56) and Activity outcomes (g = 0.62) were observed when examining outcomes only from purpose-designed VR systems. Preliminary results (k = 4) suggested small to medium effects for cognitive outcomes (g = 0.41; 95% CI: 0.28–0.55; p < 0.01). Moderator analysis found no advantage for higher doses of VR, massed practice training schedules, or greater time since injury.

Conclusion

VR can effect significant gains on Body Structure/Function and Activity level outcomes, including improvements in cognitive function, for individuals who have sustained a stroke. The evidence supports the use of VR as an adjunct for stroke rehabilitation, with effectiveness evident for a variety of platforms, training parameters, and stages of recovery.

Background

Stroke is one of the leading global causes of disability [], with over 17 million individuals worldwide sustaining a stroke each year []. Although stroke mortality is decreasing with improvements in medical technology [], the neurological trauma resulting from stroke can be devastating, and the majority of stroke survivors have substantial motor [], cognitive [] and functional rehabilitation needs [], and much reduced quality of life []. Targeted rehabilitation can help address some of these post-stroke deficits, however, historically, many individuals, in particular patients with cognitive impairment, have difficulty engaging in standard therapies [] at a level that will produce meaningful and lasting improvements []. Enriched and interactive rehabilitation programs are clearly needed to minimize functional disability [], increase participation in age-appropriate roles and activities [], lead to greater motivation and treatment compliance [], and reduce the long-term expense of care in stroke survivors [].

Virtual reality

Virtual reality refers to simulated interactions with environments and events that are presented to the performer with the aid of technology. These so-called virtual environments may mirror aspects of the real world or represent spaces that are far removed from it, while allowing various forms of user interaction through movement and/or speech []. Virtual reality based rehabilitation, or Virtual Rehabilitation (VR), shows considerable promise as a safe, engaging, interactive, patient-centered and relatively inexpensive medium for rehabilitation training []. VR has the potential to target a wide range of motor, functional, and cognitive issues [], affords methods that automatically record and track patient performance [], and offers a high level of flexibility and control over therapeutic tasks []. This scalability allows patients to train at the highest intensity that would be possible for their individual ability [], while keeping the experience of interaction with therapeutic tasks enjoyable and compelling []. At the same time, VR may enable patients with a neurodisability (like stroke) to practice without excessive physical fatigue [] which otherwise may deter continued effort and engagement in therapy [].

Currently, there are two main types of VR: purpose-designed Virtual Environments (VE) and Commercial Gaming (CG) systems. Both types of systems can provide augmented feedback, additional forms of sensory feedback about the patient’s movement over and above the feedback that is provided as a natural consequence of the movement itself []. VE systems are often designed by rehabilitation scientists (and others) to enhance the delivery of augmented feedback in order to develop the patient’s sense of position in space [], to reinforce different movement parameters (like trajectory and endpoint) and reduce extraneous movements (e.g. excessive trunk displacement) [].

VE systems are also more likely to involve specially designed tangible user interfaces used in mixed reality rehabilitation systems [] or training of daily functional activities []. By comparison, CG rehabilitation systems are typically “off-the-shelf” devices such as Wii (Nintendo), Xbox (Microsoft) and PlayStation (Sony), which have the advantage of being readily available and relatively inexpensive when compared with VE systems []. On the other hand, CG systems are typically designed for able-bodied participants and may not consider the physiological, motor, and cognitive aspects of recovery in rehabilitation, and may lack the scalability of purpose-designed VE systems [].

Systematic reviews comparing VE and CG systems

There is conflicting evidence about the relative effectiveness of VE- and CG-based VR systems. In a recent Cochrane review of VR following stroke [], VE systems demonstrated a significant treatment effect on upper-limb function when compared to controls (d = 0.42; 95%CI: 0.07–0.76), while the effect for CG systems failed to reach significance (d = 0.50; 95%CI: -0.04-1.04); a caveat, however, was that only two of nine studies (22%) in these comparisons were CG-based. In contrast, a meta-analysis by Lohse and colleagues of VR following stroke [] found no significant difference between VE (g = 0.43, based on 13 studies) and CG interventions (g = 0.76, based on three studies) on Body Structure/Function level outcomes. For Activity level outcomes, CG interventions showed a large but non-significant effect (g = 0.76, p = 0.14), but was based on only four of 26 studies (15%); VE interventions, however, showed a significant treatment effect (g = 0.54, p < .001). Taken together, these two reviews suggest benefits of VE systems, while previous analyses of CG treatment effects have been underpowered and inconclusive.

Cognition and VR

Cognitive impairments, including difficulties in attention, language, visuospatial skills, memory, and executive function are common and persistent sequelae of stroke [] and exert considerable influence on rehabilitation outcomes []. Cognitive dysfunction may reduce the ability to (re-)acquire motor [] and functional skills [], and decrease engagement and participation in rehabilitation program []. While the important role of cognition in both conventional and VR-based rehabilitation is increasingly recognized [] the impact of VR on cognitive function has not yet been formally evaluated in a quantitative review.

Analysis of individual domains of functioning

The World Health Organization’s International Classification of Functioning, Disability, and Health (ICF-WHO []) is currently one of the most widely used classification systems. It is a foundation for understanding outcome effects in clinical practice [] and the preferred means for translating clinical findings in a patient-centered manner []. Under the ICF-WHO, disability and functioning are seen to arise by the interaction of the health condition, the environment, and personal factors, and can be measured at three main levels: (i) Body Structure/Function, (ii) Activity (or skill), and (iii) Participation. The ICF-WHO has been used to classify outcome measures in studies of VR (for example []) and in recent systematic reviews []. A brief critique of these reviews reveals a number of important conclusions, but also some significant gaps in the research.

An early systematic review by Crosbie and colleagues [] examined the efficacy of VR for stroke upon motor and cognitive outcomes. Of the 11 studies reviewed (up to 2005), only five addressed upper-limb function and two addressed cognitive outcomes. Overall, the review reported significant benefits of VR, but only three studies were RCTs and no effect size estimates were reported. At around the same time, a systematic review by Henderson and colleagues [] showed that there was very good evidence that immersive VR was more beneficial than no therapy for upper-limb rehabilitation in adult stroke, but insufficient evidence for non-immersive VR. Comparisons with traditional physical therapy were less impressive, however.

A 2016 systematic review by Vinas-Diz and colleagues [] included both controlled clinical trials and randomized controlled trials (RCTs) in stroke, and spanned 2009–2014. The review included 25 papers: four systematic reviews [] and 21 original trials. Evidence for treatment efficacy on upper-limb function was strong on a mix of measures like the Fugl-Meyer Test, Wolf Motor Function Test, and Motricity Index. However, a quantitative analysis of the effects was not undertaken, and important aspects of treatment implementation like dose and session scheduling were not formally examined.

A recent systematic review by Santos-Palma and colleagues [] examined the efficacy of VR on motor outcomes for stroke using the ICF-WHO framework, covering work published up to June 2015. Of the studies deemed high quality, 20 examined outcomes at the Body Structure/Function level, 17 at the Activity level, and eight examined Participation. Intriguingly, positive outcomes were evident only at the Body Structure/Function level, while results for Activity and Participation were not conclusive. Unfortunately, only three studies addressed manual ability at the Activity level, which severely limited any evaluation of skill-specific effects.

In a combined systematic review and meta-analysis of 37 RCTs published between 2004 and 2013, Laver and colleagues [] present a more comprehensive examination of the effects of VR on upper-limb function. As well, they classified outcomes broadly into upper-limb function, Activities of Daily Living (ADLs) and other aspects of motor function. In general, study quality was low, and the risk of bias high, in roughly one-half of the studies. Outcomes were significant for upper-limb function (d = 0.28) and ADLs (d = 0.43), but somewhat smaller than those reported by Lohse and colleagues []. Results for other aspects of motor function, including several at what may be considered the Body Structure/Function level, were non-significant. Dose varied considerably between studies, ranging from less than 5 h to more than 21 h in total. In general, studies that used higher doses (> 15 h of therapy) were reported as more effective. Unfortunately, results could not be pooled for cognitive outcomes, and the importance of additional treatment implementation parameters like training frequency and duration, and the impact of specific study design factors including the recovery stage of participants and type of control group (i.e. active vs passive) were not determined.

An updated systematic review by Laver and colleagues [], included an additional 35 studies that reported outcomes for upper limb function and activity. A subset of only 22 studies that compared VR with conventional therapy showed no significant effect of VR on upper-limb function (d = 0.07). As well, there was no significant difference between higher (> 15 h of therapy), and lower levels of dose. However, when VR was used in addition to usual care (10 studies; 210 participants), there was a significant effect on upper-limb outcomes (d = 0.49). As before, no significant difference was shown between high and low dose studies. Unfortunately, analysis of cognitive outcomes, and moderator analyses including study quality, and implementation parameters (e.g., daily intensity, weekly intensity, treatment frequency, and total number of sessions) were not included in the updated review. As well, the assessment of study quality was limited to the 5-item GRADE system, the ICF classification system was not given full consideration, and no distinction was drawn between treatment as usual (TAU) and active control groups (TAU + some form of additional therapy).

Taken together, recent reviews on the use of VR for adult stroke show encouraging evidence of efficacy at the level of Body Structure/Function, but mixed results for Activity and ADLs, and a paucity of evidence bearing on Participation. The impact and effectiveness of VR on cognitive outcomes also remains poorly understood, despite the important role of cognitive dysfunction in learning and rehabilitation [], and increased evidence of interconnection between cognitive function and motor deficits at the Body Structure/Function, Activity and Participation levels of the ICF []. VE-based platforms have been suggested to be superior to CG approaches [] in promoting motor function, but until recently there have been few CG studies available for analysis. As well, other design factors that may moderate treatment effects (like stage of recovery, control group type) have either not been explored or are too few in number to draw firm conclusions. There has been considerable variation in the total dose of VR therapy [], and no analysis has yet tested the dose-response relationship in moderator analyses. Finally, the bulk of conclusions have relied on qualitative synthesis, and there is a paucity of quantitative analysis of empirical data to inform opinion.

In view of limitations in past reviews and continued acceleration in VR the aim of our review was to conduct a systematic literature review and meta-analysis to re-evaluate the strength of evidence bearing on VR of upper-limb function and cognition in stroke. This review is critical given evidence that stroke rehabilitation needs to better optimize intervention techniques during the recovery windows that exist in the acute phase [] and beyond. Focusing only on RCTs, we consider outcomes across levels of the ICF-WHO, and analyze the moderating effect of design factors and dose-related parameters.

Methods

The current review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [], it should be noted that the protocol was not registered.

Data sources and search strategy

Scopus, Cochrane Database, CINAHL, The Allied and Complementary Medicine Database, Web of Science, MEDLINE, Pre-Medline, PsycEXTRA, and PsycINFO databases were systematically searched from inception until 28 June 2017. Boolean search terms included the following: “strokecerebrovascular disease, or cerebrovascular attack” and “Virtual realityAugmentrealityvirtual gam*” (see Appendix for an example of the full MEDLINE search strategy).

Inclusion and exclusion criteria

RCT studies published in English in peer-reviewed journals, utilizing a VR intervention to address either motor (upper-limb), cognitive, or activities of daily living in stroke patients were included in the current review (see Fig. 1). VR was defined as a type of user-computer interface that involves real-time simulation of an activity/environment, enabling the user to interact with the environment using motor actions and sensory systems. Comparison groups included “usual care”, “standard care” or “conventional therapy”, involving physical therapy and/or occupational therapy. Studies were excluded that applied a “hybrid” approach combining virtual reality with exogenous stimulation or robotics, targeted lower limb function, recruited a mixed study cohort including non-stroke participants, or did not utilize motor, cognitive, or participation outcome measures.

An external file that holds a picture, illustration, etc.
Object name is 12984_2018_370_Fig1_HTML.jpg

Fig. 1
Population, Intervention, Comparison, Outcome (PICO) Question and the main variables included in the systematic literature review and meta-analysis

[…]

Continue —-> What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Virtual rehabilitation of upper extremity function and independence for stoke: a meta-analysis – Full Text

Abstract

We aimed to conduct a systematic literature review with a meta-analysis to investigate whether virtual reality (VR) approaches have beneficial effects on the upper extremity function and independent activities of stroke survivors. Experimental studies published between 2007 and 2017 were searched from two databases (EBSCOhost and PubMed). This study reviewed abstracts and assessed full articles to obtain evidence on qualitative studies. For the meta-analysis, the studies that estimated the standardized mean between the two groups analyzed the statistical values necessary for calculating the effect size. The present study also evaluated the statistical heterogeneity. In total, 34 studies with 1,604 participants were included, and the number of participants in each study ranged from 10 to 376. Nine studies were assessed to evaluate the quantitative statistical analysis for 698 patients with hemiparetic stroke. The results of the meta-analysis were as follows: The overall effect size was moderate (0.41, P<0.001). The 95% confidence interval ranged from 0.25 to 0.57. However, no significant heterogeneity and publication bias were observed. The results of this study showed that VR approaches are effective in improving upper extremity function and independent activities in stroke survivors.

 

INTRODUCTION

Stroke has varying severity and subsequent functional impact, which depends on the recovery process of an individual and the extent of neurological damage (Chollet et al., 1991). Several stroke survivors experience physical, cognitive, perceptual, and mental impairments that require a period of intensive rehabilitation and may develop permanent disabilities (Teasell et al., 2005). Some stroke survivors can undergo a short period of inpatient rehabilitation program for recovery of function, and others continue to recover for a long period or throughout their lifetimes (Cramer, 2011). Therefore, in the intensive rehabilitation of individuals with neurological diseases, extremely important considerations must be made because of the reintegration of family and social roles and recreational activities (French et al., 2016West and Bernhardt, 2012).
In rehabilitation settings, functional and task-specific trainings are the key elements of therapy and designed to assist stroke survivors in restoring their motor control to attain more-normal functional movement patterns (Teasell et al., 2005). Stroke survivors must have significant changes in the motor control and strength of the trunk and limbs, with an emphasis on the more-affected side and bilateral symmetric movement; these may be achieved using specific reeducation strategies (Veerbeek et al., 2014West and Bernhardt, 2012). In terms of stroke rehabilitation settings, most previous studies were performed in laboratory or clinical settings that are less complex than the outdoor environment (Cho and Lee, 2013). Laboratory and clinical settings are not appropriate for establishing some complex personal space and community surroundings to meet the demands of multiple tasks for stroke survivors (Demain et al., 2013Fung et al., 2012).
Virtual reality (VR) is a computer-generated environment that simulates a realistic experience for practicing functional tasks at intensities higher than those in traditional rehabilitation programs for stroke survivors (Chen et al., 2016). VR may help engage stroke survivors in a repetitive, intensive, and goal-oriented therapy to improve their functional disabilities, activity limitations, and participation restrictions, without considering the cost and burden associated with increasing the number of therapeutic sessions (Merians et al., 2002). Furthermore, VR provides real-time visual feedback for movements, thereby increasing engagement in enjoyable rehabilitation tasks. VR provides rehabilitative clinicians with new and effective therapeutic tools that can help treat various disabilities and enables remote therapy. VR-based interventions lead to clinical improvement and cortical reorganization through repetitive, adaptive, task-oriented, meaningful, and challenging exercises for stroke survivors (Laver et al., 2012).
As mentioned earlier, several virtual realities in rehabilitation interventions have been applied in the stroke population. However, the efficacy of VR rehabilitation interventions remains to be fully elucidated. In particular, studies on the qualitative and quantitative beneficial effects of VR on upper extremity function and independence in performing activities of daily living among patients with stroke are limited. The objectives of the present study were as follows: (a) to investigate the effectiveness of VR-based interventions in rehabilitation programs for restoring the upper extremity function of stroke survivors through a systematic review and (b) to examine the efficacy of VR-based interventions as part of a therapeutic rehabilitation program to improve upper limb function and independence in performing activities of daily living in stroke survivors by conducting a meta-analysis. Then, the VR-based interventions that are effective for improving upper limb function and independence in performing activities of daily living in stroke survivors were identified.[…]

Continue —> Virtual rehabilitation of upper extremity function and independence for stoke: a meta-analysis

, , , , , , ,

Leave a comment

[ARTICLE] The Effects of Virtual Reality Training on Function in Chronic Stroke Patients: A Systematic Review and Meta-Analysis – Full Text

Abstract

Objective. The aim of this study was to perform a meta-analysis to examine whether virtual reality (VR) training is effective for lower limb function as well as upper limb and overall function in chronic stroke patients. Methods. Three databases, OVID, PubMed, and EMBASE, were used to collect articles. The search terms used were “cerebrovascular accident (CVA),” “stroke”, and “virtual reality”. Consequently, twenty-one studies were selected in the second screening of meta-analyses. The PEDro scale was used to assess the quality of the selected studies. Results. The total effect size for VR rehabilitation programs was 0.440. The effect size for upper limb function was 0.431, for lower limb function it was 0.424, and for overall function it was 0.545. The effects of VR programs on specific outcomes were most effective for improving muscle tension, followed by muscle strength, activities of daily living (ADL), joint range of motion, gait, balance, and kinematics.Conclusion. The VR training was effective in improving the function in chronic stroke patients, corresponding to a moderate effect size. Moreover, VR training showed a similar effect for improving lower limb function as it did for upper limb function.

1. Introduction

Stroke is a major cause of death in the modern world; it also causes sensory, motor, cognitive, and visual impairments and restricts performance of activities of daily living (ADL) [1]. Motor impairments are observed in 80% of stroke patients, and these can include loss of balance and gait [2]. These problems are important targets of rehabilitation, because they reduce the ability of individuals to perform ADL and this result in impaired community activities [34].

Most studies on balance and gait rehabilitation have shown positive effects. However, training-based methods often become tiresome are resource-intensive and require specialized facilities or equipment. Therefore, there is a demand for economical and safe methods of rehabilitation [2].

Virtual reality (VR) is defined by “the use of interactive simulations created with computer hardware and software to present users with opportunities to engage in environments that appear and feel similar to real world objects and events.” Participants interact with projected images, maneuver virtual objects and perform activities programmed into the task, giving the user a sense of immersion in the simulated environment. Various forms of feedback are provided through the environment, the most common being visual and auditory, to enhance enjoyment and motor learning through real-time feedback and immediate results [5]. VR training using these features has recently been widely used in the field of stroke rehabilitation [3]. VR training aims to improve neural plasticity by providing a safe and enriched environment to perform functional task-specific activities with increased repetitions, intensity of practice, and motivation to comply with the intervention [1].

In the field of stroke rehabilitation, VR training is reported to be mostly effective at increasing upper limb joint range of motion, improving sensation, muscle strengthening, reducing pain, and improving functional processesRecently, various VR programs have been developed and implemented for the lower limbs as well as the upper limbs, and their effects are being tested. VR training for stroke patients has been shown to be safe and cost-effective at improving lower limb function, specifically improving balance, stair climbing speed, ankle muscle strength, range of motion, and gait speed [1]. Compared with existing treatment methods, it may be more effective at improving dynamic balance control and preventing falls in subacute and chronic stroke patients [6].

Treatment methods using VR provide a virtual environment for ADLs that are difficult to perform in a hospital, and therefore, it could be very effective at improving both upper limb and lower limb function. However, because the lower limbs have to support the weight of the body, various elements are required, including muscle strength and balance to control body weight, joint movements, and cognitive ability to integrate these other elements. Although studies related to VR training have been increasing in recent years, VR intervention has been used more extensively to improve upper limb function, which is relatively easier to apply than lower limb function.

Furthermore, doubts could be raised as to whether VR treatment methods for the lower limbs can improve these elements; these doubts related to lack of VR equipment or programs, as well as safety issues or dizziness during treatment. For this reason, we aimed to perform a meta-analysis as a scientific method to test the effects of uncertain treatment methods using statistical methods, in order to examine whether VR training is effective for lower limb function as well as upper limb function. […]

Continue —>  The Effects of Virtual Reality Training on Function in Chronic Stroke Patients: A Systematic Review and Meta-Analysis

 

, , , , ,

Leave a comment

[Webcast] KTDRR Research Evidence Training: An Overview of Meta-Analysis and Effect Size

Webcast

Date:
Time: 3:00 – 4:00 p.m. Eastern
Time zone converter
Registration:
(no charge)
https://www.surveygizmo.com/s3/4871669/Registration-Meta-Analysis-Effect-Size

About the Webcast

The KTDRR Center and the international Campbell Collaboration are working together to offer a five-part training course that focuses on high-quality methods for synthesis of evidence, including the procedures and methods for conducting systematic reviews/research syntheses as well as software, tools, and strategies for analyzing and reporting data. The training materials are developed by representatives of the Campbell Collaboration. Online resources from various national and international organizations will be provided for each session.

This fifth and final webcast in the series is a pre-recorded session that provides an overview of the foundation of meta-analysis: an effect size (a quantitative indicator of a treatment effect or relation between two variables) and discusses the basic processes of a meta-analysis and how the technique can be used to answer complex questions asked by policymakers and practitioners. (NOTE: This session was previously aired live on September 20, 2018.)

How to Participate

  1. On Wednesday, June 19, 2019 at 3 p.m. Eastern this pre-recorded webcast will be aired via YouTube. Detailed instructions will be provided to all who register.
  2. Tips for Optimal Viewing on YouTube:
    • To increase volume, turn up the volume on your computer and use the volume bar on bottom left side of the YouTube video window.
    • Captioning is available by selecting the “CC” option on the bottom right side of the video window. Click on “Options” to change the font, size, and color of the captions.
    • Additional tools on the bottom right side: “Settings” increase the video quality; “Theater mode” (default)/”Full screen.”
  3. Presentation materials: Coming soon!
  4. Evaluation: Please fill out the brief evaluation after viewing the webcast. Once the webcast is completed, all who register will receive an email with a link to the evaluation. There are no pre-approved CRC-CEUs for this webcast.

About the Presenters

Photo of Ryan Williams

Ryan Williams, PhD, is a principal researcher at AIR and leads large-scale evaluations and research syntheses. Dr. Williams’ work focuses on improving generalizations in education research through research synthesis. He is currently the Principal Investigator (PI) on an Institute for Educational Sciences (IES) meta-analysis that is exploring sources of heterogeneity in mathematics intervention effects. He also is a co-PI of an IES methods training institute for advanced meta-analysis. Dr. Williams is Associate Methods Editor of The Campbell Collaboration Education Coordinating Group.

 

Photo of Joshua Polanin

Joshua Polanin, PhD, is a principal researcher at AIR who has experience in the application and use of quantitative methodology in criminal justice, education, and behavioral health. He is the PI of two National Institute of Justice–funded systematic reviews and meta-analyses and the co-PI of one IES-funded systematic review and meta-analysis. In addition, he currently serves as the project director for the What Works Clearinghouse’s Statistics, Website, and Training (SWAT) contract and is co-PI of an IES methods training institute for advanced meta-analysis. Dr. Polanin is also active in The Campbell Collaboration and served as an Associate Editor of the Methods Group.

via KTDRR Research Evidence Training: An Overview of Meta-Analysis and Effect Size

, , ,

Leave a comment

%d bloggers like this: