Posts Tagged mobility

[WEB SITE] Turn Up the Walking Intensity to Spur Further Stroke Recovery

TreadmillPatient

 

High-intensity step training  that mimics real-world conditions may better improve walking ability in stroke survivors compared to traditional, low-impact training, according to new research published in the American Heart Association’s journal Stroke.

“People who suffer strokes often have difficulty walking and impaired balance. Rehabilitation after a stroke traditionally focuses on patients practicing low-intensity walking, usually only in a forward direction, which does not provide enough of a challenge to the nervous system to enable patients to negotiate real-world situations, such as uneven surfaces, stairs or changing direction,” says study author T. George Hornby, PhD, professor of physical medicine and rehabilitation at Indiana University School of Medicine in Indianapolis, in a media release from the American Heart Association.

“Our study suggests that stroke patients can perform higher-intensity walking exercises and more difficult tasks than previously thought possible. We need to move beyond traditional, low-intensity rehabilitation to challenge the nervous and cardiovascular systems so patients can improve function and perform better in the real world.”

Researchers evaluated 90 people, 18- to 85-years-old with weakness on one side of the body who had survived a stroke at least six months prior.

Participants received training of either high-intensity stepping performing variable, difficult tasks; high-intensity stepping performing only forward walking; or low-intensity stepping of variable tasks. Variable tasks included walking on uneven surfaces, up inclines and stairs, over randomly placed obstacles on a treadmill and across a balance beam.

The researchers observed the following, the release explains:

  • Survivors in both the high-intensity, variable training and high-intensity, forward walking groups walked faster and farther than the low-intensity, variable training group.
  • For all walking outcomes, 57% to 80% of participants in the high-intensity groups had important clinical gains, while only 9% to 31% of participants did so following low-intensity training.
  • High-intensity variable training also resulted in improved dynamic balance while walking and improved balance confidence.

Hornby notes that no serious adverse events occurred during the training sessions, suggesting stroke survivors can be pushed to higher-intensity walking with more variable tasks during rehabilitation.

“Rehabilitation that allows walking practice without challenging the nervous system doesn’t do enough to make a statistical or clinically significant difference in a patient’s recovery after a stroke,” Hornby suggests.

“We found that when stroke patients are pushed harder, they see greater changes in less time, which translates into more efficient rehabilitation services and improved mobility.”

Ultimately, their goal is to incorporate high-intensity variable step training into regular clinical rehabilitation protocols.

The study was small compared to larger, multicenter clinical trials. Hornby adds in the release that the next step would be to test high-intensity, variable step training in larger patient populations in a large, multicenter clinical trial.

[Source(s): American Heart Association, Science Daily]

 

via Turn Up the Walking Intensity to Spur Further Stroke Recovery – Rehab Managment

, , , ,

Leave a comment

[Abstract] Effectiveness of static stretching positioning on post-stroke upper-limb spasticity and mobility: Systematic review with meta-analysis

Abstract

OBJECTIVE:

To systematically review the effects of static stretching with positioning orthoses or simple positioning combined or not with other therapies on upper-limb spasticity and mobility in adults after stroke.

METHODS:

This meta-analysis was conducted according to PRISMA guidelines and registered at PROSPERO. MEDLINE (Pubmed), Embase, Cochrane CENTRAL, Scopus and PEDro databases were searched from inception to January 2018 for articles. Two independent researchers extracted data, assessed the methodological quality and rated the quality of evidence of studies.

RESULTS:

Three studies (57 participants) were included in the spasticity meta-analysis and 7 (210 participants) in the mobility meta-analysis. Static stretching with positioning orthoses reduced wrist-flexor spasticity as compared with no therapy (mean difference [MD]=-1.89, 95% confidence interval [CI] -2.44 to -1.34; I2 79%, P<0.001). No data were available concerning the spasticity of other muscles. Static stretching with simple positioning, combined or not with other therapies, was not better than conventional physiotherapy in preventing loss of mobility of shoulder external rotation (MD=3.50, 95% CI -3.45 to 10.45; I2 54.7%, P=0.32), shoulder flexion (MD=-1.20, 95% CI -8.95 to 6.55; I2 0%, P=0.76) or wrist extension (MD=-0.32, 95% CI -6.98 to 5.75; I238.5%, P=0.92). No data were available concerning the mobility of other joints.

CONCLUSION:

This meta-analysis revealed very low-quality evidence that static stretching with positioning orthoses reduces wrist flexion spasticity after stroke as compared with no therapy. Furthermore, we found low-quality evidence that static stretching by simple positioning is not better than conventional physiotherapy for preventing loss of mobility in the shoulder and wrist. Considering the limited number of studies devoted to this issue in post-stroke survivors, further randomized clinical trials are still needed.

 

via Effectiveness of static stretching positioning on post-stroke upper-limb spasticity and mobility: Systematic review with meta-analysis. – PubMed – NCBI

, , , , , , , ,

Leave a comment

[Abstract] Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis.

Abstract

BACKGROUND:

Mirror therapy has been proposed as an effective intervention for lower limb rehabilitation post stroke.

RESEARCH QUESTION:

This systematic review with meta-analysis examined if lower limb mirror therapy improved the primary outcome measures of muscle tone and motor function and the secondary outcome measures balance characteristics, functional ambulation, walking velocity, passive range of motion (PROM) for ankle dorsiflexion and gait characteristics in patients with stroke compared to other interventions.

METHODS:

Standardised mean differences (SMD) and mean differences (MD) were used to assess the effect of mirror therapy on lower limb functioning.

RESULTS:

Nine studies were included in the review. Among the primary outcome measures there was evidence of a significant effect of mirror therapy on motor function compared with sham and non-sham interventions (SMD 0.54; 95% CI 0.24-0.93). Furthermore, among the secondary outcome measures there was evidence of a significant effect of mirror therapy for balance capacity (SMD -0.55; 95% CI -1.01 to -0.10), walking velocity (SMD 0.71; 95% CI 0.35-1.07), PROM for ankle dorsiflexion (SMD 1.20; 95% CI 0.71-1.69) and step length (SMD 0.56; 95% CI -0.00 to 1.12).

SIGNIFICANCE:

The results indicate that using mirror therapy for the treatment of certain lower limb deficits in patients with stroke may have a positive effect. Although results are somewhat positive, overly favourable interpretation is cautioned due to methodological issues concerning included studies.

via Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis. – PubMed – NCBI

, , , , , ,

Leave a comment

[WEB SITE] Biorobotics Laboratories

At the Swiss Federal Institute of Technology in Lausanne, professor Auke Ijspeert and its team use robots as a scientific tool to better understand mobility in living beings and explore the secret of the spinal cord

Brushing teeth, making coffee, unlocking a door – our brain is the central processing unit for many physical movements. This might make you think that without the brain, nothing would happen at all. But that’s not quite true. When a doctor uses a small hammer to tap our knee, we experience a reflexive kick of the lower leg. And when we accidentally touch a hot stovetop, our hand will jerk back immediately. It’s not the brain that’s responsible for such movements, but another part of the central nervous system: the spinal cord. A headless chicken is, albeit somewhat morbid, proof of the fact that a living creature is able to move without a brain. The chicken flaps and runs about for several seconds even after its head has been severed from the body.

But how do these motor circuits in the spine work? What are the underlying control mechanisms for the movement of vertebrates? This is just one of the questions investigated by Auke Ijspeert’s team of 17 at the EPFL in Lausanne. The scientists chose a somewhat unusual approach for their research – they’re building robots. That also explains the name of their work place: Biorobotics Laboratory, or Biorob for short. “We use robots as a scientific tool to help us better understand mobility in living beings,” explains Auke Ijspeert. It’s not so much about building a robot that looks spectacular or is able to work autonomously: “With our robots, we want to contribute to research in the neurosciences and biomechanics.”

Evolutionary biology also benefits from the team’s work. “In many animals, motor control happens mostly in the spinal cord. I find that fascinating.”

The Pleurobot by Auke Ijspeert and his team attracted particular attention. What at first glance looks like a paleontological skeleton assembly kit is actually a sophisticated reproduction of a salamander’s musculoskeletal system. Watching the Pleurobot, which is powered by 27 motors, move in water or on land leaves the observer in awe. The similarity to a salamander’s natural movement is remarkable. The Biorob team made every effort to design the Pleurobot to be as similar to a salamander as possible: They used 3D X-ray videos to analyze every limb of a salamander in motion. This was followed by meticulous mechanical and motor function calculations.

THE BRAIN DOES NOT HAVE SOLE CONTROL

It’s no coincidence that biomechanical research focuses on amphibians. Their locomotor system is interesting because it permits studying the gradual transition of movement on land and in water. Several years ago, neurobiologists were able to show that salamanders can be “remote controlled” by stimulating their spinal cord. Weak electrical stimulation lets the salamander walk; increasing the stimulus beyond a certain threshold results in the salamander performing its typical swimming movements. This ultimately means that the salamander’s brain is not fully in control of the locomotor system. In fact, the spinal cord and limbs form an almost autonomous control and locomotor system. “The brain merely has a stimulating function,” says Auke Ijspeert. The Pleurobot follows this functional principle: Transitioning from walking to swimming movements requires only an increase in the electrical current. “When we control the Pleurobot remotely, we don’t need to control each individual motor. Similar to the brain of a salamander, we only determine the direction, the speed, and the intensity of the stimulus.” The function of the spinal cord in the Pleurobot is assumed by a microcontroller which – put simply – has been programmed with mathematical models of a salamander’s spinal neural network.

THE USE OF ROBOTS TO UNDERSTAND THE NERVOUS SYSTEM

But why go to all this effort? “Our interest is to fundamentally understand how the nervous system in a spinal column functions,” explains Auke Ijspeert. It’s a very complex subject that has by no means been exhaustively researched. The spinal cord’s well-protected location in the canal of the vertebral column in particular makes it very difficult to measure its neuronal activity – even more so than the activity of the brain itself. “You can’t just stick some electrodes into the spinal cord of a moving animal and measure what’s happening.” One reason why Auke Ijspeert likes this combination of biology and robotics is that other scientific disciplines benefit from it. A fundamental understanding of movement can help in the manufacture of neuroprosthetics, for example. Discoveries in the fields of neuronal systems and the spinal cord are incorporated into research work on new paraplegia therapies.

With its Envirobot – a snake-like swimming robot – the EPFL team have also developed and built an inspection robot. It can be used to detect and measure water pollution, for example.

But Auke Ijspeert’s team researches much more than amphibian robots. A cat-like robot named Cheetah and humanoid robots are also part of the lab’s inventory. For many of its projects, including the Pleurobot, the Biorobotics Laboratory uses DC motors from maxon. The modular Dynamixel actuators by Robotis are used mainly in robotics projects. These modules mainly incorporate maxon RE-max motors, the tried and tested brushed motors with an ironless winding. Auke Ijspeert compliments the Swiss drive specialist: “We like maxon a lot!”

By Adrian Venetz

 

via Biorobotics Laboratories

, , , , , , , , , ,

Leave a comment

[Abstract] Effects of isokinetic muscle strengthening on muscle strength, mobility, and gait in post-stroke patients: a systematic review and meta-analysis

To investigate whether isokinetic muscle strengthening improves muscle strength, mobility, and gait in post-stroke patients.

We searched for randomized controlled trials at PubMed/Medline, SciELO, PEDro, and Cochrane Central Register of Controlled Trials, from the earliest date available to June 2018. Randomized controlled trials that examined the effects of isokinetic muscle strengthening versus other rehabilitation interventions or control in post-stroke patients were included. Study quality was evaluated using the PEDro scale. Weighted mean difference (WMD) and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed using the I2 test.

In total, 13 studies (347 patients) focusing on the use of isokinetic in rehabilitation following stroke were included. All trials were of low-to-moderate quality. Isokinetic muscle strengthening improved muscle strength WMD 0.8 (95% CI: 0.2, 1.4; N = 96), mobility WMD −2.03 seconds (95% CI: −2.9, −1.1; N = 111) and gait speed WMD 0.9 m/s (95% CI: 0.05, 1.8; N = 87).

Isokinetic muscle strengthening seems to be a useful strategy for improving muscle strength, mobility, and gait in post-stroke patients.

 

via Effects of isokinetic muscle strengthening on muscle strength, mobility, and gait in post-stroke patients: a systematic review and meta-analysis – Sarah Souza Pontes, Ana Louise Reis de Carvalho, Katna de Oliveira Almeida, Murilo Pires Neves, Ingara Fernanda Silva Ribeiro Schindler, Iura Gonzalez Nogueira Alves, Fabio Luciano Arcanjo, Mansueto Gomes-Neto, 2018

, , , , , ,

Leave a comment

[WEB SITE] Electrically stimulating the brain may restore movement after stroke

June 18, 2018, University of California, San Francisco
stroke

Micrograph showing cortical pseudolaminar necrosis, a finding seen in strokes on medical imaging and at autopsy. H&E-LFB stain. Credit: Nephron/Wikipedia

UC San Francisco scientists have improved mobility in rats that had experienced debilitating strokes by using electrical stimulation to restore a distinctive pattern of brain cell activity associated with efficient movement. The researchers say they plan to use the new findings to help develop brain implants that might one day restore motor function in human stroke patients.

After a , roughly one-third of  recover fully, one-third have significant lingering  problems, and one-third remain virtually paralyzed, said senior author Karunesh Ganguly, MD, Ph.D., associate professor of neurology and a member of the UCSF Weill Institute for Neurosciences. Even patients who experience partial recovery often continue to struggle with “goal-directed” movements of the arms and hands, such as reaching and manipulating objects, which can be crucial in the workplace and in daily living.

“Our main impetus was to understand how we can develop implantable neurotechnology to help stroke patients,” said Ganguly, who conducts research at the San Francisco VA Health Care System. “There’s an enormous field growing around the idea of neural implants that can help neural circuits recover and improve function. We were interested in trying to understand the circuit properties of an injured brain relative to a healthy brain and to use this information to tailor neural implants to improve  after stroke.”

Over the past 20 years, neuroscientists have presented evidence that coordinated patterns of neural activity known as oscillations are important for efficient brain function. More recently, low-frequency oscillations (LFOs)—which were first identified in studies of sleep—have been specifically found to help organize the firing of neurons in the brain’s primary motor cortex. The motor cortex controls voluntary movement, and LFOs chunk the cells’ activity together to ensure that goal-directed movements are smooth and efficient.

In the new study, published in the June 18, 2018 issue of Nature Medicine, the researchers first measured neural activity in rats while the animals reached out to grab a small food pellet, a task designed to emulate human goal-directed movements. They detected LFOs immediately before and during the action, which inspired the researchers to investigate how these activity patterns might change after stroke and during recovery.

To explore these questions, they caused a stroke in the rats that impaired the animals’ movement ability, and found that LFOs diminished. In rats that were able to recover, gradually making faster and more precise movements, the LFOs also returned. There was a strong correlation between recovery of function and the reemergence of LFOs. Animals that fully recovered had stronger low-frequency activity than those that partially recovered, and those that didn’t recover had virtually no low-frequency activity.

To try to boost recovery, the researchers used electrodes to both record activity and deliver a mild electrical current to the rats’ brains, stimulating the area immediately surrounding the center of the . This stimulation consistently enhanced LFOs in the damaged area and appeared to improve motor function: when the researchers delivered a burst of electricity right before a rat made a movement, the rat was up to 60 percent more accurate at reaching and grasping for a food pellet.

“Interestingly, we observed this augmentation of LFOs only on the trials where stimulation was applied,” said Tanuj Gulati, Ph.D., a postdoctoral researcher in the Ganguly lab who is co-first author of the study, along with Dhakshin Ramanathan, MD, Ph.D., now assistant professor of psychiatry at UC San Diego, and Ling Guo, a neuroscience graduate student at UCSF.

“We are not creating a new frequency, we are amplifying the existing frequency,” added Ganguly. “By amplifying the weak low-frequency oscillations, we are able to help organize the task-related . When we delivered the electrical current in step with their intended actions, motor control actually got better.”

The researchers wanted to know whether their findings might also apply to humans, so they analyzed recordings made from the surface of the brain of an epilepsy patient who had suffered a stroke that had impaired the patient’s arm and hand movements. The recordings revealed significantly fewer LFOs than recordings made in two epilepsy patients who hadn’t had a stroke. These findings suggest that, just as in rats, the stroke had caused a loss of low-frequency  that impaired the patient’s movement.

Physical therapy is the only treatment currently available to aid stroke patients in their recovery. It can help people who are able to recover neurologically get back to being fully functional more quickly, but not those whose stroke damage is too extensive. Ganguly hopes that electrical brain stimulation can offer a much-needed alternative for these latter patients, helping their brain circuits to gain better control of motor neurons that are still functional. Electrical  stimulation is already widely used to help patients with Parkinson’s disease and epilepsy, and Ganguly believes stroke patients may be the next to benefit.

 Explore further: Electrical nerve stimulation could help patients regain motor functions sooner

More information: Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke, Nature Medicine (2018). www.nature.com/articles/s41591-018-0058-y

via Electrically stimulating the brain may restore movement after stroke

, , , , , , , , ,

Leave a comment

[Abstract] The Efficacy of Lower Extremity Mirror Therapy for Improving Balance, Gait, and Motor Function Poststroke: A Systematic Review and Meta-Analysis

Abstract

Background

Mirror therapy is less commonly used to target the lower extremity after stroke to improve outcomes but is simple to perform. This review and meta-analysis aimed to evaluate the efficacy of lower extremity mirror therapy in improving balance, gait, and motor function for individuals with stroke.

Methods

PubMed, Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Cumulative Index to Nursing and Allied Health Literature, Physiotherapy Evidence Database, and PsychINFO were searched from inception to May 2018 for randomized controlled trials (RCTs) comparing lower extremity mirror therapy to a control intervention for people with stroke. Pooled effects were determined by separate meta-analyses of gait speed, mobility, balance, and motor recovery.

Results

Seventeen RCTs involving 633 participants were included. Thirteen studies reported a significant between-group difference favoring mirror therapy in at least one lower extremity outcome. In a meta-analysis of 6 trials that reported change in gait speed, a large beneficial effect was observed following mirror therapy training (standardized mean differences [SMD] = 1.04 [95% confidence interval [CI] = .43, 1.66], I2 = 73%, and P < .001). Lower extremity mirror therapy also had a positive effect on mobility (5 studies, SMD = .46 [95% CI = .01, .90], I2 = 43%, and P = .05) and motor recovery (7 studies, SMD = .47 [95% CI = .21, .74], I2 = 0%, and P < .001). A significant pooled effect was not found for balance capacity.

Conclusions

Mirror therapy for the lower extremity has a large effect for gait speed improvement. This review also found a small positive effect of mirror therapy for mobility and lower extremity motor recovery after stroke.

 

via The Efficacy of Lower Extremity Mirror Therapy for Improving Balance, Gait, and Motor Function Poststroke: A Systematic Review and Meta-Analysis – Journal of Stroke and Cerebrovascular Diseases

, , , , , , ,

Leave a comment

[Abstract] Simultaneous stimulation in bilateral leg motor areas with intermittent theta burst stimulation to improve functional performance after stroke: a feasibility pilot study

PDF

 

BACKGROUND: Intermittent theta burst stimulation (iTBS) was widely used in stroke rehabilitation and was more efficient than repetitive transcranial magnetic stimulation in terms of inducing larger motor evoked potential and producing longer effects. To our knowledge, the outcomes are not available combining rehabilitation and iTBS for improving motor function of lower extremities in patients with stroke.
AIM: To evaluate the feasibility and effectiveness of intermittent theta burst stimulation aiming to stimulate bilateral leg motor cortex and promote functional improvements.
DESIGN: A single blind, randomized controlled pilot study.
SETTING: Rehabilitation ward.
POPULATION: Twenty patients with chronic stroke finally enrolled for analyzed.
METHODS: Participants were randomized into two groups to receive 10 sessions of iTBS group and sham group over a 5-week period. The iTBS was delivered over the midline of skull to stimulate bilateral leg motor cortex. The outcome measures included balance, mobility, and leg motor functions were measured before and after interventions.
RESULTS: Within-group differences were significant in the Berg Balance Scale for both groups (Z=-2.442, P=0.015 in iTBS group; Z=-2.094, P=0.036 in sham group), in the Fugl-Meyer Assessment (Z=-2.264, P=0.024) and Overall Stability Index of Biodex Balance System of iTBS group (Z=-2.124, P=0.034). However, no significant between-group differences were found.
CONCLUSIONS: There was no powerful evidence to support the effectiveness of iTBS group better than sham control group. Some essential technical issues should be considered for future studies applying iTBS to stimulate bilateral leg motor cortex.
CLINICAL REHABILITATION IMPACT: iTBS combined with stroke rehabilitation are probably expected to be useful for promote brain plasticity and functional performance but some technical issues should be carefully considered.

via Simultaneous stimulation in bilateral leg motor areas with intermittent theta burst stimulation to improve functional performance after stroke: a feasibility pilot study – European Journal of Physical and Rehabilitation Medicine 2018 Aug 27 – Minerva Medica – Journals

, , , , , , ,

Leave a comment

[VIDEO] Toyota’s newest robotic brace helps people walk again

Toyota has introduced a motorized leg that can help people with limited mobility walk again. https://yhoo.it/2L9CzR7

via Toyota’s newest robotic brace helps people walk again

, , , ,

Leave a comment

[VIDEO] How Virtual Reality is helping Australians to move again – SBSM The Today Show

, , ,

Leave a comment

%d bloggers like this: