Posts Tagged Modified constraint-induced movement therapy

[Abstract] Functional outcome, Rehabilitation, Upper extremity function


Introduction: Paretic upper limb in stroke patients has a significant impact on the quality of life. Modified Constraint Induced Movement Therapy (mCIMT) is one of the treatment options used for the improvement of the function of the paretic limb.

Aim: To investigate the efficacy of four week duration mCIMT in the management of upper extremity weakness in hemiparetic patients due to stroke.

Materials and Methods: Prospective single blind, parallel randomized controlled trial in which 30 patients received conventional rehabilitation programme (control group) and 30 patients participated in a mCIMT programme in addition to the conventional rehabilitation programme (study group). The mCIMT included three hours therapy sessions emphasizing the affected arm use in general functional tasks, three times a week for four weeks. Their normal arm was also constrained for five hours per day over five days per week. All the patients were assessed at baseline, one month and three months after completion of therapy using Fugl-Meyer Assessment (FMA) score for upper extremity and Motor Activity Log (MAL) scale comprising of Amount of Use (AOU) score and Quality of Use (QOU) score.

Results: All the 3 scores improved significantly in both the groups at each follow-up. Post-hoc analysis revealed that compared to conventional rehabilitation group, mCIMT group showed significantly better scores at 1 month {FMA1 (p-value <0.0001, es0.2870), AOU1 (p-value 0.0007, es0.1830), QOU1 (p-value 0.0015, es0.1640)} and 3 months {FMA3 (p-value <.0001, es0.4240), AOU3 (p-value 0.0003, es 0.2030), QOU3 (p-value 0.0008, es 0.1790)}.

Conclusion: Four weeks duration for mCIMT is effective in improving the motor function in paretic upper limb of stroke patients.

Source: JCDR – Functional outcome, Rehabilitation, Upper extremity function

, , , , , , , , ,

Leave a comment

[Abstract] Efficacy of modified constraint-induced movement therapy in acute stroke

BACKGROUND: Modified constraint induced movement therapy (m-CIMT) discourages the use of the unaffected extremity and encourages the active use of the hemiplegic arm in order to restore the motor function. AIM: The aim was to assess the efficacy of m-CIMT on functional recovery of upper extremity (UE) in acute stroke patients, as compared to conventional rehabilitation therapy.

DESIGN: This is a prospective comparative study.

SETTING: This study included sixty patients with acute stroke recruited from neurology department.

METHODS: This study included sixty acute stroke patients. Inclusion criteria were: patients within two weeks from the onset of stroke, persistent hemiparesis leading to impaired upper extremity function, evidence of preserved cognitive function, and a minimum of 10 degrees of active finger extension and 20 degrees of active wrist extension. Exclusion criteria were: intra-cerebral hemorrhage, previous stroke on the same side, presence of neglect or a degree of aphasia impeding understanding of instructions, and conditions that limit the use of the upper limb before the stroke. Patients were assessed by Fugl-Meyer motor assessment (FMA), action research arm test (ARAT) and motor evoked potentials (MEPs), recorded from the abductor pollicis brevis (APB) of the affected hand. The clinical and neurophysiological tests were performed pre and postrehabilitation. The patients were divided into two groups: conventional rehabilitation program group (CRP) included 30 patients who were given a conventional rehabilitation program for two weeks. CIMT group included 30 patients who were subjected to modified CIMT for two consecutive weeks. Total treatment time was the same in both groups.

RESULTS: CRP group showed a non-significant improvement in FMA and ARAT. CIMT group showed a significant improvement in clinical scores on all tests (p < 0.05). When comparing both groups using FMA and ARAT tests pre- and post- therapy, a significant difference (p < 0.05) was found between both groups with CIMT group showing greater improvement. When comparing MEPs in CRP group, pre and postrehabilitation, a non-significant improvement was found for resting motor threshold (RMT), central motor conduction time (CMCT) and amplitude of MEPs. In contrast, each of the MEP parameters exhibited a significant improvement in CIMT group (p < 0.05).

CONCLUSION: In contrast to conventional rehabilitation therapy, modified CIMT revealed a significant functional and MEP improvement in acute stroke patients indicating that m-CIMT might be a more efficient treatment strategy.

CLINICAL REHABILITATION IMPACT: It is advised to use modified constraint movement therapy in rehabilitation of cerebrovascular stroke during acute stage.

Full text (sometimes free) may be available at these link(s):      help

Source: PEDro – Search Detailed Search Results

, , , , , , , ,

Leave a comment

[ARTICLE] Effects of Unilateral Upper Limb Training in Two Distinct Prognostic Groups Early After Stroke – Full Text


Background and Objective. Favorable prognosis of the upper limb depends on preservation or return of voluntary finger extension (FE) early after stroke. The present study aimed to determine the effects of modified constraint-induced movement therapy (mCIMT) and electromyography-triggered neuromuscular stimulation (EMG-NMS) on upper limb capacity early poststroke.

Methods. A total of 159 ischemic stroke patients were included: 58 patients with a favorable prognosis (>10° of FE) were randomly allocated to 3 weeks of mCIMT or usual care only; 101 patients with an unfavorable prognosis were allocated to 3-week EMG-NMS or usual care only. Both interventions started within 14 days poststroke, lasted up until 5 weeks, focused at preservation or return of FE.

Results. Upper limb capacity was measured with the Action Research Arm Test (ARAT), assessed weekly within the first 5 weeks poststroke and at postassessments at 8, 12, and 26 weeks. Clinically relevant differences in ARAT in favor of mCIMT were found after 5, 8, and 12 weeks poststroke (respectively, 6, 7, and 7 points; P < .05), but not after 26 weeks. We did not find statistically significant differences between mCIMT and usual care on impairment measures, such as the Fugl-Meyer assessment of the arm (FMA-UE). EMG-NMS did not result in significant differences.

Conclusions. Three weeks of early mCIMT is superior to usual care in terms of regaining upper limb capacity in patients with a favorable prognosis; 3 weeks of EMG-NMS in patients with an unfavorable prognosis is not beneficial. Despite meaningful improvements in upper limb capacity, no evidence was found that the time-dependent neurological improvements early poststroke are significantly influenced by either mCIMT or EMG-NMS.


Several prospective cohort studies among stroke patients have shown that the functional outcome of the upper limb is largely defined within the first 5 weeks poststroke and is mainly driven by (yet poorly understood) mechanisms of spontaneous neurological recovery.1,2 Observational studies showed that the presence of some voluntary finger extension (FE) within 72 hours is a favorable indicator for the return of dexterity poststroke.3,4 This suggests that early control of FE is an important prognostic factor in stratifying patients for upper limb intervention trials early poststroke.2

For those with a favorable prognosis, indicated by some voluntary FE early poststroke, constraint-induced movement therapy (CIMT) or a modified version (mCIMT) may benefit arm-hand activities and self-reported hand function in daily life.5The number of phase II trials on mCIMT within the first days or weeks poststroke is however small and findings are rather inconclusive. For example, Dromerick et al6showed in a proof of concept trial that 1 or 2 hours mCIMT per working day for 2 weeks was not superior to an equal dosage of usual care, whereas a high dose of 3 hours mCIMT per working day resulted in less improvement on functional outcome measured with the Action Research Arm Test (ARAT) at 3 months poststroke.

For those with an unfavorable prognosis for functional outcome at 6 months, that is, patients without voluntary FE,1,3,4 no evidence-based therapies have been reported so far. In subacute and chronic stroke, innovative therapies such as electromyography-triggered neuromuscular stimulation (EMG-NMS) of the finger extensors to improve voluntary control have shown promise in terms of increasing active range of motion.711 Furthermore, several studies suggest that EMG-NMS may produce changes in cortical activation patterns and excitability in chronic stroke.12,13 For example, Shin et al13 showed in a small proof of concept trial (n = 14) that a daily 30-minute program for 10 weeks shifted cortical activation patterns as seen in functional magnetic resonance imaging from the ipsilateral sensorimotor cortex to the contralateral sensorimotor cortex in chronic stroke. Despite the growing evidence for enhanced levels of homeostatic neuroplasticity in the first weeks poststroke,14 early started EMG-NMS trials for patients without FE are lacking in this restricted time window.

The first objective of the present study was to investigate the effects of an early mCIMT program on recovery of upper limb capacity during the first 6 months, starting within 14 days poststroke in patients with some voluntary FE. Our second objective was to investigate the effects of early EMG-NMS on the recovery of voluntary FE and upper limb capacity during the first 6 months, starting within 14 days poststroke in patients with no voluntary control of the finger extensors. We hypothesized that an intensive 3-week mCIMT program would result in a clinically meaningful improvement in ARAT scores compared with usual care alone. For the patients with an unfavorable prognosis we hypothesized that a higher percentage of patients (10% or more increase) would regain some dexterity (ARAT score >9 points on a maximum of 57 points) if they received intensive daily EMG-NMS for 3 weeks, compared with usual care alone.

Continue —>  Effects of Unilateral Upper Limb Training in Two Distinct Prognostic Groups Early After Stroke


Figure 1. Inclusion flow diagram. The total amount of patients with cerebrovascular accidents was estimated using the number of admitted patients in each participating center. mCIMT: modified constrained-induced movement therapy; EMG-NMS, electromyography-triggered neuromuscular stimulation.

, , , , , , , , , , ,

Leave a comment

[ARTICLE] The efficacy of Wii-based Movement Therapy for upper limb rehabilitation in the chronic poststroke period: a randomized controlled trial.


Background: More effective and efficient rehabilitation is urgently needed to address the prevalence of unmet rehabilitation needs after stroke. This study compared the efficacy of two poststroke upper limb therapy protocols.

Aims and/or hypothesis: We tested the hypothesis that Wii-based movement therapy would be as effective as modified constraint-induced movement therapy for post-stroke upper-limb motor rehabilitation.

Methods: Forty-one patients, 2–46 months poststroke, completed a 14-day program of Wii-based Movement Therapy or modified Constraint-induced Movement Therapy in a dose-matched, assessor-blinded randomized controlled trial, conducted in a research institute or patient’s homes. Primary outcome measures were the Wolf Motor Function Test timed-tasks and Motor Activity Log Quality of Movement scale. Patients were assessed at prebaseline (14 days pretherapy), baseline, post-therapy, and six-month follow-up. Data were analyzed using linear mixed models and repeated measures analysis of variance.

Results: There were no differences between groups for either primary outcome at any time point. Motor function was stable between prebaseline and baseline (P > 0·05), improved with therapy (P  0·05). Wolf Motor Function Test timed-tasks log times improved from 2·1 ± 0·22 to 1·7 ± 0·22 s after Wii-based Movement Therapy, and 2·6 ± 0·23 to 2·3 ± 0·24 s after modified Constraint-induced Movement Therapy. Motor Activity Log Quality of Movement scale scores improved from 67·7 ± 6·07 to 102·4 ± 6·48 after Wii-based Movement Therapy and 64·1 ± 7·30 to 93·0 ± 5·95 after modified Constraint-induced Movement Therapy (mean ± standard error of the mean). Patient preference, acceptance, and continued engagement were higher for Wii-based Movement Therapy than modified Constraint-induced Movement Therapy.

Conclusions: This study demonstrates that Wii-based Movement Therapy is an effective upper limb rehabilitation poststroke with high patient compliance. It is as effective as modified Constraint-induced Movement Therapy for improving more affected upper limb movement and increased independence in activities of daily living.

Continue —>  The efficacy of Wii-based Movement Therapy for upper limb rehabilitation in the chronic poststroke period: a randomized controlled trial – McNulty – 2015 – International Journal of Stroke – Wiley Online Library

, , , , , , , , , ,

Leave a comment

[ARTICLE] The effects of modified constraint-induced movement therapy combined with trunk restraint in subacute stroke: a double-blinded randomized controlled trial

…These results suggest that mCIMT combined with trunk restraint is more helpful to improve upper-extremity function than mCIMT only in subacute stroke patients with moderate motor impairment…

via The effects of modified constraint-induced movement therapy combined with trunk restraint in subacute stroke: a double-blinded randomized controlled trial.

, , , , , , , ,


%d bloggers like this: