Posts Tagged Motivation

[BLOG POST] Rehabilitation in the Home – Transitions Physiotherapy

Physiotherapy Rehabilitation in the Home

There are two main reasons why physiotherapy rehabilitation in the home has become so popular. The first, is the simple convenience of mobile physiotherapy delivered in the comfort of your own home without having to tackle traffic and parking.The second is because home-based rehabilitation really works!

Rehabilitation takes hard work and requires a lot of practice. The environment around us can affect how easy or difficult it is to practice, practice, practice! Clinic based physiotherapy is important when extra space or specialised equipment is required, and some people prefer to attend a consultation room.

Home-based physiotherapy allows you to take what you have learnt in hospital or clinic and gain real life experience with guidance from an experienced physiotherapist. There are many therapeutic benefits to rehabilitation in the home for people with neurological conditions:

  • Feeling more comfortable in a familiar environment will enhance performance
  • Gain confidence to practice tasks that are the ‘just right challenge’ in your home environment
  • Completing tasks in your own home will have greater meaning so will provide greater motivation
  • Learning tasks in the same place that you will need to practice them will lead to greater practice and repetition
  • Functional tasks such as how to get out of bed or negotiate steps can be tailoredto the exact environment where you need to perform them

Tailoring neurological physiotherapy to real-life is the focus of home visiting physiotherapy.  Rehabilitation in your own home harnesses the principles of neuroplasticity because it can fuel the motivation to continue with the practice of meaningful tasks that are the ‘just right challenge’.

Source: Rehabilitation in the Home – Transitions Physiotherapy Perth

Advertisements

, ,

Leave a comment

[Thesis] Serious Games for Health Rehabilitation

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO
Serious Games for Health Rehabilitation
Paula Alexandra Carvalho de Sousa Rego

Abstract
Serious Games are growing into a significant area spurred by the growth in the use of video games and of new methods for their development. They have important applications in several distinct areas such as: military, health, government, and education. As such, their purpose is to be used for other purposes than pure entertainment, which is normally associated with the concept of game. The interest for Serious Games arises from the fact that games have a set of features that makes them very effective to engage users and keep their motivation at higher levels.

From the above discussion, the design of computer games can offer valuable contributions to develop effective games in the rehabilitation area. In rehabilitation programs, one of the major problems reported are related to the motivation and engagement of patients in the exercises training sessions using traditional therapy approaches. Patients rapidly lose their interest and get bored doing the, usually repetitive, rehabilitation tasks.

This thesis addresses Serious Games for Health Rehabilitation (SGHR), and provides an indepth study and survey of the existent games and features. With this study we were able to devise a taxonomy that enables researchers and practitioners to use a systematic approach to study, classify and compare SGHR. This taxonomy is validated by a set of experts in the interrelated domain of knowledge. The research led us to identify and propose several important features and guidelines to include in SGHR. As a result, we propose, discuss and describe a framework for the development of serious games. The framework integrates a set of features of natural and multimodal interaction, social interaction (collaboration and competitiveness) and progress monitoring, which can be used to increase the motivation of the patients during the rehabilitation process.

To validate the proposed framework and features, a set of serious games were developed. These games are intended to be used in rehabilitation sessions, and their main goal is to increase the users’ motivation during the rehabilitation process. The developed games were designed based on well established rehabilitation systems and rehabilitation tasks. We describe the design and implementation of the games with respect to our proposed framework. The resulting game platform includes a set of features, such as competitiveness, collaboration and handicap mechanisms, with the aim of promoting the engagement and motivation of the patients involved in the rehabilitation process. The resulting system is a Web platform that enables games to be played online, making it more accessible to all users, including patients in rehabilitation. Besides that, the web platform provides a low cost solution to patients training and enables home rehabilitation, in addition to traditional therapy.

Final experiments were performed in order to validate the proposed framework and provide scientific evidence that it is possible to use serious games for health rehabilitation to increase the motivation of users. Experiments were conducted with healthy people and elderly users. The scores achieved in all the tests used were quite good with emphasis for the very good SUS and IMI scores achieved.

Full Text PDF

, , ,

Leave a comment

[BLOG POST] Conquer motivation after brain injury- tips from a survivor

Why it’s so difficult to conquer motivation after brain injury?

One of the most commonly reported symptoms of brain injury is fatigue. And I don’t mean tiredness.  Fatigue is something much worse. For me I can be willing, but my brain has other ideas. Sometimes I think my conscious mind and sub-conscious don’t like each other and are always having an argument.  The result might make me appear lazy to the casual observer, but that isn’t the whole story. The ongoing battle is within me, as I try to conquer motivation.

When I tried to return to work (and failed) my bosses tried to tell me I needed to take some responsibility for my recovery. My left leg and arm were very weak, and they were surprised that I hadn’t joined a gym to rebuild my strength. At that stage I had never been a gym goer. But the idea of trying to do something like that without being ordered to was unfathomable.  When I was suffering with so much fatigue, how was I supposed to find the motivation?

Even things like tidying the house took so much building up to. But over time I have noticed something about myself. I knew it before, but I hadn’t appreciated it’s power over me previously.

The impact on others gives me more motivation than the impact on me.

9 months after my accident I adopted my Dads cat Murphy, who he was struggling to care for. I knew Murphy was ill, and it turned out to be mouth cancer. I had known Murphy his whole life as I lived at my parents when Murphy first arrived. We were best mates, and so I moved him to the other side of the country with me so I could look after him.

He was skinny and very underweight. As he had no appetite so I spent all day, everyday chasing him with food, trying to make him eat. Murphy became one of my priorities. I knew he didn’t have time on his side, but I needed to make him as comfortable as possible. And it worked, I soon got him back to a healthy weight. He found new energy and found the motivation to explore outside several times a day. That made me so happy. He was my reason to get out of bed in the mornings, because he needed me more now than he had ever in his life. Earlier this year he lost his battle, but he knew he was loved.

Others well-being is my motivation

How I motivate myself now.

So if I need to tidy the house, I tell myself how it’s not fair on my partner James if I don’t. He works long hard days, so I can’t expect him to do it after work. Nor should I expect him to have to live in a pig sty. So I tell myself off and get on with it. (Followed by a impromptu nap.)

I did eventually join a gym and was doing really well. But that has fallen by the wayside, as it only helps  me. I don’t think this is about confidence or self esteem, just having a purpose. I was always a dedicated worker, but now I don’t work I’ve had to explore other ways  to motivate myself.

When I started this blog, it wasn’t as therapy for myself, it was to raise awareness. I felt people needed to better understand brain injury. Now I know there are other survivors who read this and in some small way find it helpful. So my responsibility is to you, and therefore you are my motivation to continue my ramblings. So my advice is if you struggling to get going think who really needs you to complete that task. It could be as simple as the birds in your garden need you to put some food out for them to ensure their survival. We make a difference to somebodies life every day, that is a most profound motivation for me.

If you need more ideas on motivation I found this article which is suitable for most people.

https://www.psychologytoday.com/blog/friendship-20/201605/5-ways-stop-sabotaging-yourself

Other related articles:

Source: Conquer motivation after brain injury- tips from a survivor

,

Leave a comment

[ARTICLE] Robotic-assisted serious game for motor and cognitive post-stroke rehabilitation – Full Text PDF

 

Abstract

Stroke is a major cause of long-term disability that can cause motor and cognitive impairments. New technologies such as robotic devices and serious games are increasingly being developed to improve post-stroke rehabilitation. The aim of the present project was to develop a ROBiGAME serious game to simultaneously improve motor and cognitive deficits (in particular hemiparesis and hemineglect). In this context, the difficulty level of the game was adapted to each patient’s performance, and this individualized adaptation was addressed as the main challenge of the game development. The game was implemented on the REAplan end-effector rehabilitation robot, which was used in continuous interaction with the game. A preliminary feasibility study of a target pointing game was run in order to validate the game features and parameters. Results showed that the game was perceived as enjoyable, and that patients reported a desire to play the game again. Most of the targets included in the game design were realistic, and they were well perceived by the patients. Results also suggested that the cognitive help strategy could include one visual prompting cue, possibly combined with an auditory cue. It was observed that the motor assistance provided by the robot was well adapted for each patient’s impairments, but the study results led to a suggestion that the triggering conditions should be reviewed. Patients and therapists reported the desire to receive more feedback on the patient’s performances. Nevertheless, more patients and therapists are needed to play the game in order to give further and more comprehensive feedback that will allow for improvements of the serious game. Future steps also include the validation of the motivation assessment module that is currently under development.

Full Text PDF

 

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Affordable stroke therapy in high-, low- and middle-income countries: From Theradrive to Rehab CARES, a compact robot gym – Full Text

 

Affordable technology-assisted stroke rehabilitation approaches can improve access to rehabilitation for low-resource environments characterized by the limited availability of rehabilitation experts and poor rehabilitation infrastructure. This paper describes the evolution of an approach to the implementation of affordable, technology-assisted stroke rehabilitation which relies on low-cost mechatronic/robot devices integrated with off-the-shelf or custom games. Important lessons learned from the evolution and use of Theradrive in the USA and in Mexico are briefly described. We present how a stronger and more compact version of the Theradrive is leveraged in the development of a new low-cost, all-in-one robot gym with four exercise stations for upper and lower limb therapy called Rehab Community-based Affordable Robot Exercise System (Rehab C.A.R.E.S). Three of the exercise stations are designed to accommodate versions of the 1 DOF haptic Theradrive with different custom handles or off-the-shelf commercial motion machine. The fourth station leverages a unique configuration of Wii-boards. Overall, results from testing versions of Theradrive in USA and Mexico in a robot gym suggest that the resulting presentation of the Rehab C.A.R.E.S robot gym can be deployed as an affordable computer/robot-assisted solution for stroke rehabilitation in developed and developing countries.

Non-communicable diseases, especially cardiovascular diseases, are the leading cause of death and disability in the world. An increase in their prevalence often leads to higher incidences of stroke and consequently, an increase in the number of persons living with permanent disability due to stroke.1,2 Stroke is the leading cause of disability worldwide. Over 6.8 million adults live in the USA with disabilities due to a stroke, and by 2030, this number will grow by 4 million.3,4Seventy-five percent of adults recovering from stroke have residual impairment in their limbs, with only about 25% achieving recovery with minor impairments, and only 10% achieving full recovery.57 Greater than 30% are unable to walk without some assistance and 26% remain dependent in activities of daily living.8

The issues influencing rehabilitation outcomes are complex; some examples of these issues are poverty, increase in health costs, short length of stays, insurance limitations, and physical constraints on rehabilitation services (e.g. time).3,6 In low- and middle-income countries (LMIC), rehabilitation outcomes are worse since a disproportionate number of the population is without easy access to rehabilitation technologies, services and skilled clinicians.1,3,9,10 Improved stroke rehabilitation approaches can maximize the functional independence of stroke survivors discharged after inpatient and outpatient services and improve access to rehabilitation for low-resource environments in USA or other LMICs.

Our long-term goal is to develop and use affordable robot technologies to improve access to rehabilitation and ultimately improve the health and function of persons with persistent motor deficits due to a stroke in the USA and worldwide, especially in LMICs where more than 80% of those living with a stroke reside. Specifically, we desire to target stroke survivors who are diagnosed with hemiparesis, are living with severe to moderate motor function impairment, and are without easy access to rehabilitation. Research efforts are needed to develop cost-effective robot devices that can do the above and function in harsher environments characterized by extreme economic hardship (per country), intermittent energy and limited expert supervisors.

Our main approach to delivering rehabilitation has always promoted robot/computer-assisted motivating rehabilitation systems for stroke therapy.31 We have proposed the use and development of mechatronic devices alone or within a suite of devices for upper limb stroke therapy. This paper summarizes lessons learned regarding the delivery of affordable and accessible stroke therapy in HICs and LMICs. We illustrate these lessons via the use of Theradrive, alone (TD-1),2832 its development into a 1DOF Haptic Robot called Haptic Theradrive,3638 a therapy gym in Mexico (TD-2),3335 where Theradrive was one of six devices aimed at improving motor function after stroke. The paper then presents how a stronger and more compact version of the Theradrive is re-designed and leveraged in the development of a new low-cost, all-in-one robot gym called Rehab Community-based Affordable Robot Exercise System (Rehab C.A.R.E.S) with four exercise stations for upper and lower limb therapy. The prototype of the system is described along with strategies for control and new results from testing on exercise station 2. Finally, we discuss implications for deploying such a system in LMICs. […]

Continue —> Affordable stroke therapy in high-, low- and middle-income countries: From Theradrive to Rehab CARES, a compact robot gymJournal of Rehabilitation and Assistive Technologies Engineering – Michelle Jillian Johnson, Roshan Rai, Sarath Barathi, Rochelle Mendonca, Karla Bustamante-Valles, 2017

figure

Figure 1. Theradrive (TD-1), Mexico Theradrive (TD-2), and Haptic Theradrive (TD-3). The Mexico Theradrive has a similar platform to TD-1. Note: Figure 1 used with permission from reference 37.

, , , , , , , , , , , ,

Leave a comment

[Abstract+References] Ubiquitous gamification framework for stroke rehabilitation treatment based on the web service

Abstract

Every year a large number of people survives from the stroke. To overcome the muscular rigidity, the survivors should participate the rehabilitation program regularly. Above all things, the motivation of the survivors easily collapses and hinder the participating the rehabilitation program. As a consequence, finding a good motivator for individual survivors is an important task for the caregivers and the therapists. This paper utilizes an individualized game for a motivator and proposes a ubiquitous gamification framework for stroke rehabilitation using web-services. The framework provides a formal interface to embrace individualized games and devices and motivates the survivors to participate the rehabilitation process in daily life.

References

1
2
Management of Stroke Rehabilitation Working Group 2010. VA/DOD Clinical practice guideline for the management of stroke rehabilitation. Journal of rehabilitation research and development.
3
Lindberg, J., Kreuter, M., Persson, L. O., and Taft, C. 2014. Family Members’ Perspectives on Patient Participation in Spinal Cord Injury Rehabilitation. Int J Phys Med Rehabil. (2014)
4
Ren, Y., Wu, Y. N., Yang, C. Y., Xu, T., Harvey, R., and Zhang, L. Q. 2016. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 99 (2016), 1–1.  [doi>10.1109/TNSRE.2016.2584003]
5
Popović, M. D., Kostić, M. D., Rodić, S. Z., and Konstantinović, L. M. 2014. Feedback-mediated upper extremities exercise: increasing patient motivation in poststroke rehabilitation. Biomed Res Int. (2014).
6
Thikey, H., Grealy, M., Wijck, F. V., Barber, M., and Rowe, P. 2012. Augmented visual feedback of movement performance to enhance walking recovery after stroke: study protocol for a pilot randomised controlled trial. Trials. 13, 1 (2012), 1–7.  [doi>10.1186/1745-6215-13-163]
7
8
Jacobs, A., Timmermans, A., Michielsen, M., Plaetse, M. V., and Markopoulos, P. 2013. CONTRAST: gamification of arm-hand training for stroke survivors. CHI EA. ACM New York, NY, USA (2013), 415–420.  [doi>10.1145/2468356.2468430]
9
Wood, S. R., Murillo, N., Bach-y-Rita, P., Leder, R. S., Marks, J. T., and Page, S. J. 2003. Motivating, Game-Based Stroke Rehabilitation: A Brief Report. Top Stroke Rehabil. 10, 2 (2003), 134–140.  [doi>10.1310/WB09-PFYJ-7XRN-RU6W]
10
White, G. N., Cordato, D. J., O’Rourke, F., and Mendis, R. L. 2012. Validation of the Stroke Rehabilitation Motivation Scale: a pilot study. Asian J Gerontol Geriatr. 7 (2012), 80–87.
11
Cho, K. H., Lee, K. J., and Song, C. H. 2012. Virtual-Reality Balance Training with a Video-Game System Improves Dynamic Balance in Chronic Stroke Patients. Tohoku J. Exp. Med. 228, 1 (2012), 69–74.  [doi>10.1620/tjem.228.69]
12
Hondori, H. M., Khademi, M., and Lopes, C.V. 2012. Monitoring intake gestures using sensor fusion (Microsoft Kinect and inertial sensors) for smart home tele-rehab setting. 1st Annual IEEE Healthcare Innovation Conference of the IEEE EMBS. (2012).
13
Sin, H., and Lee, G. 2013. Additional Virtual Reality Training Using Xbox Kinect in Stroke Survivors with Hemiplegia. Am J Phys Med Rehabil. 92, 10 (2013), 871–880.  [doi>10.1097/PHM.0b013e3182a38e40]
14
15
Kinect for Xbox One official homepage http://www.xbox.com/en-US/xbox-one/accessories/kinect
16
Cleveland. Wii Fit Nintendo game makes physical therapy fun http://blog.cleveland.com/lifestyles/2008/06/wii_fit_nintendo_game_makes_ph.html
17
Wii Fit Plus official homepage http://wiifit.com/
18
Lange, B. S., Flynn, S. M., and Rizzo, A. A. 2009. Initial usability assessment of off-the-shelf video game consoles for clinical game-based motor rehabilitation. Phys Ther Rev. 14, 5 (2009), 355–363.  [doi>10.1179/108331909X12488667117258]
19
Deutsch, J. E., Robbins, D., Morrison, J., and Bowlby, P. G. 2009. Wii-based compared to standard of care balance and mobility rehabilitation for two individuals post-stroke. Virtual Rehabilitation International Conference. (2009), 117–120.  [doi>10.1109/ICVR.2009.5174216]
20
21
Björk, G. S., and Rydmark, M. 2007. Game Design in Virtual Reality Systems for Stroke Rehabilitation. Stud Health Technol Inform. 125 (2007), 146–148.
22
Burke, J.W. et al. 2010. Designing engaging, playable games for rehabilitation. (2010).
23
Rand, D., Kizony, R., and Weiss, P. L. 2004. Virtual reality rehabilitation for all: Vivid GX versus Sony PlayStation II EyeToy. 5th ICDVRAT. (2004), 87–94.
24
25
Colombo, E., Pisano, F., and Mazzone, A. et al.2007. Design strategies to improve patient motivation during robot-aided rehabilitation. J Neuroeng Rehabil, 4, 3 (2007), 33–39.
26
Reese, G. 2012. The REST API Design Handbook. Amazon Digital Services. (2012)

Source: Ubiquitous gamification framework for stroke rehabilitation treatment based on the web service

, , ,

Leave a comment

[WEB SITE] Gaming helps personalized therapy level up – Penn State University

UNIVERSITY PARK, Pa. — Using game features in non-game contexts, computers can learn to build personalized mental- and physical-therapy programs that enhance individual motivation, according to Penn State engineers.

“We want to understand the human and team behaviors that motivate learning to ultimately develop personalized methods of learning instead of the one-size-fits-all approach that is often taken,” said Conrad Tucker, assistant professor of engineering design and industrial engineering.

They seek to use machine learning to train computers to develop personalized mental or physical therapy regimens — for example, to overcome anxiety or recover from a shoulder injury — so many individuals can each use a tailor-made program.

“Using people to individually evaluate others is not efficient or sustainable in time or human resources and does not scale up well to large numbers of people,” said Tucker. “We need to train computers to read individual people. Gamification explores the idea that different people are motivated by different things.”

To begin creating computer models for therapy programs, the researchers tested how to most effectively make the completion of a physical task into a gamified application by incorporating game features like scoring, avatars, challenges and competition.

“We’re exploring here how gamification could be applied to health and wellness by focusing on physically interactive gamified applications,” said Christian Lopez, graduate student in industrial engineering, who helped conduct the tests using a virtual-reality game environment.

Screen from game designed to test features for gamification use in physical and mental therapy. Image: Kimberly Cartier / Penn State

In the virtual-reality tests, researchers asked participants to physically avoid obstacles as they moved through a virtual environment. The game system recorded their actual body positions using motion sensors and then mirrored their movements with an avatar in virtual reality.

Participants had to bend, crouch, raise their arms, and jump to avoid obstacles. The participant successfully avoided a virtual obstacle if no part of their avatar touched the obstacle. If they made contact, the researchers rated the severity of the mistake by how much of the avatar touched the obstacle.

In one of the application designs, participants could earn more points by moving to collect virtual coins, which sometimes made them hit an obstacle.

“As task complexity increases, participants need more motivation to achieve the same level of results,” said Lopez. “No matter how engaging a particular feature is, it needs to move the participant towards completing the objective rather than backtracking or wasting time on a tangential task. Adding more features doesn’t necessarily enhance performance.”

Tucker and Lopez created a predictive algorithm — a mathematical formula to forecast the outcome of an event — that rates the potential usefulness of a game feature. They then tested how well each game feature motivated participants when completing the virtual-reality tasks. They compared their test results to the algorithm’s predictions as a proof of concept and found that the formula correctly anticipated which game features best motivated people in the physically interactive tasks.

The researchers found that gamified applications with a scoring system, the ability to select an avatar, and in-game rewards led to significantly fewer mistakes and higher performance than those with a win-or-lose system, randomized gaming backgrounds and performance-based awards.

Sixty-eight participants tested two designs that differed only by the features used to complete the same set of tasks. Tucker and Lopez published their results in Computers in Human Behavior.

The researchers chose the tested game features from the top-ranked games in the Google Play app store, taking advantage of the features that make the games binge-worthy and re-playable, and then narrowed the selection based on available technology.

Their algorithm next ranked game features by how easily designers could implement them, the physical complexity of using the feature, and the impact of the feature on participant motivation and ability to complete the task. If a game feature is too technologically difficult to incorporate into the game, too physically complex, does not offer enough incentive for added effort or works against the end goal of the game, then the feature has low potential usefulness.

The researchers would also like to use these results to boost workplace performance and personalize virtual-reality classrooms for online education.

“Game culture has already explored and mastered the psychological aspects of games that make them engaging and motivating,” said Tucker. “We want to leverage that knowledge towards the goal of individualized optimization of workplace performance.”

To do this, Tucker and Lopez next want to connect performance with mental state during these gamified physical tasks. Heart rate, electroencephalogram signals and facial expressions will be used as proxies for mood and mental state while completing tasks to connect mood with game features that affect motivation.

The National Science Foundation funded this research.

Source: Gaming helps personalized therapy level up | Penn State University

, , ,

Leave a comment

[ARTICLE] Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity – Full Text

Abstract

Background

People with chronic arm impairment should exercise intensely to regain their abilities, but frequently lack motivation, leading to poor rehabilitation outcome. One promising way to increase motivation is through interpersonal rehabilitation games, which allow patients to compete or cooperate together with other people. However, such games have mainly been evaluated with unimpaired subjects, and little is known about how they affect motivation and exercise intensity in people with chronic arm impairment.

Methods

We designed four different arm rehabilitation games that are played by a person with arm impairment and their unimpaired friend, relative or occupational therapist. One is a competitive game (both people compete against each other), two are cooperative games (both people work together against the computer) and one is a single-player game (played only by the impaired person against the computer). The games were played by 29 participants with chronic arm impairment, of which 19 were accompanied by their friend or relative and 10 were accompanied by their occupational therapist. Each participant played all four games within a single session. Participants’ subjective experience was quantified using the Intrinsic Motivation Inventory questionnaire after each game, as well as a final questionnaire about game preferences. Their exercise intensity was quantified using wearable inertial sensors that measured hand velocity in each game.

Results

Of the 29 impaired participants, 12 chose the competitive game as their favorite, 12 chose a cooperative game, and 5 preferred to exercise alone. Participants who chose the competitive game as their favorite showed increased motivation and exercise intensity in that game compared to other games. Participants who chose a cooperative game as their favorite also showed increased motivation in cooperative games, but not increased exercise intensity.

Conclusions

Since both motivation and intensity are positively correlated with rehabilitation outcome, competitive games have high potential to lead to functional improvement and increased quality of life for patients compared to conventional rehabilitation exercises. Cooperative games do not increase exercise intensity, but could still increase motivation of patients who do not enjoy competition. However, such games need to be tested in longer, multisession studies to determine whether the observed increases in motivation and exercise intensity persist over a longer period of time and whether they positively affect rehabilitation outcome.

Trial registration

The study is not a clinical trial. While human subjects are involved, they participate in a single-session evaluation of a rehabilitation game rather than a full rehabilitation intervention, and no health outcomes are examined.

Keywords

Rehabilitation ,Virtual reality ,Multiplayer games, Interpersonal rehabilitation games ,Social interaction ,Motivation ,Exercise intensity

Background

Home rehabilitation technology

Diseases such as stroke have a massively debilitating effect on people’s lives. It is estimated that one in six people will experience a stroke in their lifetime [1], and 88% of survivors report some impairment of their limb function [2]. In the United States, approximately 795,000 individuals suffer a new or recurrent stroke every year, leading to an estimated combined direct and indirect cost of $68.9 billion [3]. Intensive training delivered by a therapist soon after the injury can effectively restore motor functions needed for independent life. However, even top hospitals only devote a limited amount of time to rehabilitation of motor functions [4]. The situation is even worse in most other hospitals and health centers, where patients are idle for most of the day due to a shortage of qualified medical staff [4]. After leaving the hospital, patients thus need to exercise at home without therapist supervision in order to fully regain their abilities.

Several technologies, ranging from consumer devices such as the Microsoft Kinect [5] to complex exoskeletons [6], have been deployed for motor rehabilitation at home. These technologies usually combine limb tracking with virtual environments presented on a personal computer, which allow patients to perform a variety of simulated activities of daily living [7]. Furthermore, they incorporate game-like elements such as automated difficulty adaptation, score displays and cognitive challenges [8, 9, 10, 11]. However, despite promising technical achievements, the effectiveness of home rehabilitation technology remains limited. A recent study showed that, even if a therapist prescribes a technology-supported exercise, only about 30% of unsupervised patients will comply with the rehabilitation regimen [12].

This lack of compliance is due to lack of motivation for rehabilitation, which is known to be a key determinant of rehabilitation outcome: patients who are unmotivated will not exercise frequently or intensely enough [13, 14]. Studies outside rehabilitation have already shown that motivational interventions improve compliance with the therapy regimen [15], and recent home rehabilitation studies have emphasized the importance of motivational elements that would increase the duration and intensity of exercise [16, 17]…

Continue —> Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 The BiMeo used unimanually without support (top left), unimanually on a table (top right), bimanually without support (bottom left), and bimanually on a table (bottom right)

, , , , , , ,

Leave a comment

[ARTICLE] Immediate affective responses of gait training in neurological rehabilitation: A randomized crossover trial – Full Text HTML

Abstract

Objective: To examine the immediate effects of physical therapy and robotic-assisted gait training on affective responses of gait training in neurological rehabilitation.

Design: Randomized crossover trial with blinded observers.

Patients: Sixteen patients with neurological disorders (stroke, traumatic brain injury, spinal cord injury, multiple sclerosis).

Methods: All patients underwent 2 single treatment sessions: physical therapy and robotic-assisted gait training. Both before and after the treatment sessions, the self-report Mood Survey Scale was used to assess the effects of the treatment on distinct affective states. The subscales of the Mood Survey Scale were tested for pre–post changes and differences in effects between treatments, using non-parametric tests.

Results: Fourteen participants completed the study. Patients showed a significant increase in activation (r = 0.55), elation (r = 0.79), and calmness (r = 0.72), and a significant decrease in anger (r = 0.64) after robotic-assisted gait training compared with physical therapy.

Conclusion: Affective responses might be positively influenced by robotic-assisted gait training, which may help to overcome motivational problems during the rehabilitation process in neurological patients.

Introduction

Patients with neurological impairment are known to have reduced quality of life and increased risk for depressive symptoms, which may hinder their ability to perform daily rehabilitation programmes, such as physical therapy (PT) or robotic-assisted gait training (RAGT) (1). During the continuum of rehabilitation it is necessary to consider factors such as choice and enjoyment in order to determine specifically how an individual would participate in rehabilitation programmes. The inclusion of participation scales is recommended when assessing the outcome of rehabilitation programmes (2). According to Self-Determination Theory (3), positive affective responses (e.g. activation, elation, or calmness) are connected with high intrinsic motivation and are an important regulation process in human behaviour. Therefore affective responses to the treatment sessions, as defined by Ekkekakis & Petruzello (4), might be important predictors of motivation, adoption, and maintenance of treatment regimes in the rehabilitation process.

Fatigue is a common and distressing complaint among people with neurological impairment (5). Patients often are afraid that engagement in exercise may increase fatigue (6). In patients with traumatic brain injury, “lack of energy” was rated as 1 of the top 5 problems for participation (7). Therefore it is important to emphasize that it is more likely that a higher level of energy will be achieved after exercise (8, 9). Although not yet a widely recognized determinant of exercise behaviour, affective valence is viewed in psychology and behavioural economics as one of the major factors in human decision-making (10). Findings from exercise psychology have demonstrated that the affective components of pleasure and activation might be crucial for bridging the intention–behaviour gap at the beginning of engagement in exercise (10). Regular participation in physical activity, in the long-term, may be mediated by an individual’s belief in the exercise–psychological wellbeing association. It may also lead to anti-depressive effects (11). Both PT and RAGT can be considered as forms of physical activity; therefore one might speculate that the effects mentioned above could be transferred to neurological patients. While increases in energy and mood in response to a single bout of moderate intensity exercise have been shown in healthy people and several risk-groups (6, 8, 9), no such study has been carried out involving neurological patients.

To our knowledge, only 2 studies concerning RAGT and psychological effects have been published. Koenig et al. (12) described a method to observe mental engagement during RAGT. Recently, Calabro et al. (13) reported positive long-term effects of RAGT on mood and coping strategies in a case study. To our knowledge, apart from these studies, affective responses have not been researched in PT or RAGT.

Thus, the aim of this study was to determine, for patients with neurological impairment: (i) whether a single session of PT and RAGT has immediate effects on affective responses (e.g. activation, elation, or calmness) and; (ii) whether possible affective responses differ between PT and RAGT.

Continue —> Journal of Rehabilitation Medicine – Immediate affective responses of gait training in neurological rehabilitation: A randomized crossover trial – HTML

, , , , ,

Leave a comment

[Abstract] Gamification in Physical Therapy: More Than Using Games

Abstract

The implementation of computer games in physical therapy is motivated by characteristics such as attractiveness, motivation, and engagement, but these do not guarantee the intended therapeutic effect of the interventions. Yet, these characteristics are important variables in physical therapy interventions because they involve reward-related dopaminergic systems in the brain that are known to facilitate learning through long-term potentiation of neural connections. In this perspective we propose a way to apply game design approaches to therapy development by “designing” therapy sessions in such a way as to trigger physical and cognitive behavioral patterns required for treatment and neurological recovery. We also advocate that improving game knowledge among therapists and improving communication between therapists and game designers may lead to a novel avenue in designing applied games with specific therapeutic input, thereby making gamification in therapy a realistic and promising future that may optimize clinical practice.

Source: Gamification in Physical Therapy: More Than Using Games : Pediatric Physical Therapy

, , , , , ,

Leave a comment

%d bloggers like this: