Posts Tagged motor deficits

[WEB SITE] Study shows in-home therapy effective for stroke rehabilitation

stroke

A blood clot forming in the carotid artery. Credit: copyright American Heart Association

In-home rehabilitation, using a telehealth system and supervised by licensed occupational/physical therapists, is an effective means of improving arm motor status in stroke survivors, according to findings presented by University of California, Irvine neurologist Steven C. Cramer, MD, at the recent 2018 European Stroke Organisation Conference in Gothenburg, Sweden.

“Motor deficits are a major contributor to post-stroke disability, and we know that occupational and physical  improve patient outcomes in a supervised ,” said Cramer, a professor of neurology in the UCI School of Medicine. “Since many patients receive suboptimal therapy doses for reasons that include cost, availability, and difficulty with travel, we wanted to determine whether a comprehensive in-home telehealth therapy program could be as effective as in-clinic rehabilitation.”

In a study conducted at 11 U.S. sites, 124  underwent six weeks of intensive arm motor therapy, with half receiving traditional supervised in-clinic therapy and half undergoing an in-home rehabilitation program supervised via a videoconferenced telemedicine system.

Subjects were on average 61 years old, 4.5 months post-stroke, and had moderate arm motor deficits at study entry. When examined 30 days after the end of therapy, subjects in the in-clinic group improved by 8.4 points on the Fugl-Meyer scale, which measures arm motor status and ranges from 0 to 66, with higher numbers being better. Subjects in the telerehab group improved by 7.9 points, a difference that was not statistically significant.

“The current findings support the utility of a computer-based system in the home, used under the supervision of a licensed therapist, to provide clinically meaningful rehab therapy,” Cramer said. “Future applications might examine longer-term treatment, pair home-based telerehab with long-term dosing of a restorative drug, treat other neurological domains affected by stroke (such as language, memory, or gait), or expand the home treatment system to build out a smart home for stroke recovery.”

He said that the demand for rehabilitation services will likely increase, due to an aging population and increased stroke survival as a result of better access to advanced acute care. Telehealth, defined as the delivery of health-related services and information via telecommunication technologies, can potentially address this growing unmet need.

“We reasoned that telerehabilitation is ideally suited to efficiently provide a large dose of useful rehab therapy after stroke,” said Cramer, whose research team is part of the NIH StrokeNet consortium.

This research builds on the findings of a pilot study of 12 patients with late subacute  and arm-motor deficits who were provided 28 days of home-based telerehab program. The results, published in November 2017 in the journal Neurorehabilitation and Neural Repair, found that patient compliance was excellent (97.9%) and participants experienced significant arm-motor gains (Fugl-Meyer scale increase of 4.8 points). The study also found that patients did not need any additional computer skills training due to the design of the telerehab system.

“Getting patients to remain engaged and comply with therapy is a key measure of success of any rehabilitation program,” Cramer said. “Greater gains are associated with therapy that is challenging, motivating, accompanied by appropriate feedback, interesting and relevant. Telerehab achieves this because therapy is provided through games, provides user feedback, can be adjusted based on individual needs, is easy to use—and is fun.”

This study was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development as well as the National Institute of Neurological Disorders and Stroke (grant U01 NS091951), the NIH StrokeNet Clinical Trials Network, the 11 US enrollment sites, the research team at the primary study site at the University of California, Irvine, and the patients and families who participated.

 

via Study shows in-home therapy effective for stroke rehabilitation

, , , , , , , ,

Leave a comment

[WEB SITE] In-home therapy effective for stroke rehabilitation, study shows — ScienceDaily

A multisite US clinical trial compared home-based telerehabilitation program with traditional in-clinic rehabilitation therapy

Summary:
Stroke remains a leading cause of human disability and rehabilitation therapy can help. Supervised in-home rehabilitation therapy delivered via telemedicine can be as effective as in-clinic rehabilitation program as an alternative for stroke survivors who can’t sustain in-person visits for reasons that may include high cost, difficulty traveling to a provider or few regionally available care providers.     
FULL STORY

In-home rehabilitation, using a telehealth system and supervised by licensed occupational/physical therapists, is an effective means of improving arm motor status in stroke survivors, according to findings presented by University of California, Irvine neurologist Steven C. Cramer, MD, at the recent 2018 European Stroke Organisation Conference in Gothenburg, Sweden.

“Motor deficits are a major contributor to post-stroke disability, and we know that occupational and physical therapy improve patient outcomes in a supervised rehabilitation program,” said Cramer, a professor of neurology in the UCI School of Medicine. “Since many patients receive suboptimal therapy doses for reasons that include cost, availability, and difficulty with travel, we wanted to determine whether a comprehensive in-home telehealth therapy program could be as effective as in-clinic rehabilitation.”

In a study conducted at 11 U.S. sites, 124 stroke survivors underwent six weeks of intensive arm motor therapy, with half receiving traditional supervised in-clinic therapy and half undergoing an in-home rehabilitation program supervised via a videoconferenced telemedicine system.

Subjects were on average 61 years old, 4.5 months post-stroke, and had moderate arm motor deficits at study entry. When examined 30 days after the end of therapy, subjects in the in-clinic group improved by 8.4 points on the Fugl-Meyer scale, which measures arm motor status and ranges from 0 to 66, with higher numbers being better. Subjects in the telerehab group improved by 7.9 points, a difference that was not statistically significant.

“The current findings support the utility of a computer-based system in the home, used under the supervision of a licensed therapist, to provide clinically meaningful rehab therapy,” Cramer said. “Future applications might examine longer-term treatment, pair home-based telerehab with long-term dosing of a restorative drug, treat other neurological domains affected by stroke (such as language, memory, or gait), or expand the home treatment system to build out a smart home for stroke recovery.”

He said that the demand for rehabilitation services will likely increase, due to an aging population and increased stroke survival as a result of better access to advanced acute care. Telehealth, defined as the delivery of health-related services and information via telecommunication technologies, can potentially address this growing unmet need.

“We reasoned that telerehabilitation is ideally suited to efficiently provide a large dose of useful rehab therapy after stroke,” said Cramer, whose research team is part of the NIH StrokeNet consortium.

This research builds on the findings of a pilot study of 12 patients with late subacute stroke and arm-motor deficits who were provided 28 days of home-based telerehab program. The results, published in November 2017 in the journal Neurorehabilitation and Neural Repair, found that patient compliance was excellent (97.9%) and participants experienced significant arm-motor gains (Fugl-Meyer scale increase of 4.8 points). The study also found that patients did not need any additional computer skills training due to the design of the telerehab system.

“Getting patients to remain engaged and comply with therapy is a key measure of success of any rehabilitation program,” Cramer said. “Greater gains are associated with therapy that is challenging, motivating, accompanied by appropriate feedback, interesting and relevant. Telerehab achieves this because therapy is provided through games, provides user feedback, can be adjusted based on individual needs, is easy to use — and is fun.”

This study was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development as well as the National Institute of Neurological Disorders and Stroke (grant U01 NS091951), the NIH StrokeNet Clinical Trials Network, the 11 US enrollment sites, the research team at the primary study site at the University of California, Irvine, and the patients and families who participated.

 

via In-home therapy effective for stroke rehabilitation, study shows: A multisite US clinical trial compared home-based telerehabilitation program with traditional in-clinic rehabilitation therapy — ScienceDaily

, , , , ,

Leave a comment

[Clinical Study] ArmAssist Robotic System versus Matched Conventional Therapy for Poststroke Upper Limb Rehabilitation: A Randomized Clinical Trial

The ArmAssist is a simple low-cost robotic system for upper limb motor training that combines known benefits of repetitive task oriented training, greater intensity of practice, and less dependence on therapist assistance. The aim of this preliminary study was to compare the efficacy of ArmAssist (AA) robotic training against matched conventional arm training in subacute stroke subjects with moderate-to-severe upper limb impairment. Twenty-six subjects were enrolled within 3 months of stroke and randomly assigned to the AA group or Control group (𝑛 = 13 each). Both groups were trained 5 days per week for 3 weeks. The primary outcome measure was Fugl-Meyer Assessment-Upper Extremity (FMA-UE) motor score, and the secondary outcomes were Wolf Motor Function Test-Functional Ability Scale (WMFT-FAS) and Barthel index (BI). The AA group, in comparison to the Control group, showed significantly greater increases in FMA-UE score (18.0 ± 9.4 versus 7.5 ± 5.5, 𝑝 = 0.002) and WMFT-FAS score (14.1 ± 7.9 versus 6.7 ± 7.8, 𝑝 = 0.025) after 3 weeks of treatment, whereas the increase in BI was not significant (21.2 ± 24.8 versus 13.1 ± 10.7, 𝑝 = 0.292). There were no adverse events. We conclude that arm training using the AA robotic device is safe and able to reduce motor deficits more effectively than matched conventional arm training in subacute phase of stroke. The study has been registered at the ClinicalTrials.gov, ID: NCT02729649. …

Download Full Text PDF

, , , , , , ,

Leave a comment

[Abstract] A portable and cost-effective upper extremity rehabilitation system for individuals with upper limb motor deficits

Abstract

Long-term rehabilitation opportunities are critical for millions of individuals with chronic upper limb motor deficits striving to improve their motor performance through self-managed rehabilitation programs. However, there is minimal professional support of rehabilitation across the lifespan. In this paper, we introduce an upper extremity rehabilitation system, the Quality of Movement Feedback-Oriented Measurement System (QM-FOrMS), by integrating cost-effective portable sensors and clinically verified motion quality analysis towards individuals with upper limb motor deficits. Specifically, QM-FOrMS is comprised of an eTextile pressure sensitive mat, named Smart Mat, a sensory can, named Smart Can, and a mobile device. A personalizable and adaptive upper limb rehabilitation program is developed, including both unilateral and bilateral functional activities which can be selected from a list or custom designed to further tailor the program to the individual. Quantitative evaluation of the motor performance from the QM-FOrMS is derived from fine-grained kinematic measurements. We ran a pilot study with three groups, including five baseline subjects (i.e., healthy young adults), six older adults and four individuals with movement impairment. The experimental results show that QM-FOrMS can provide the detailed feature during the unattended rehabilitation exercise, and proposed metrics can distinguish the evaluation results across group.

Source: A portable and cost-effective upper extremity rehabilitation system for individuals with upper limb motor deficits – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Motor Imagery based Brain-Computer Interfaces: An Emerging Technology to Rehabilitate Motor Deficits

Highlights

  • BCIs permit to reintegrate the sensory-motor loop by accessing to brain information.
  • Motor imagery based BCIs seem to be an effective system for an early rehabilitation.
  • This technology does not need remaining motor activity and promotes neuroplasticity.
  • BCI for rehabilitation tends towards implantable devices plus stimulation systems.

Abstract

When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system.

Source: Motor Imagery based Brain-Computer Interfaces: An Emerging Technology to Rehabilitate Motor Deficits

, , , , , , , ,

Leave a comment

[ARTICLE] The Control of Movement Following Traumatic Brain Injury – Full Text HTML/PDF

Abstract

Traumatic brain injury (TBI) results in a variety of impairments in cognition, mood, sensation, and movement, depending upon the location and severity of injury. Although not as extensively studied as cognitive impairments, motor impairments are common, especially in moderately to severely injured patients. The recovery of these deficits is not usually complete; however, extensive effort is put into the rehabilitation of motor skills to enhance independence and quality of life. Understanding the motor recovery process and how it can be influenced by rehabilitation has been extensively studied in animal models of stroke and focal lesions, albeit to a lesser extent following animal models of TBI. Injury-induced neural plasticity is intricately involved in motor recovery and influenced by behavioral compensation and rehabilitation following stroke and focal lesions. New studies in animal models of TBI indicate that neural plasticity and the processes of motor recovery and rehabilitation following brain injury may not mirror those processes shown to occur following stroke. Further examination of motor recovery, rehabilitation, and plasticity in animal models of TBI as well as in individuals with TBI will be necessary to fully understand the control of movement following brain injury. © 2013 American Physiological Society. Compr Physiol 3:121-139, 2013.

View Full Article (HTML) Get PDF (4478K)

via The Control of Movement Following Traumatic Brain Injury – Comprehensive Physiology – Kozlowski – Wiley Online Library.

, , , , , , ,

Leave a comment

[POSTER] Correlation of Visual and Motor Recovery in Stroke Patients during Early Rehabilitation Period – Full Text PDF

Introduction
Two dysfunctions that may coexist within a stroke are motor paresis (or palsy) and visual disorders. A dysfunction on the visual field may wrongly lead to a correlation with poor prognosis while being confused with the neglect syndrome.

Objectives
The purpose is to explore the recovery of the motor and visual disorders of stroke patients during early rehabilitation and define any correlations between these changes.

Full Text PDF

, , , , ,

Leave a comment

[WEB SITE] Tyrostation Offers Versatile Range of Therapy Options | Fitness Gaming

Tyrostation is a rehabilitation system that combines two advanced therapy tools developed by the Austrian company Tyromotion: the Pablo System and the Tymo Therapy Plate.

tyrostation

Tyrostation is an advanced, adjustable rehabilitation solution that combines the Pablo System and the Tymo Therapy Plate, two sophisticated therapy tools developed by Tyromotion. The Pablo System helps treat neurological and orthopedic motor deficits and can be used both at hospitals and clinics and at home. The system offers motivating therapy modules for hand and arm rehabilitation. It is suitable both for children and adults.

Pablo uses a sensor handle that can measure range of movement and forces for different kinds of grips. The Pablo Multiball helps improve motion of the forearm and wrist, while the Multiboard trains the joints of the affected limbs. The software available with the Pablo System offers both a range of interactive therapy games for patients and reporting features for therapists.

pablo

The Tymo Therapy Plate is a versatile solution that offers rehabilitation for the whole body. It can help patients improve postural control and balance, as well as employment of force of the upper limbs. The system has a wide range of applications and provides therapists with an endless range of options. Like Pablo, Tymo can be used both in clinical settings and at home and is suitable for all age groups.

tymo

The Tyrostation stationary unit is a practical solution for therapy as it creates space in the room and places all the units – Pablo pads and belts and the lateral trays for the Tymo 2D and 3D rolling elements – within the patient’s reach. The unit’s height can be adjusted to individual patients and is suitable for patients in wheelchairs.

The Tyrostation was developed by Tyromotion, an Austrian company that specialises in manufacturing and distributing robot and computer-assisted units for the rehabilitation sector. Based in Graz, the company uses powerful mechatronic systems for rehabilitation to develop innovative solutions and technologies that help physical therapists and other healthcare providers successfully guide patients through various rehabilitation programs. In addition to speeding up recovery, Tyromotion’s solutions deliver exercises in a more motivating way than traditional therapy. The company’s therapy units are used in clinics and rehabilitation centres around the world.

more –> Tyrostation Offers Versatile Range of Therapy Options | Fitness Gaming.

, , , , , , , , , , ,

1 Comment

%d bloggers like this: