Posts Tagged motor function recovery

[Abstract] Quantification method of motor function recovery of fingers by using the device for home rehabilitation – IEEE Conference Publication

Abstract:

After leaving hospital, patients can carry out rehabilitation by using rehabilitation devices. However, they cannot evaluate the recovery by themselves. For this problem, a device which can both carry out the rehabilitation and evaluation of the degree of recovery is required. This paper proposes the method that quantifies the recovery of the paralysis of fingers to evaluate a patient automatically. A finger movement is measured by a pressure sensor on the rehabilitation device we have developed. A measured data is used as a time-series signal, and the recovery of the paralysis is quantified by calculating the dissimilarity between a healthy subject’s signal and the patient’s signal. The results of those dissimilarities are integrated over all finger to be used as a quantitative scale of recovery. From the experiment conducted with hemiplegia patients and healthy subjects, we could trace the process of the recovery by the proposed method.

Source: Quantification method of motor function recovery of fingers by using the device for home rehabilitation – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Short- and Long-term Effects of Repetitive Transcranial Magnetic Stimulation on Upper Limb Motor Function after Stroke: a Systematic Review and Meta-Analysis – Full Text

The aim of this study was to evaluate the short- and long-term effects as well as other parameters of repetitive transcranial magnetic stimulation (rTMS) on upper limb motor functional recovery after stroke.

The databases of PubMed, Medline, Science Direct, Cochrane, and Embase were searched for randomized controlled studies reporting effects of rTMS on upper limb motor recovery published before October 30, 2016.

The short- and long-term mean effect sizes as well as the effect size of rTMS frequency of pulse, post-stroke onset, and theta burst stimulation patterns were summarized by calculating the standardized mean difference (SMD) and the 95% confidence interval using fixed/random effect models as appropriate.

Thirty-four studies with 904 participants were included in this systematic review. Pooled estimates show that rTMS significantly improved short-term (SMD, 0.43; P < 0.001) and long-term (SMD, 0.49; P < 0.001) manual dexterity. More pronounced effects were found for rTMS administered in the acute phase of stroke (SMD, 0.69), subcortical stroke (SMD, 0.66), 5-session rTMS treatment (SMD, 0.67) and intermittent theta burst stimulation (SMD, 0.60). Only three studies reported mild adverse events such as headache and increased anxiety .

Five-session rTMS treatment could best improve stroke-induced upper limb dyskinesia acutely and in a long-lasting manner. Intermittent theta burst stimulation is more beneficial than continuous theta burst stimulation. rTMS applied in the acute phase of stroke is more effective than rTMS applied in the chronic phase. Subcortical lesion benefit more from rTMS than other lesion site.

Continue —> Short- and Long-term Effects of Repetitive Transcranial Magnetic Stimulation on Upper Limb Motor Function after Stroke: a Systematic Review and Meta-Analysis – Feb 17, 2017

figure

Figure 1. The flow diagram of the selection process.

 

 

, , , , , , , , , ,

Leave a comment

%d bloggers like this: