Posts Tagged Motor function

[ARTICLE] Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling – Full Text

Abstract

Background

Research efforts in neurorehabilitation technologies have been directed towards creating robotic exoskeletons to restore motor function in impaired individuals. However, despite advances in mechatronics and bioelectrical signal processing, current robotic exoskeletons have had only modest clinical impact. A major limitation is the inability to enable exoskeleton voluntary control in neurologically impaired individuals. This hinders the possibility of optimally inducing the activity-driven neuroplastic changes that are required for recovery.

Methods

We have developed a patient-specific computational model of the human musculoskeletal system controlled via neural surrogates, i.e., electromyography-derived neural activations to muscles. The electromyography-driven musculoskeletal model was synthesized into a human-machine interface (HMI) that enabled poststroke and incomplete spinal cord injury patients to voluntarily control multiple joints in a multifunctional robotic exoskeleton in real time.

Results

We demonstrated patients’ control accuracy across a wide range of lower-extremity motor tasks. Remarkably, an increased level of exoskeleton assistance always resulted in a reduction in both amplitude and variability in muscle activations as well as in the mechanical moments required to perform a motor task. Since small discrepancies in onset time between human limb movement and that of the parallel exoskeleton would potentially increase human neuromuscular effort, these results demonstrate that the developed HMI precisely synchronizes the device actuation with residual voluntary muscle contraction capacity in neurologically impaired patients.

Conclusions

Continuous voluntary control of robotic exoskeletons (i.e. event-free and task-independent) has never been demonstrated before in populations with paretic and spastic-like muscle activity, such as those investigated in this study. Our proposed methodology may open new avenues for harnessing residual neuromuscular function in neurologically impaired individuals via symbiotic wearable robots.

Background

The ability to walk directly relates to quality of life. Neurological lesions such as those underlying stroke and spinal cord injury (SCI) often result in severe motor impairments (i.e., paresis, spasticity, abnormal joint couplings) that compromise an individual’s motor capacity and health throughout the life span. For several decades, scientific effort in rehabilitation robotics has been directed towards exoskeletons that can help enhance motor capacity in neurologically impaired individuals. However, despite advances in mechatronics and bioelectrical signal processing, current robotic exoskeletons have had limited performance when tested in healthy individuals [1] and have achieved only modest clinical impact in neurologically impaired patients [2], e.g., stroke [34], SCI patients [5]. […]

 

Continue —>  Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1

Fig. 1 Enter aSchematic representation of the real-time modeling framework and its communication with the robotic exoskeleton. The whole framework is operated by a Raspberry Pi 3 single-board computer. The framework consists of five main components: a The EMG plugin collects muscle bioelectric signals from wearable active electrodes and transfers them to the EMG-driven model. b The B-spline component computes musculotendon length (Lmt) and moment arm (MA) values from joint angles collected via robotic exoskeleton sensors. c The EMG-driven model uses input EMG, Lmt and MA data to compute the resulting mechanical forces in 12 lower-extremity musculotendon units (Table 1) and joint moment about the degrees of freedom of knee flexion-extension and ankle plantar-dorsiflexion. d The offline calibration procedure identifies internal parameters of the model that vary non-linearly across individuals. These include optimal fiber length and tendon slack length, muscle maximal isometric force, and excitation-to-activation shape factors. eThe exoskeleton plugin converts EMG-driven model-based joint moment estimates into exoskeleton control commands. Please refer to the Methods section for an in-depth description caption

, , , , , , , , ,

Leave a comment

[Abstract] Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial.

Abstract

OBJECTIVE:

The objective of this study was the evaluation of the clinical and neurophysiological effects of intensive robot-assisted hand therapy compared to intensive occupational therapy in the chronic recovery phase after stroke.

METHODS:

50 patients with a first-ever stroke occurred at least six months before, were enrolled and randomised into two groups. The experimental group was provided with the Amadeo™ hand training (AHT), whereas the control group underwent occupational therapist-guided conventional hand training (CHT). Both of the groups received 40 hand training sessions (robotic and conventional, respectively) of 45 min each, 5 times a week, for 8 consecutive weeks. All of the participants underwent a clinical and electrophysiological assessment (task-related coherence, TRCoh, and short-latency afferent inhibition, SAI) at baseline and after the completion of the training.

RESULTS:

The AHT group presented improvements in both of the primary outcomes (Fugl-Meyer Assessment for of Upper Extremity and the Nine-Hole Peg Test) greater than CHT (both p < 0.001). These results were paralleled by a larger increase in the frontoparietal TRCoh in the AHT than in the CHT group (p < 0.001) and a greater rebalance between the SAI of both the hemispheres (p < 0.001).

CONCLUSIONS:

These data suggest a wider remodelling of sensorimotor plasticity and interhemispheric inhibition between sensorimotor cortices in the AHT compared to the CHT group.

SIGNIFICANCE:

These results provide neurophysiological support for the therapeutic impact of intensive robot-assisted treatment on hand function recovery in individuals with chronic stroke.

 

via Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a … – PubMed – NCBI

, , , , , , , , , , ,

Leave a comment

[Abstract] Effect of Mirror Therapy on Recovery of Stroke Survivors: A Systematic Review and Network Meta-analysis.

Abstract

Mirror therapy (MT) as a relatively new rehabilitation technique has been widely applied in stroke patients. A number of randomized controlled trials (RCTs) have investigated the effects of MT for stroke survivors. The main purpose of this network meta-analysis was to investigate the effects of MT on motor function, activities of daily living (ADL), and pain perception in stroke survivors. Several databases were searched to identify RCTs evaluating the effects of MT in stroke patients to perform this network meta-analysis. Thirty-seven RCTs (42 analyses, 1685 subjects) were eligible for inclusion in the meta-analysis. Standard meta-analysis showed that MT significantly improved of motor function according to the increased Fugl-Meyer Assessment (FMA), Functional Independence Measure (FIM), and decreased Modified Ashworth Scale (MAS) score. In addition, ADL was promoted by MT as the elevated Modified Barthel Index (MBI) and Motor Activity Log (MAL) score. Moreover, MT effectively relieved the pain of stroke patients as the Visual Analog Scale (VAS) score was reduced. Subgroup analyses and meta-regressions identified that the sources of heterogeneity might be different intervention arms and duration of interventions. Network meta-analysis showed that MT combined with electrical stimulation (ES) for less than 4 weeks along with conventional rehabilitation therapy (CT), and MT accompanied with CT for less than 4 weeks might be the most suitable interventions for improvement of motor function and ADL, respectively. Overall, MT could effectively improve motor function and ADL, as well as relieve pain for stroke survivors. The study was registered at PROSPERO (CRD42017081742).

PMID: 29981364 DOI: 10.1016/j.neuroscience.2018.06.044

, , , ,

Leave a comment

[ARTICLE] Guided Self-rehabilitation Contract vs conventional therapy in chronic stroke-induced hemiparesis: NEURORESTORE, a multicenter randomized controlled trial – Full Text

Abstract

Background

After discharge from hospital following a stroke, prescriptions of community-based rehabilitation are often downgraded to “maintenance” rehabilitation or discontinued. This classic therapeutic behavior stems from persistent confusion between lesion-induced plasticity, which lasts for the first 6 months essentially, and behavior-induced plasticity, of indefinite duration, through which intense rehabilitation might remain effective. This prospective, randomized, multicenter, single-blind study in subjects with chronic stroke-induced hemiparesis evaluates changes in active function with a Guided Self-rehabilitation Contract vs conventional therapy alone, pursued for a year.

Methods

One hundred and twenty four adult subjects with chronic hemiparesis (> 1 year since first stroke) will be included in six tertiary rehabilitation centers. For each patient, two treatments will be compared over a 1-year period, preceded and followed by an observational 6-month phase of conventional rehabilitation. In the experimental group, the therapist will implement the diary-based and antagonist-targeting Guided Self-rehabilitation Contract method using two monthly home visits. The method involves: i) prescribing a daily antagonist-targeting self-rehabilitation program, ii) teaching the techniques involved in the program, iii) motivating and guiding the patient over time, by requesting a diary of the work achieved to be brought back by the patient at each visit. In the control group, participants will benefit from conventional therapy only, as per their physician’s prescription.

The two co-primary outcome measures are the maximal ambulation speed barefoot over 10 m for the lower limb, and the Modified Frenchay Scale for the upper limb. Secondary outcome measures include total cost of care from the medical insurance point of view, physiological cost index in the 2-min walking test, quality of life (SF 36) and measures of the psychological impact of the two treatment modalities. Participants will be evaluated every 6 months (D1/M6/M12/M18/M24) by a blinded investigator, the experimental period being between M6 and M18. Each patient will be allowed to receive any medications deemed necessary to their attending physician, including botulinum toxin injections.

Discussion

This study will increase the level of knowledge on the effects of Guided Self-rehabilitation Contracts in patients with chronic stroke-induced hemiparesis.

Background

The most common motor deficit following stroke is spastic hemiparesis [1]. More than 90% of patients with hemiparesis recover some lower limb function after a stroke, but rarely with a level of ease or speed that would allow for independent and comfortable ambulation in everyday life, outdoors in particular [123]. In the upper limb, the proportion of patients that recover daily use of the arm is estimated between 10 and 30% [45678]. Consequently, around half of stroke survivors do not resume professional activities, and two thirds remain chronically disabled [9].

In parallel, most patients in chronic stages have their rehabilitation discontinued or converted into “maintenance” therapy, as professionals often estimate that they might no longer progress [7101112131415]. Others benefit from reinduction periods, prescribed according to subjective or ill-defined criteria. It has not been demonstrated that this conventional rehabilitation system now fits current knowledge on behavior-induced brain plasticity and on the potential for motor recovery in chronic spastic paresis [161718]. Indeed, a significant body of evidence demonstrates that high intensity of rehabilitation (the opposite of “maintenance therapy”) correlates with motor function improvement in chronic stages [161920]. One way to achieve sufficient amounts of physical treatment might be to adequately guide and motivate the patient into practicing self-rehabilitation [1820]. It has been confirmed that programs of exercises given by the therapist to be performed at home are appreciated by patients not only for the structure they give to everyday life, but also as they represent in themselves a source of motivation and hope, particularly when these programs are associated with ongoing professional support [2122].

We hypothesize that there is confusion between the lesion-induced plasticity of the central nervous system – essentially during the first 6 months post-lesion – and the behavior-induced plasticity, which lasts indefinitely [16172324252627]. The latter justifies initiatives to organize chronic and intense physical rehabilitation work [1718232425262728]. Even though previous, short-term open studies evaluating self-rehabilitation programs in spastic hemiparesis suggested the possibility of functional improvement, to our knowledge there are no large-scale prospective randomized controlled protocols that test the effectiveness of long term self-rehabilitation programs in spastic hemiparesis as against conventional rehabilitation systems, especially in chronic stages [2930313233343536].

Technically, which home rehabilitation exercises might be recommended? From a neurophysiological point of view, muscle overactivity chronologically emerges as the third fundamental feature of motor impairment that begins in the subacute phase in hemiparesis, following paresis and soft tissue contracture that appear in the acute phase [373839]. One recognizable form of muscle overactivity is spasticity (hyper-reflectivity to phasic stretch), which is potentiated by muscle shortening [3738]. Hypersensitivity to stretch in an antagonist muscle also impedes voluntary motoneurone recruitment for the agonist muscle, a phenomenon called “stretch-sensitive paresis” [40]. As none of the three fundamental mechanisms of motor impairment (paresis, muscle shortening, and muscle overactivity) is distributed symmetrically between agonists and antagonists, there are force imbalances around joints, hindering active movements and deforming body postures [41]. Each of these three mechanisms of impairment, particularly the two most important, which are muscle shortening and muscle overactivity, can be specifically targeted with local treatment, muscle by muscle, aiming to rebalance forces, joint by joint [28]. For the less overactive muscles around each joint, an intensive motor training will aim to break the vicious cycle Paresis-Disuse-Paresis [37]. For their shortened and more overactive antagonists most importantly, a daily program of self-stretch postures at high load combined with a program of maximal amplitude rapid alternating movements, potentially associated with botulinum toxin injections, will aim to increase muscle extensibility and reduce cocontraction, breaking the vicious cycle: Muscle shortening-Overactivity-Muscle shortening [284243] (www.i-gsc.com). Significant preliminary results obtained using prescription and teaching of self-rehabilitation programs within a Guided Self-rehabilitation Contract (GSC) led us to hypothesize that this method practiced over the long term might enhance active motor function in chronic hemiparesis beyond 1 year following stroke [184445464748].

From a social point of view, stroke is the leading cause of acquired disability in Western countries. For the Steering Committee on Stroke Prevention and Management in France, the yearly cost of stroke is €5.9 billions, the cost of care in medical and social facilities is €2.4 billions and the cost of daily allowances and disability pensions is €125.8 millions [49]. Additionally, several studies have shown that indirect costs were proportional to direct costs [50]. Stroke thus accounts for a large share of health expenditures. In that regard as well, devising a feasible and effective guided self-rehabilitation program might offer financial advantages for our health systems.[…]

 

Continue —> Guided Self-rehabilitation Contract vs conventional therapy in chronic stroke-induced hemiparesis: NEURORESTORE, a multicenter randomized controlled trial | BMC Neurology | Full Text

Fig. 2

Fig. 2Template of diary in Guided Self-rehabilitation Contract

, , , , , ,

Leave a comment

[Abstract] The effect and optimal parameters of repetitive transcranial magnetic stimulation on motor recovery in stroke patients: a systematic review and meta-analysis of randomized controlled trials

The primary aim of this meta-analysis was to evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on limb movement recovery post-stroke and cortex excitability, to explore the optimal parameters of rTMS and suitable stroke population. Second, adverse events were also included.

The databases of PubMed, EBSCO, MEDLINE, the Cochrane Central Register of Controlled Trials, EBM Reviews-Cochrane Database, the Chinese National Knowledge Infrastructure, and the Chinese Science and Technology Journals Database were searched for randomized controlled trials exploring the effects of rTMS on limb motor function recovery post-stroke before December 2018.

The effect sizes of rTMS on limb motor recovery, the effect size of rTMS stimulation parameters, and different stroke population were summarized by calculating the standardized mean difference (SMD) and the 95% confidence interval using fixed/random effect models as appropriate.

For the motor function assessment, 42 eligible studies involving 1168 stroke patients were identified. The summary effect size indicated that rTMS had positive effects on limb motor recovery (SMD = 0.50, P < 0.00001) and activities of daily living (SMD = 0.82, P < 0.00001), and motor-evoked potentials of the stimulated hemisphere differed according to the stimulation frequency, that is, the high-frequency group (SMD = 0.57, P = 0.0006), except the low-frequency group (SMD = –0.27, P = 0.05). No significant differences were observed among the stimulation parameter subgroups except for the sessions subgroup (P = 0.02). Only 10 included articles reported transient mild discomfort after rTMS.

rTMS promoted the recovery of limb motor function and changed the cortex excitability. rTMS may be better for early and pure subcortical stroke patients. Regarding different stimulation parameters, the number of stimulation sessions has an impact on the effect of rTMS.

via The effect and optimal parameters of repetitive transcranial magnetic stimulation on motor recovery in stroke patients: a systematic review and meta-analysis of randomized controlled trials – Huifang Xiang, Jing Sun, Xiang Tang, Kebin Zeng, Xiushu Wu, 2019

, , , , ,

Leave a comment

[ARTICLE] The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke – Full Text

Objective: To investigate the effects of low frequency transcranial magnetic stimulation (LF-rTMS) combined with motor imagery (MI) on upper limb motor function during stroke rehabilitation.

Background: Hemiplegic upper extremity activity obstacle is a common movement disorder after stroke. Compared with a single intervention, sequential protocol or combination of several techniques has been proven to be better for alleviating motor function disorder. Non-invasive neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and motor imagery (MI) have been verified to augment the efficacy of rehabilitation.

Methods:Participants were randomly assigned to 2 intervention cohorts: (1) experimental group (rTMS+MI group) was applied at 1 Hz rTMS over the primary motor cortex of the contralesional hemisphere combined with audio-based MI; (2) control group (rTMS group) received the same therapeutic parameters of rTMS combined with audiotape-led relaxation. LF-rTMS protocol was conducted in 10 sessions over 2 weeks for 30 min. Functional measurements include Wolf Motor Function Test (WMFT), the Fugl-Meyer Assessment Upper Extremity (UE-FMA) subscore, the Box and Block Test (BBT), and the Modified Barthel index (MBI) were conducted at baseline, the second week (week 2) and the fourth week (week 4).

Results: All assessments of upper limb function improved in both groups at weeks 2 and 4. In particular, significant differences were observed between two groups at end-intervention and after intervention (p < 0.05). In these findings, we saw greater changes of WMFT (p < 0.01), UE-FMA (p < 0.01), BBT (p < 0.01), and MBI (p < 0.001) scores in the experimental group.

Conclusions: LF-rTMS combined with MI had a positive effect on motor function of upper limb and can be used for the rehabilitation of upper extremity motor recovery in stroke patients.

Introduction

Decreased mobility of hemiplegic upper limb is a common dyskinesia after stroke. At present, clinical researchers have established a number of treatments to improve upper extremity motor function (1). Compared with a single intervention, a combination approach of different techniques has been proven to be better for alleviating movement disorder (2). Lots of trials have shown that movement function improvement after stroke can be enhanced by non-invasive brain stimulation techniques combined with conventional clinical practice (36).

Repetitive transcranial magnetic stimulation (rTMS) is one of non-invasive brain stimulations, and could modulate cortical activity. Stroke is considered to be one possible reason for imbalance of interhemispheric cortical inhibition. rTMS could rebulid the interhemisphere balance by down-regulating the excitability of the non-lesioned hemisphere with low frequency stimulation or up-regulating the lesioned excitability by high frequency stimulation (6). Randomized controlled trials have shown that short courses of inhibitory, contralesional rTMS can improve the motor function of hemiplegia after stroke (78). Evidence suggested that maximum control of the lesioned hemisphere is associated with better function (910). Early damage affected the ability of upper motor neurons to compete with lateral neurons to dominate motor neurons (11). Inhibition of contralateral primary motor cortex (M1) with 1 Hz rTMS may enhance hemispheric motor function. This method has revealed efficacy in the stroke rehabilitation for adults although they do not share the same models (8). Recently, the positive effects of HF-rTMS and LF-rTMS on movement disorder after stroke have been supported by accumulating evidence (7). And LF-rTMS has been confirmed to be in correlation with improved function in patients with chronic stroke (1213). Nowadays, a meta-analysis by Zhang et al. evaluated the therapeutic potential of LF-rTMS on stroke-induced upper limb movement disorder and cortex plasticity. This research supported that, as an add-on therapy, LF-rTMS successfully alleviated the hemiplegic upper limb motor deficit and significantly promoted upper limb function improvement after stroke (14).

Another non-invasive neuromodulation technique-motor imagery (MI), has been validated to increase the efficacy of rehabilitation and improve the performance of tasks associated with MI in patients after stroke (1517). The functional recovery of most stroke patients occurred mainly in the first 3 months, and the functional gain obtained in the chronic phase was limited (18). A possible cause of limited functional recovery in the chronic phase is learned nouse. Patients with severe impairment cannot use their paretic limbs in daily activities may be the reason (19). MI is a dynamic state during which the subject mentally simulates a specific movement without any obvious movement (20). It means that MI has no strict restrictions on the patient’s upper limb motor function, so it can be applied to stroke patients with poor function in chronic phase. According to previous studies, MI and motor execution share the same neural networks related to motor function (172122). These findings support the idea that MI can be used as a substitute for physical exercise which is difficult for patients to do (23). MI training was assumed to enhance motor recovery in stroke rehabilitation (24). Based on traditional rehabilitation training, MI training is more effective than conventional training alone (17). For example, Kang et al. and Xu et al. demonstrated an increase in neural activity in the motor area during MI training (2526). And Kawakami et al. also investigated changes of cortex in reciprocal inhibition following MI in patients with chronic stroke, and reported positive plastic changes during mental practice with MI (27). In another pilot study, Mihara et al. demonstrated that NIRS-mediated neurofeedback MI could enhance the ipsilesional premotor area activation in correlation with MI training and could have significant effects on the motor deficit recovery in stroke patients. Besides these findings, they also found that the change of cortical activation was related to the recovery of the hand function (19).

In view of the fact that rTMS and MI have no strict restrictions on the limb function of patients with chronic stroke, this study intends to combine the two interventions to maximize the motor function recovery of patients. As the author know, few studies explore whether the effect of LF-rTMS can be enhanced by combining with MI on upper extremity activity. In this study, we hypothesize that combination therapy of LF-rTMS with MI training will promote recovery from upper limb movement disorder in patients after chronic stroke; we also predict that activities of daily living might improve accordingly.

Therefore, the objective was to investigate the effects of LF-rTMS combined with MI on improving motor functions of hemiplegic upper extremity in chronic stroke patients.[…]

 

Continue —>  Frontiers | The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke | Neurology

Figure 1. Flow Diagram of the Trial.

, , , , , , , ,

Leave a comment

[ARTICLE] Validation of a Kinect V2 based rehabilitation game – Full Text

Abstract

Interactive technologies are beneficial to stroke recovery as rehabilitation interventions; however, they lack evidence for use as assessment tools. Mystic Isleis a multi-planar full-body rehabilitation game developed using the Microsoft Kinect® V2. It aims to help stroke patients improve their motor function and daily activity performance and to assess the motions of the players. It is important that the assessment results generated from Mystic Isle are accurate. The Kinect V2 has been validated for tracking lower limbs and calculating gait-specific parameters. However, few studies have validated the accuracy of the Kinect® V2 skeleton model in upper-body movements. In this paper, we evaluated the spatial accuracy and measurement validity of a Kinect-based game Mystic Isle in comparison to a gold-standard optical motion capture system, the Vicon system. Thirty participants completed six trials in sitting and standing. Game data from the Kinect sensor and the Vicon system were recorded simultaneously, then filtered and sample rate synchronized. The spatial accuracy was evaluated using Pearson’s r correlation coefficient, signal to noise ratio (SNR) and 3D distance difference. Each arm-joint signal had an average correlation coefficient above 0.9 and a SNR above 5. The hip joints data had less stability and a large variation in SNR. Also, the mean 3D distance difference of joints were less than 10 centimeters. For measurement validity, the accuracy was evaluated using mean and standard error of the difference, percentage error, Pearson’s r correlation coefficient and intra-class correlation (ICC). Average errors of maximum hand extent of reach were less than 5% and the average errors of mean and maximum velocities were about 10% and less than 5%, respectively. We have demonstrated that Mystic Isle provides accurate measurement and assessment of movement relative to the Vicon system.

Introduction

In the past decade and quite rapidly in the past five years, Natural User Interfaces (NUIs) and video games have grown in popularity in both consumer applications and in healthcare []. Specifically, physical rehabilitation (e.g., physical and occupational therapy) has embraced novel NUI applications in clinics, hospitals, nursing homes, and the community []. Robotic systems have long included game-based and NUI-based user interfaces and most robotic devices provide some form of physical assistance to the patient and/or haptic feedback []. With the release of the Nintendo Wii in 2008, many NUI applications for healthcare moved away from bulky, expensive robotics and embraced the portable nature of movement and gesture recognition devices and systems. One of the biggest breakthroughs for this field came in 2010 when Microsoft released the Kinect sensor to accompany its Xbox console system. Within days and weeks of the Kinect’s release, hackers, universities, and companies began to exploit its markerless movement sensing abilities for educational and healthcare use. Since then, there has been an exponential increase in the number of studies that report the use of the Kinect as the input device for a NUI-based rehabilitation game or feedback application [].

In 2014, Jintronix was the first company to receive FDA approval for its rehabilitation game system that uses the Microsoft Kinect. There are a number of similar companies that utilize the Kinect sensor including SeeMee [], VirtualRehab [], Reflexion Health [], MIRA [], MotionCare360 [], and 5Plus Therapy []. Many of these systems are marketed for delivering rehabilitation therapy in the home setting. This type of delivery is termed “tele-rehabilitation” and can involve remote monitoring by the therapist or virtual sessions over teleconferencing software []. For telerehabilitation or remote sessions, it is imperative that the data the therapist receives from the system or movement-sensing device (such as the Microsoft Kinect) are accurate and reliable. If the therapist plans to use the data for documentation or for reimbursement from a health insurance company, the data ought to be as accurate as current clinical tools (e.g., goniometers).

Only one of the listed companies has validated the measurement capabilities of their systems and of the Microsoft Kinect. Kurillo and colleagues evaluated their system used in 5Plus Therapy against the Impulse motion-capture system (PhaseSpace Inc., San Leandro, CA) and found that it had good accuracy of joint positions and small to large percentage errors in joint angle measurements []. However, this study had a small sample size of only 10 subjects and used the first version of the Kinect sensor in its validation. Additionally, the movements used in the assessment were only within a single plane for each movement and all participants were seated during data collection.

Other researchers have validated the Kinect’s measurement and tracking capabilities for both general and specific applications. Hondori and Khademi [] provide an excellent summary of the work completed prior to 2014. It should be noted that all of these studies evaluated the first version of the Kinect. Following the release of the Kinect V2 sensor, most researchers have focused their validation efforts on gait and posture applications []. The Kinect V2 has good-to-excellent tracking and measurement capabilities for gait-specific parameters and clinical outcomes. However, many of these studies tracked only the lower limbs. Furthermore, gait is a relatively consistent, rhythmic motion that is consistent across participants, even in rehabilitation populations (i.e., one foot in front of the other). The full-body movements that participants are not limited to specific planes and could choose to use either hand have not been studied in current and prior comparisons of the Microsoft Kinect and optical marker-based motion capture systems.

We have developed software called Mystic Isle that utilizes the Microsoft Kinect V2 sensor as the input device []. Mystic Isle is designed as a rehabilitation game and has shown good results in improving motor function and daily activity performance in persons with chronic stroke []. The software initially used the first version (V1) of the Microsoft Kinect as the input device and we completed a study that compared it to the OptiTrack optical system []. Based on a visual analysis, we demonstrated that for the hand and elbow, the Kinect V1 has good accuracy in calculating trajectory of movement. For the shoulder, the Kinect V1 tracking abilities limit its validity. Although these findings are promising, the types and number of movements used in the study were limited to those in a seated position and mostly in one plane of movement (e.g., sagittal). Furthermore, the tracking capabilities of the Kinect V2 have substantially improved in the past 7 years and include more data points (joints) for comparison.

The current Mystic Isle game involves multi-planar, full body movements. Designed for individuals with diverse abilities, games can be played in a sitting or standing position, depending on the therapy treatment plan. In standing, the player is able to move around in the 3-dimensional space, akin to real-world rehabilitation. Few studies have evaluated the tracking and measurement capabilities of the Microsoft Kinect V2 for full-body, multi-planar movements in both sitting and standing. The purpose of this study was to determine the spatial accuracy and measurement validity of the Microsoft Kinect V2 sensor in a NUI rehabilitation game in comparison to a gold-standard marker-based motion capture system (Vicon).

Materials and methods

Participants

Participants were recruited via convenience sample at the University of Missouri- Columbia campus. Participants were included if they: 1) were over the age of 18, 2) could understand conversational English, and 3) had no medical conditions which prevented them from playing video games. The study has been approved by the Health Sciences Institutional Review Board at the University of Missouri with the approval number IRB 2005896 HS. All potential participants were screened and all subjects provided written informed consent before beginning the study.

Mystic Isle

Mystic Isle is a platform for rehabilitation that allows a user to interact with a virtual environment by using their body (Fig 1). The Mystic Isle software was created in Unity 3D and Mystic Isle allows the tracked user to interact with virtual environments and objects in a 3-D world. Using Mystic Isle, specific movements, distances, and locations of objects can be tailored to the abilities and requirements of the user. The system uses the Microsoft Kinect V2 camera to track participant movements. The Kinect V2 tracks 20 discrete points/joints on the body of the user. Both gross motor (stepping, jumping, squatting) and fine motor (waving the hand, turning the palm facing up, open/close hand) movements can be tracked. The Kinect V2 tracks the user in 3-dimensional space and then inputs the data in real time to the associated software, Mystic Isle. The Kinect V2 tracks and records the x, y, and z coordinates (and confidence) of each discrete joint at either 15 or 30 frames per second.

An external file that holds a picture, illustration, etc.Object name is pone.0202338.g001.jpg

Fig 1
Mystic Isle game environment.(a) A virtual avatar collecting targets in a Kinect-based rehabilitation game, Mystic Isle. (b) A participant playing the game with Vicon markers on the body. Joint data of game trials were recorded by a Kinect and the Vicon system for validation.

[…]

Continue —>  Validation of a Kinect V2 based rehabilitation game

, , , , , ,

Leave a comment

[Abstract] Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis.

Abstract

BACKGROUND:

Mirror therapy has been proposed as an effective intervention for lower limb rehabilitation post stroke.

RESEARCH QUESTION:

This systematic review with meta-analysis examined if lower limb mirror therapy improved the primary outcome measures of muscle tone and motor function and the secondary outcome measures balance characteristics, functional ambulation, walking velocity, passive range of motion (PROM) for ankle dorsiflexion and gait characteristics in patients with stroke compared to other interventions.

METHODS:

Standardised mean differences (SMD) and mean differences (MD) were used to assess the effect of mirror therapy on lower limb functioning.

RESULTS:

Nine studies were included in the review. Among the primary outcome measures there was evidence of a significant effect of mirror therapy on motor function compared with sham and non-sham interventions (SMD 0.54; 95% CI 0.24-0.93). Furthermore, among the secondary outcome measures there was evidence of a significant effect of mirror therapy for balance capacity (SMD -0.55; 95% CI -1.01 to -0.10), walking velocity (SMD 0.71; 95% CI 0.35-1.07), PROM for ankle dorsiflexion (SMD 1.20; 95% CI 0.71-1.69) and step length (SMD 0.56; 95% CI -0.00 to 1.12).

SIGNIFICANCE:

The results indicate that using mirror therapy for the treatment of certain lower limb deficits in patients with stroke may have a positive effect. Although results are somewhat positive, overly favourable interpretation is cautioned due to methodological issues concerning included studies.

via Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis. – PubMed – NCBI

, , , , , ,

Leave a comment

[Abstract] Adherence to a Long-Term Physical Activity and Exercise Program After Stroke Applied in a Randomized Controlled Trial

Abstract

Background: Persistent physical activity is important to maintain motor function across all stages after stroke.
Objective: The objective of this study was to investigate adherence to an 18-month physical activity and exercise program.
Design: The design was a prospective, longitudinal study including participants who had had a stroke randomly allocated to the intervention arm of a randomized controlled trial.
Methods: The intervention consisted of individualized monthly coaching by a physical therapist who motivated participants to adhere to 30 minutes of daily physical activity and 45 minutes of weekly exercise over an 18-month period. The primary outcome was the combination of participants’ self-reported training diaries and adherence, as reported by the physical therapists. Mixed-effect models were used to analyze change in adherence over time. Intensity levels, measured by the Borg scale, were a secondary outcome.
Results: In total, 186 informed, consenting participants who had had mild-to-moderate stroke were included 3 months after stroke onset. Mean age was 71.7 years (SD = 11.9). Thirty-four (18.3%) participants withdrew and 9 (4.8%) died during follow-up. Adherence to physical activity and exercise each month ranged from 51.2% to 73.1%, and from 63.5% to 79.7%, respectively. Adherence to physical activity increased by 2.6% per month (odds ratio = 1.026, 95% CI = 1.014–1.037). Most of the exercise was performed at moderate-to-high intensity levels, ranging from scores of 12 to 16 on the Borg scale, with an increase of 0.018 points each month (95% CI = 0.011–0.024).
Limitations: Limitations included missing information about adherence for participants with missing data and reasons for dropout.
Conclusions: Participants with mild and moderate impairments after stroke who received individualized regular coaching established and maintained moderate-to-good adherence to daily physical activity and weekly exercise over time.

 

via Adherence to a Long-Term Physical Activity and Exercise Program After Stroke Applied in a Randomized Controlled Trial | Physical Therapy | Oxford Academic

, , , , ,

Leave a comment

[ARTICLE] Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: A multicenter parallel group randomized trial – Full Text

Abstract

Background

Virtual reality-based training has found increasing use in neurorehabilitation to improve upper limb training and facilitate motor recovery.

Objective

The aim of this study was to directly compare virtual reality-based training with conventional therapy.

Methods

In a multi-center, parallel-group randomized controlled trial, patients at least 6 months after stroke onset were allocated either to an experimental group (virtual reality-based training) or a control group receiving conventional therapy (16×45 minutes within 4 weeks). The virtual reality-based training system replicated patients´ upper limb movements in real-time to manipulate virtual objects.

Blinded assessors tested patients twice before, once during, and twice after the intervention up to 2-month follow-up for dexterity (primary outcome: Box and Block Test), bimanual upper limb function (Chedoke-McMaster Arm and Hand Activity Inventory), and subjective perceived changes (Stroke Impact Scale).

Results

54 eligible patients (70 screened) participated (15 females, mean age 61.3 years, range 20–81 years, time since stroke 3.0±SD 3 years). 22 patients were allocated to the experimental group and 32 to the control group (3 drop-outs). Patients in the experimental and control group improved: Box and Block Test mean 21.5±SD 16 baseline to mean 24.1±SD 17 follow-up; Chedoke-McMaster Arm and Hand Activity Inventory mean 66.0±SD 21 baseline to mean 70.2±SD 19 follow-up. An intention-to-treat analysis found no between-group differences.

Conclusions

Patients in the experimental and control group showed similar effects, with most improvements occurring in the first two weeks and persisting until the end of the two-month follow-up period. The study population had moderate to severely impaired motor function at entry (Box and Block Test mean 21.5±SD 16). Patients, who were less impaired (Box and Block Test range 18 to 72) showed higher improvements in favor of the experimental group. This result could suggest that virtual reality-based training might be more applicable for such patients than for more severely impaired patients.

Introduction

Virtual reality-based rehabilitation systems are gaining popularity because of their ease of use, applicability to wide range of patients, and ability to provide patient-personalized training []. Additional reported benefits of virtual reality systems for both patients and health providers include increased therapy efficiency and a high level of attention in patients during training [].

One of the main struggles therapists encounter is keeping patients motivated throughout conventional training sessions. The Yerkes-Dodson Law describes the relationship between arousal or motivation and performance []. At first, an increase in arousal and motivation leads to an increase in performance. But once a certain point is reached, this point can vary based on many factors including the task, the participant, and the context, the relationship becomes inverse and increases in arousal caused decreases in performance. In line with these ideas, previous research has shown that increased performance leads to greater improvement in patients after stroke up to a certain point. Virtual reality-based systems allow manipulation of arousal through training settings to ensure that peak performance is maintained for as large a portion of the therapy time as possible [].

Laver et al. systematically evaluated the literature regarding the efficacy of virtual reality-based training in stroke rehabilitation in 2011 and in its updates in 2015 and 2017 []. Their current meta-analysis of 22 trials including 1038 patients after stroke that focused on upper limb function did not reveal a statistically significant difference between VR-based training and conventional therapy (0.07 standard deviation higher in virtual reality-based compared to conventional therapy. Furthermore, the authors rated the quality of evidence as low, based on the GRADE system. However, for ADL function the experimental groups showed a 0.25 higher standard deviation than the conventional therapy groups based on ten studies, including 466 patients after a stroke with moderate quality of evidence.

Only 10% of the included studies included more than 50 participants, with mean ages between 46 to 76 years. However, due to the different systems used no conclusion could be drawn regarding grip strength, dosage, type or program of the virtual reality-based training. Furthermore, the authors pointed out the low sample sizes and the low methodological quality of the reported trials. In their recommendations for further research, the authors encouraged researchers and clinicians again to conduct larger trials and to increase the detail in reporting to enable more firm conclusions.

YouGrabber (now renamed Bi-Manu Trainer), a game-based virtual reality system designed for upper-limb rehabilitation, has been shown to be effective in children with cerebral palsy. A 2-subject feasibility study indicated that the findings might extend to chronic stroke patients []. Both male subjects, who were trained three years after insult onset, showed increases in scores for the bimanual activities of daily living focused Chedoke McMaster Arm and Hand Activity Inventory (CAHAI) that persisted at the final follow-up, and corresponding cortical changes measured with fMRI.

Based on these findings the present multicenter parallel group randomized single-blinded trial aimed to investigate the efficacy of a virtual reality-based training with the YouGrabber training device (now renamed Bi-Manu Trainer) compared to conventional therapy. The study was designed to test the hypothesis that patients in the chronic stage after stroke in the virtual reality-based training group will show no higher post-intervention performance in the Box and Block Test (BBT) compared to patients receiving an equal training time of physiotherapy or occupational therapy.

For comparison with published and ongoing international studies we selected the Box and Block Test as the primary outcome measure and the CAHAI as the secondary outcome measure.

Methods and materials

Study design

This prospective, multicenter, single-blinded, parallel-group randomized trial was conducted in the outpatient departments of three rehabilitation hospitals in the German and French speaking parts of Switzerland: University hospital Inselspital Bern, Buergerspital Solothurn, and Reha Rheinfelden. In the study plan, each hospital was responsible for the recruitment, assessment, and therapy of 20 patients: 10 patients for the experimental group (EG) and 10 for the control group (CG), respectively.

More details regarding the study methodology can be found in the study flow chart in Fig 1 and the previously published study protocol strictly followed by each center (http://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-15-350) []. Ethics approval was warranted by the ethics committee of the Canton Aargau (2012/065) and the Canton Berne (220/12). The study was registered with ClinicalTrials.gov: NCT01774669 before the start of patient recruitment.

An external file that holds a picture, illustration, etc.Object name is pone.0204455.g001.jpg

Fig 1
Patient flow chart.BS = Buergerspital Solothurn, IS = Inselspital Bern, Reha Rheinfelden Measurement sessions: twice within one to two weeks before intervention start (BL, T0), once after eight (T1) and after 16 (T2) intervention sessions, and after a two months follow-up period (FU).

[…]

Continue —> Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: A multicenter parallel group randomized trial

, , , , , , , ,

Leave a comment

%d bloggers like this: