Posts Tagged Motor function

[THESIS] The effectiveness of acupuncture in upper extremity motor function rehabilitation in post stroke patient–systematic literature review

The aim of this thesis is to find out the effects of acupuncture in upper extremity motor function rehabilitation in stroke patient. A form of systematic literature review is used to complete the thesis research. The component of the theoretical part includes background of stroke, such as pathology and complications. Upper extremity motor Function rehabilitation in stroke patient will be presented, as well as the basics of acupuncture, which extended to the definition, acupuncture mechanism, and evidence-based acupuncture. The effects of acupuncture in upper extremity motor function rehabilitation for stroke patient will be discussed.

Full Text PDF

via The effectiveness of acupuncture in upper extremity motor function rehabilitation in post stroke patient–systematic literature review

, , , , , , , , ,

Leave a comment

[NEWS] Virtual Reality is a Cool Rehab Tool, But Ensure it is ‘Thoughtfully Applied’ to Each Patient

Published on 

VirtualReality

 

Virtual reality can help patients with movement issues, but only if it is done correctly and tailored to individual patients, says Robert Ferguson, a neurorehabilitation clinical specialist who focuses on such therapy.

Clinicians “are reading the research and they are applying it wrong,” he explains, in Medscape Medical News. “The evidence suggests that it’s not about the virtual reality, it’s about how you use the research. You need to know how the equipment and programs work so you know how to modify them for your individual patient.”

A more methodological approach to virtual reality therapy is needed.

“It shouldn’t be that we just throw someone into a virtual reality environment,” states Nancy Baker, ScD, an occupational therapist at Tufts University in Medford, Mass. “If you want it to be therapeutic, it has to be thoughtfully applied.”

Ferguson, who manages the stroke rehabilitation program at the University of Michigan Health System in Ann Arbor, presented a number of cases during his talk on virtual reality and occupational therapy recently at the American College of Rheumatology 2019 Annual Meeting.

He described asking a stroke survivor who appeared to be unable to handle problems on the left side of her body to “climb” a virtual reality rock wall. Ferguson watched as the patient sat in a chair and moved her arms in a climbing motion in response to the computer-generated field in front of her.

At first, the woman only seemed to climb to her right. But as she learned the rules of the game, Ferguson manipulated the rock wall she was seeing, ultimately encouraging her to explore the wall to her left. By the end of the session, her brain — which until then had ignored problems on the left side of her body — had led her to “climb” the wall to her left, per Medscape.

Another patient, an avid bowhunter, was trying to regain balance after a leg amputation. Ferguson constructed a virtual reality game in which the patient had to defend a castle using a bow and arrows.

“He told me, ‘it’s the hardest therapy I’ve ever done, but it’s also the most fun’,” Ferguson shares.

“The thing about immersive virtual reality environments is that we need to connect it to a goal,” he told the audience. “The virtual reality is not the treatment; it’s an adjunct treatment to what you’re doing. You need to know what your goal is and how you are going to get the patient to that goal.”

“When we use immersive virtual reality — the kind of virtual reality that makes people feel as though they are in the virtual world — meta-analyses and systemic reviews suggest that people are more engaged and more motivated,” Ferguson tells Medscape Medical News.

“We are seeing some immediate and longer-term improvements in both cognitive performance and motor function, but we are not sure how long-lasting those effects are,” he adds.

Baker, who focuses on musculoskeletal disorders and chronic pain, shares that she has been working to launch research programs looking at the effect virtual reality can have in therapy.

“The thing about chronic pain is that people lose the ability to do the things they love to do, and it can be hard to motivate them in occupational therapy,” she continues. “In a virtual reality environment, you can put them in a real-seeming space, so they can do the things they like to do.”

Research to this point indicates that virtual reality is a reasonable addition to a comprehensive rehabilitation program, as long as therapists take into account a patient’s goals, abilities, and preferences, Ferguson concludes.

“The problem is that significant heterogeneity and small study sizes limit the power of the conclusions,” he adds. “That’s why we need more research.”

[Source: Medscape Medical News]

 

via Virtual Reality is a Cool Rehab Tool, But Ensure it is ‘Thoughtfully Applied’ to Each Patient – Rehab Managment

, , , , , ,

Leave a comment

[ARTICLE] Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment – Full Text

Abstract

Stroke is one of the main causes of long-term disability worldwide, placing a large burden on individuals and society. Rehabilitation after stroke consists of an iterative process involving assessments and specialized training, aspects often constrained by limited resources of healthcare centers. Wearable technology has the potential to objectively assess and monitor patients inside and outside clinical environments, enabling a more detailed evaluation of the impairment and allowing the individualization of rehabilitation therapies. The present review aims to provide an overview of wearable sensors used in stroke rehabilitation research, with a particular focus on the upper extremity. We summarize results obtained by current research using a variety of wearable sensors and use them to critically discuss challenges and opportunities in the ongoing effort towards reliable and accessible tools for stroke rehabilitation. Finally, suggestions concerning data acquisition and processing to guide future studies performed by clinicians and engineers alike are provided.

Introduction

Stroke is one of the leading causes of disability worldwide [], with a global prevalence estimated at 42.4 million in 2015 []. Stroke results in permanent motor disabilities in 80% of cases []. During the acute and subacute stages (< 6 months after stroke []), patients receive rehabilitation therapies at specialized healthcare centers, consisting of an iterative process involving impairment assessments, goal definition, intervention, and progress evaluation []. After being discharged from the rehabilitation center (i.e. after entering the chronic stage, e.g., 6 months after stroke), 65% of patients are unable to integrate affected limbs into everyday-life activities [], showing a need for further treatment. Phrased differently, the rehabilitative process after stroke depends on the effective assessment of motor deficit and congruent allocation to treatment (diagnostics), accurate appraisal of treatment effects (recovery/adaptation evaluation), and prolonged treatment for continuous recovery during the chronic stage (extended training).

Each of these three aspects present practical challenges. Assigned treatments depend on the assessed early-stage disability []. A variety of assessment scales exist to evaluate motor impairment after stroke, designed to capture aspects such as joint range of motion (ROM), synergistic execution of movements, reaching and grasping capabilities, object manipulation, etc. []. These assessments are normally applied by specialized medical personnel, which entails certain variability between assessments []. Besides consistency in repeated measurements, some scales like the Fugl-Meyer assessment (FMA) [], are unable to capture the entire spectrum of motor function in patients due to limited sensitivity or ceiling effects [].

In addition to thorough standardized assessment scales, progress in patients is observable during the execution of activities of daily living (e.g., during occupational therapy sessions). Nevertheless, task completion not always reflects recovery, as patients often adopt different synergistic patterns to compensate for lost function [], and such behavior is not always evident.

Main provision of rehabilitation therapies occurs at hospitals and rehabilitation centers. Evidence of enhanced recovery related to more extensive training has been found [], but limited resources at these facilities often obstruct extended care during the chronic stage. This calls for new therapeutic options allowing patients to train intensively and extensively after leaving the treatment center, while ensuring the treatment’s quality, effectiveness and safety.

Wearable sensors used during regular assessments can reduce evaluation times and provide objective, quantifiable data on the patients’ capabilities, complementing the expert yet subjective judgement of healthcare specialists. These recordings are more objective and replicable than regular observations. They have the potential of reducing diagnostic errors affecting the choice for therapies and their eventual readjustment. Additional information (e.g., muscle activity) extracted during the execution of multiple tasks can be used to better characterize motor function in patients, allowing for finer stratification into more specific groups, which can then lead to better targeted care (i.e. personalized therapies). These devices also make it possible to acquire data unobtrusively and continuously, which enables the study of motor function while patients perform daily-life activities. Further, the prospect of remotely acquiring data shows promise in the implementation of independent rehabilitative training outside clinics, allowing patients to work more extensively towards recovery.

The objective of this review is to provide an overview of wearable sensors used in stroke rehabilitation research, with a particular focus on the upper extremity, aiming to present a roadmap for translating these technologies from “bench to bedside”. We selected articles based on their reports about tests conducted with actual stroke patients, with the exception of conductive elastomer sensors, on which extensive research exists without tests in patients. In the section “Wearable devices used in stroke patients”, we summarize results obtained by current research using a variety of wearable sensors and use them to critically discuss challenges and opportunities in the ongoing effort towards reliable and accessible tools for stroke rehabilitation. In the “Discussion” section, we present suggestions concerning data acquisition and processing, as well as opportunities arising in this field, to guide future studies performed by clinicians and engineers alike.

Wearable devices used in stroke patients

Recent availability of ever more compact, robust and power-efficient wearable devices has presented research and development groups in academia and industry with the means of studying and monitoring activities performed by users on a daily basis.

Over the past years, multiple research groups have worked towards a reliable, objective and unobtrusive way of studying human movement. From the array of sensors and devices created, a few have gained popularity in time due to their practicality. The next subsections will focus on the wearable devices most frequently used in the study of human motion, with special emphasis on monitoring of upper limbs in stroke patients.

Inertial measurement units (IMUs)

Inertial measurement units (IMUs) are devices combining the acceleration readings from accelerometers and the angular turning rate detection of gyroscopes []. Recent versions of such devices are equipped with a magnetometer as well, adding an estimation of the orientation of the device with respect to the Earth’s magnetic field []. A general description of how inertial data are used to extract useful information from these devices is offered by Yang and Hsu []. High-end IMUs used for human motion tracking, such as the “MTw Awinda” sensor (Xsens®, Enscheda, Overijssel, The Netherlands) [], acquire data at sampling rates as high as 1 kHz (sensitivities of ±2000 deg/s, ±160 m/s2, ±1.9 G). More affordable sensors (e.g. “MMR” (mbientlab Inc.®, San Francisco, California, USA) []) stream data at 100 Hz (max sensitivities of ±2000 deg/s, ±16 g, 13 G). The necessary sampling rate depends on the application, and must be defined such that aliasing is avoided (i.e. Nyquist rate, 2 times the frequency of the studied phenomenon). Figure 1 shows an example of motion tracking using these devices.

Diagnostics

Multiple scales exist for assessing motor function in stroke patients []. However, limitations exist in terms of objectivity and test responsiveness to subtle changes [], as well as on the amount of time needed to apply these tests. Therefore, several research groups have focused on the use of IMUs to assess motor function more objectively. Hester et al. [] were able to predict hand and arm stages of the Chedoke-McMaster clinical score, while Yu et al. [] built Brunnstrom stage [] classifiers, assigning each patient to one of six classes of synergistic movements in affected limbs. The Wolf Motor test [], the FMA [] and the Action Research Arm Test (ARAT) [], frequently used to assess motor function in clinical settings, have also been automated.[…]

 

Continue —->  Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment | SpringerLink

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study

Abstract

Background and Purpose

Transcranial direct current stimulation (tDCS) is a treatment used in the rehabilitation of stroke patients aiming to improve functionality of the plegic upper extremity. Currently, tDCS is not routinely used in post stroke rehabilitation. The aim of this study was to establish the effects of bihemspheric tDCS combined with physical therapy (PT) and occupational therapy (OT) on upper extremity motor function.

Methods

Thirty-two stroke inpatients were randomised into 2 groups. All patients received 15 sessions of conventional upper extremity PT and OT over 3 weeks. The tDCS group (n = 16) also received 30 minutes of bihemispheric tDCS and the sham group (n = 16) 30 minutes of sham bihemispheric tDCS simultaneously to OT. Patients were evaluated before and after treatment using the Fugl Meyer upper extremity (FMUE), functional independence measure (FIM), and Brunnstrom stages of stroke recovery (BSSR) by a physiatrist blind to the treatment group

Results

The improvement in FIM was higher in the tDCS group compared to the sham group (P = .001). There was a significant within group improvement in FMUE, FIM and BSSR in those receiving tDCS (P = .001). There was a significant improvement in FIM in the chronic (> 6months) stroke sufferers who received tDCS when compared to those who received sham tDCS and when compared to subacute stroke (3-6 months) sufferers who received tDCS/sham.

Conclusions

Upper extremity motor function in hemiplegic stroke patients improves when bihemispheric tDCS is used alongside conventional PT and OT. The improvement in functionality is greater in chronic stroke patients.

via Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study – ScienceDirect

, , , , , , , , , , , ,

Leave a comment

[Abstract] Ergometer training in stroke rehabilitation: systematic review and meta-analysis

Abstract

Objective

Ergometer training is routinely used in stroke rehabilitation. How robust is the evidence of its effects?

Data source

The PubMed database and PEDro database were reviewed prior to 22/01/2019.

Study selection

Randomized controlled trials investigating the effects of ergometer training on stroke recovery were selected.

Data extraction

Two reviewers independently selected the studies, performed independent data extraction, and assessed the risk of bias.

Data synthesis

A total of 28 studies (including 1115 stroke subjects) were included. The data indicates that

(1) ergometer training leads to a significant improvement of walking ability, cardiorespiratory fitness, motor function and muscular force of lower limbs, balance and postural control, spasticity, cognitive abilities, as well as the brain’s resistance to damage and degeneration,

(2) neuromuscular functional electrical stimulation assisted ergometer training is more efficient than ergometer training alone,

(3) high-intensity ergometer training is more efficient that low-intensity ergometer training, and

(4) ergometer training is more efficient than other therapies in supporting cardiorespiratory fitness, independence in activities of daily living, and balance and postural control, but less efficient in improving walking ability.

Conclusion

Ergometer training can support motor recovery after stroke. However, current data is insufficient for evidence-based rehabilitation. More data is required about the effects of ergometer training on cognitive abilities, emotional status, and quality of life in stroke subjects.

via Ergometer training in stroke rehabilitation: systematic review and meta-analysis – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , , ,

Leave a comment

[Abstract] Game-based hand resistance exercise versus traditional manual hand exercises for improving hand strength, motor function, and compliance in stroke patients: A multi-center randomized controlled study

Abstract

BACKGROUND:

Game-based exercise is effective for improving strength and motor function in stroke patients undergoing rehabilitation, and it creates fun and motivation for exercise.

OBJECTIVE:

We investigated the effect of game-based exercise on hand strength, motor function, and compliance in stroke patients.

METHODS:

Fifty stroke patients were randomly divided into experimental and control groups. The experimental group performed a game-based hand resistance exercise. This exercise was divided into isotonic and isometric types and was performed 30 min/day, 5 days/week, for 6 weeks with 70% of the 1-repetition maximum. In contrast, the control group was given a traditional manual exercise by the occupational therapist, and the type of exercise and time involved were the same as those in the experimental group. The primary outcome measure was hand strength test measured using a dynamometer. Secondary outcome measures were manual function tests (MFT) and hand function tests using box and block test (BBT). Subject-based reports of motivation, fun, pain/fatigue evaluated on 0 to 10 numeric rating scales were compared between groups.

RESULTS:

After training, hand strength, MFT and BBT was improved in the experimental group compared to the control group (P <  0.001, both). Subject-based reports of motivation and fun was significantly greater in the experimental group than the control group (P <  0.001, both), except to pain/fatigue (P = 0.728).

CONCLUSIONS:

In conclusion, we demonstrated that game-based exercise is more effective than manual exercise in improving muscle strength, motor function, and compliance in stroke patients.

 

via Game-based hand resistance exercise versus traditional manual hand exercises for improving hand strength, motor function, and compliance in stroke … – PubMed – NCBI

, , , , , , , , , ,

Leave a comment

[Abstract] How to perform mirror therapy after stroke? Evidence from a meta-analysis

Abstract

BACKGROUND:

A recently updated Cochrane review for mirror therapy (MT) showed a high level of evidence in the treatment of hemiparesis after stroke. However, the therapeutic protocols used in the individual studies showed significant variability.

OBJECTIVE:

A secondary meta-analysis was performed to detect which parameters of these protocols may influence the effect of MT for upper limb paresis after stroke.

METHODS:

Trials included in the Cochrane review, which published data for motor function / impairment of the upper limb, were subjected to this analysis. Trials or trial arms that used MT as group therapy or combined it with electrical or magnetic stimulation were excluded. The analysis focused on the parameters mirror size, uni- or bilateral movement execution, and type of exercise. Data were pooled by calculating the total weighted standardized mean difference and the 95% confidence interval.

RESULTS:

Overall, 32 trials were included. The use of a large mirror compared to a small mirror showed a higher effect on motor function. Movements executed unilaterally showed a higher effect on motor function than a bilateral execution. MT exercises including manipulation of objects showed a minor effect on motor function compared to movements excluding the manipulation of objects. None of the subgroup differences reached statistical significance.

CONCLUSIONS:

The results of this analysis suggest that the effects on both motor function and impairment of the affected upper limb depend on the therapy protocol. They furthermore indicate that a large mirror, unilateral movement execution and exercises without objects may be parameters that enhance the effects of MT for improving motor function after stroke.

 

via How to perform mirror therapy after stroke? Evidence from a meta-analysis. – PubMed – NCBI

, , , , , , , , , ,

Leave a comment

[REVIEW] Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls – Full Text

Acute brain ischemia causes changes in several neural networks and related cortico-subcortical excitability, both in the affected area and in the apparently spared contralateral hemisphere. The modulation of these processes through modern techniques of noninvasive brain stimulation, namely repetitive transcranial magnetic stimulation (rTMS), has been proposed as a viable intervention that could promote post-stroke clinical recovery and functional independence. This review provides a comprehensive summary of the current evidence from the literature on the efficacy of rTMS applied to different clinical and rehabilitative aspects of stroke patients. A total of 32 meta-analyses published until July 2019 were selected, focusing on the effects on motor function, manual dexterity, walking and balance, spasticity, dysphagia, aphasia, unilateral neglect, depression, and cognitive function after a stroke. Only conventional rTMS protocols were considered in this review, and meta-analyses focusing on theta burst stimulation only were excluded. Overall, both HF-rTMS and LF-rTMS have been shown to be safe and well-tolerated. In addition, the current literature converges on the positive effect of rTMS in the rehabilitation of all clinical manifestations of stroke, except for spasticity and cognitive impairment, where definitive evidence of efficacy cannot be drawn. However, routine use of a specific paradigm of stimulation cannot be recommended yet due to a significant level of heterogeneity of the studies in terms of protocols to be set and outcome measures that have to be used. Future studies need to preliminarily evaluate the most promising protocols before going on to multicenter studies with large cohorts of patients in order to achieve a definitive translation into daily clinical practice.

Background

Stroke is a common acute neurovascular disorder that causes disabling long-term limitations to daily living activities. The most common consequence of a stroke is motor deficit of variable degree,1 although nonmotor symptoms are also relevant and often equally disabling.2 To date, to the best of the authors’ knowledge, there is no validated treatment that is able to restore the impaired functions by a complete recovery of the damaged tissue. Indeed, stroke management basically consists of reducing the initial ischemia in the penumbra, preventing future complications, and promoting a functional recovery using physiotherapy, speech therapy, occupational therapy, and other conventional treatments.3,4

Ischemic damage is associated with significant metabolic and electrophysiological changes in cells and neural networks involved in the affected area. From a pure electrophysiological perspective, however, beyond the affected area, there is a local shift in the balance between the inhibition and excitation of both the affected and contralateral hemisphere, consisting of increased excitability and disinhibition (reduced activity of the inhibitory circuits).3,5 In addition, subcortical areas and spinal regions may be altered.3,5 In particular, the role of the uninjured hemisphere seems to be of utmost significance in post-stroke clinical and functional recovery.

Different theoretical models have been proposed to explain the adaptive response of the brain to acute vascular damage. According to the vicariation model, the activity of the unaffected hemisphere contributes to the functional recovery after a stroke through the replacement of the lost functions of the affected areas. The interhemispheric competition model considers the presence of mutual inhibition between the hemispheres, and the damage caused by a stroke disrupts this balance, thus producing a reduced inhibition of the unaffected hemisphere by the affected side. This results in increased inhibition of the affected hemisphere by the unaffected side. More recently, a new model, called bimodal balance recovery, has been proposed.3,5 It introduces the concept of a structural reserve, which describes the extent to which the nondamaged neural pathways contribute to the clinical recovery. The structural reserve determines the prevalence of the interhemispheric imbalance over vicariation. When the structural reserve is high, the interhemispheric competition model can predict the recovery better than the vicariation model, and vice versa.3

Repetitive transcranial magnetic stimulation

One of the proposed interventions to improve stroke recovery, by the induction of neuromodulation phenomena, is based on methods of noninvasive brain stimulation. Among them, transcranial magnetic stimulation (TMS) is a feasible and painless neurophysiological technique widely used for diagnostic, prognostic, research, and, when applied repetitively, therapeutic purposes.69 By electromagnetic induction, TMS generates sub or suprathreshold currents in the human cortex in vivo and in real time.10,11

The most common stimulation site is the primary motor cortex (M1), that generates motor evoked potentials (MEPs) recorded from the contralateral muscles through surface electromyography electrodes.11 The intensity of TMS, measured as a percentage of the maximal output of the stimulator, is tailored to each patient based on the motor threshold (MT) of excitability. Resting MT (rMT) is found when the target muscle is at rest, it is defined as the minimal intensity of M1 stimulation required to elicit an electromyography response with a peak-to-peak amplitude > 50 µV in at least 5 out of 10 consecutive trials.11 Alternatively TMS MTAT 2.0 software (http://www.clinicalresearcher.org/software.htm) is a free tool for TMS researchers and practitioners. It provides four adaptive methods based on threshold-tracking algorithms with the parameter estimation by sequential testing, using the maximum-likelihood strategy for estimating MTs. Active MT (aMT) is obtained during a tonic contraction of the target muscle at approximately 20% of the maximal muscular strength.11

The rMT is considered a basic parameter in providing the global excitation state of a central core of M1 neurons.11 Accordingly, rMT is increased by drugs blocking the voltage-gated sodium channels, where the same drugs may not have an effect on the gamma-aminobutyric acid (GABA)-ergic functions. In contrast, rMT is reduced by drugs increasing glutamatergic transmission not mediated by the N-methyl-D-aspartate (NMDA) receptors, suggesting that rMT reflects both neuronal membrane excitability and non-NMDA receptor glutamatergic neurotransmission.12 Finally, the MT increases, being often undetectable, when a substantial portion of M1 or the cortico-spinal tract is damaged (i.e. by stroke or motor neuron disease), and decreases when the motor pathway is hyperexcitable (such as epilepsy).13

Repetitive (rTMS) is a specific stimulation paradigm characterized by the administration of a sequence of consecutive stimuli on the same cortical region, at different frequencies and inter sequence intervals. As known, rTMS can transiently modulate the excitability of the stimulated cortex, with both local and remote effects outlasting the stimulation period. Conventional rTMS modalities include high-frequency (HF-rTMS) stimulation (>1 Hz) and low-frequency (LF-rTMS) stimulation (⩽1 Hz).11 High-frequency stimulation typically increases motor cortex excitability of the stimulated area, whereas low-frequency stimulation usually produces a decrease in excitability.14 The mechanisms by which rTMS modulates the brain are rather complex, although they seem to be related to the phenomena of long-term potentiation (LTP) and long-term depression (LTD).15

When applied after a stroke, rTMS should ideally be able to suppress the so called ‘maladaptive plasticity’16,17 or to enhance the adaptive plasticity during rehabilitation. These goals can be achieved by modulating the local cortical excitability or modifying connectivity within the neuronal networks.10

rTMS in stroke rehabilitation: an overview

According to the latest International Federation of Clinical Neurophysiology (IFCN) guidelines on the therapeutic use of rTMS,10 there is a possible effect of LF-rTMS of the contralesional motor cortex in post-acute motor stroke, and a probable effect in chronic motor stroke. An effect of HF-rTMS on the ipsilesional motor cortex in post-acute and chronic motor stroke is also possible.

The potential role of rTMS in gross motor function recovery after a stroke has been assessed in a recent comprehensive systematic review of 70 studies by Dionisio and colleagues.18 The majority of the publications reviewed report a role of rTMS in improving motor function, although some randomized controlled trials (RCTs) were not able to confirm this result,1923 as shown by a recent large randomized, sham-controlled, clinical trial of navigated LF-rTMS.24 It has also been suggested that rTMS can specifically improve manual dexterity,10 which is defined as the ability to coordinate the fingers and efficiently manipulate objects, and is of crucial importance for daily living activities.25 Notably, most of the studies focused on motor impairment in the upper limbs, whereas limited data is available on the lower limbs.18 Walking and balance are frequently impaired in stroke patients and significantly affect the quality of life (QoL),26,27 and rTMS might represent a valid aid in the recovery of these functions.28,29 Spasticity is another common complication after a stroke, consisting of a velocity-dependent increase of muscular tone,30 and for which rTMS has been proposed as a rehabilitation tool.31

Dysphagia is highly common in stroke patients, it impairs the global clinical recovery, and predisposes to complications.32 It has been pointed out that rTMS targeting the M1 area representing the muscles involved in swallowing may contribute to the treatment of post-stroke dysphagia.33

Nonmotor deficit is also a relevant post-stroke disability that negatively impacts the QoL. Aphasia is a very common consequence of stroke, affecting approximately 30% of stroke survivors and significantly limiting rehabilitation.34 According to the IFCN guidelines, to date, there is no recommendation for LF-rTMS of the contralesional right inferior frontal gyrus (IFG). Similarly, no recommendation for HF-rTMS or intermittent theta burst stimulation (TBS) of the ipsilesional left IFG or dorsolateral prefrontal cortex (DLPFC) in Broca’s aphasia has been currently approved.10 The same is true for LF-rTMS of the right superior temporal gyrus in Wernicke’s aphasia.10

Neglect is the incapacity to respond to tactile or visual contralateral stimuli that are not caused by a sensory-motor deficit.35 Although hard to treat, rTMS has been proposed as a tool for neglect rehabilitation.36 However, the IFCN guidelines state that currently there is no recommendation for LF-rTMS of the contralesional left posterior parietal cortex, or for HF-rTMS of the ipsilesional right posterior parietal cortex.10 In a recent systematic review, most of the included studies supported the use of TMS for the rehabilitation of aphasia, dysphagia, and neglect, although the heterogeneity of stimulation protocols did not allow definitive conclusions to be drawn.37

Post-stroke depression is a relevant complication of cerebrovascular diseases.38 The role of rTMS in the management of major depressive disorders is well documented,39,40 and currently, rTMS is internationally approved and indicated for the treatment of major depression in adults with antidepressant medication resistance, and in those with a recurrent course of illness, or in cases of moderate-to-severe disease severity.39 In major depression disorders, according to the IFCN guidelines, there is a clear antidepressant effect of HF-rTMS over the left DLPFC, a probable antidepressant effect of LF-rTMS on the right DLPFC, and probably no differential antidepressant effect between right LF-rTMS and left HF-rTMS. Moreover, there is currently no recommendation for bilateral stimulation combining HF-rTMS of the left DLPFC and LF-rTMS of the right DLPFC. The mentioned guidelines also state that the antidepressant effect when stimulating DLPFC is probably additive, and possibly potentiating, to the efficacy of antidepressant drugs.10 However, no specific recommendation currently addresses the use of rTMS in post-stroke depression. Recently, rTMS has been proposed as a treatment option for the late-life depression associated with chronic subcortical ischemic vascular disease, the so called ‘vascular depression’.4144 Three studies tested rTMS efficacy in vascular depression (one was a follow-up study with citalopram). Although presenting positive findings, further trials should refine clinical and diagnostic criteria to assess its impact on antidepressant efficacy.45

Approximately 25–30% of stroke patients develop an immediate or delayed cognitive impairment or an overt picture of vascular dementia.46 There is evidence of an overall positive effect on cognitive function for both LF-rTMS47 and HF-rTMS,48 supported by studies on experimental models of vascular dementia.4952 Nonetheless, the few trials examining the effect on stroke-related cognitive deficit produced mixed results.5356 In particular, two studies found no effect on cognition when stimulating the left DLPFC at 1 Hz and 10 Hz,53,54 whereas a pilot study found a positive effect on the Stroop interference test with HF-rTMS over the left DLPFC in patients with vascular cognitive impairment without dementia.55 However, this finding was not replicated in a follow-up study.56 To summarize, rTMS can induce beneficial effects on specific cognitive domains, although data are limited and their clinical significance needs to be further validated. Major challenges exist in terms of appropriate patient selection and optimization of the stimulation protocols.57

Central post-stroke pain (CPSP) is the pain resulting from an ischemic lesion of the central nervous system.58 It represents a relatively common complication after a stroke, although it is often under-recognized and, therefore, undertreated.59 According to the IFCN guidelines for the use of rTMS in the treatment of neuropathic pain, there is a definite analgesic effect of HF-rTMS of contralateral M1 to the pain side, and LF-rTMS of contralateral M1 to the pain side is probably ineffective. In addition, there is currently no recommendation for cortical targets other than contralateral M1 to the pain side.10 Notably, rTMS might be effective in drug-resistant CPSP patients.58 A recent systematic review that included nine HF-rTMS studies suggested an effect on CPSP relief, but also underlined the insufficient quality of the studies considered.60

Study objective

In this article, we aim to provide an up-to-date overview of the most recent evidence on the efficacy of rTMS in the rehabilitation of stroke patients. Although several studies have been published, a conclusive statement supporting a systematic use of rTMS in the multifaceted clinical aspects of stroke rehabilitation is still lacking.

[…]

 

Continue —> Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls – Francesco Fisicaro, Giuseppe Lanza, Alfio Antonio Grasso, Giovanni Pennisi, Rita Bella, Walter Paulus, Manuela Pennisi, 2019

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] When it Comes to Stroke Recovery, Who You See Matters

(a) Top view of the experiment. A tablet monitor was placed over the participant’s right forearms on the desk in front of them. (b) Diagrammatic view of the experiment from the left. There is a space to open the hand, which made it easier to imagine the opening-clench hand movement. (Photo courtesy of Toshihisa Tanaka, TUAT)

For stroke patients, observing their own hand movements in a video-assisted therapy – as opposed to someone else’s hand – could enhance brain activity and speed up rehabilitation, according to researchers.

The scientists, from Tokyo University of Agriculture and Technology (TUAT), published their findings in IEEE Transactions on Neural Systems and Rehabilitation Engineering.

Brain plasticity, where a healthy region of the brain fulfills the function of a damaged region of the brain, is a key factor in the recovery of motor functions caused by stroke. Studies have shown that sensory stimulation of the neural pathways that control the sense of touch can promote brain plasticity, essentially rewiring the brain to regain movement and senses.

To promote brain plasticity, stroke patients may incorporate a technique called motor imagery in their therapy. Motor imagery allows a participant to mentally simulate a given action by imagining themselves going through the motions of performing that activity. This therapy may be enhanced by a brain-computer interface technology, which detects and records the patients’ motor intention while they observe the action of their own hand or the hand of another person, a media release from Tokyo University of Agriculture and Technology explains.

“We set out to determine whether it makes a difference if the participant is observing their own hand or that of another person while they’re imagining themselves performing the task,” says co-author Toshihisa Tanaka, a professor in the Department of Electrical and Electrical Engineering at TUAT in Japan and a researcher at the RIKEN Center for Brain Science and the RIKEN Center for Advanced Intelligent Project.

The researchers monitored brain activity of 15 healthy right-handed male participants under three different scenarios. In the first scenario, participants were asked to imagine their hand moving in synchrony with hand movements being displayed in a video clip showing their own hand performing the task, together with corresponding voice cues.

In the second scenario, they were asked to imagine their hand moving in synchrony with hand movements being displayed on a video clip showing another person’s hand performing the task, together with voice cues. In the third scenario, the participants were asked to open and close their hands in response to voice cues only.

Using electroencephalography (EEG), brain activity of the participants was observed as they performed each task.

The team found meaningful differences in EEG measurements when participants were observing their own hand movement and that of another person. The findings suggest that, in order for motor imagery-based therapy to be most effective, video footage of a patient’s own hand should be used.

“Visual tasks where a patient observes their own hand movement can be incorporated into brain-computer interface technology used for stroke rehabilitation that estimates a patient’s motor intention from variations in brain activity, as it can give the patient both visual and sense of movement feedback,” Tanaka explains.

[Source(s): Tokyo University of Agriculture and Technology, EurekAlert]

via When it Comes to Stroke Recovery, Who You See Matters – Rehab Managment

, , , , , , , , ,

Leave a comment

[Abstract] Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial.

Abstract

IMPORTANCE:

Many patients receive suboptimal rehabilitation therapy doses after stroke owing to limited access to therapists and difficulty with transportation, and their knowledge about stroke is often limited. Telehealth can potentially address these issues.

OBJECTIVES:

To determine whether treatment targeting arm movement delivered via a home-based telerehabilitation (TR) system has comparable efficacy with dose-matched, intensity-matched therapy delivered in a traditional in-clinic (IC) setting, and to examine whether this system has comparable efficacy for providing stroke education.

DESIGN, SETTING, AND PARTICIPANTS:

In this randomized, assessor-blinded, noninferiority trial across 11 US sites, 124 patients who had experienced stroke 4 to 36 weeks prior and had arm motor deficits (Fugl-Meyer [FM] score, 22-56 of 66) were enrolled between September 18, 2015, and December 28, 2017, to receive telerehabilitation therapy in the home (TR group) or therapy at an outpatient rehabilitation therapy clinic (IC group). Primary efficacy analysis used the intent-to-treat population.

INTERVENTIONS:

Participants received 36 sessions (70 minutes each) of arm motor therapy plus stroke education, with therapy intensity, duration, and frequency matched across groups.

MAIN OUTCOMES AND MEASURES:

Change in FM score from baseline to 4 weeks after end of therapy and change in stroke knowledge from baseline to end of therapy.

RESULTS:

A total of 124 participants (34 women and 90 men) had a mean (SD) age of 61 (14) years, a mean (SD) baseline FM score of 43 (8) points, and were enrolled a mean (SD) of 18.7 (8.9) weeks after experiencing a stroke. Among those treated, patients in the IC group were adherent to 33.6 of the 36 therapy sessions (93.3%) and patients in the TR group were adherent to 35.4 of the 36 assigned therapy sessions (98.3%). Patients in the IC group had a mean (SD) FM score change of 8.36 (7.04) points from baseline to 30 days after therapy (P < .001), while those in the TR group had a mean (SD) change of 7.86 (6.68) points (P < .001). The covariate-adjusted mean FM score change was 0.06 (95% CI, -2.14 to 2.26) points higher in the TR group (P = .96). The noninferiority margin was 2.47 and fell outside the 95% CI, indicating that TR is not inferior to IC therapy. Motor gains remained significant when patients enrolled early (<90 days) or late (≥90 days) after stroke were examined separately.

CONCLUSIONS AND RELEVANCE:

Activity-based training produced substantial gains in arm motor function regardless of whether it was provided via home-based telerehabilitation or traditional in-clinic rehabilitation. The findings of this study suggest that telerehabilitation has the potential to substantially increase access to rehabilitation therapy on a large scale.

 

via Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial. – PubMed – NCBI

, , , , , , , ,

Leave a comment

%d bloggers like this: