Posts Tagged motor skills

[BLOG POST] ThisAbles.com Is Ikea’s New Project That Makes Its Existing Products Accessible

image shows 9 different low tech accessibility products that work with existing ikea products. these are: glass bumper, mega switch, easy handle, insider, pop up handle, couch lift, friendly zipper, curtain zipper, cane by me.

In order to help people with disabilities use its products much more comfortably and independently, and to foray into inclusion, Ikea recently launched the “ThisAbles” project that includes a line of low tech assistive technology devices that bridges gaps between existing Ikea products and the needs of people with disabilities. These products, like the Mega Switch that can be used to turn on and off a lamp without the need for precise use of fingers, can be easily printed by consumers on a 3D printer at their own convenience. There are 13 such products available that cater to people with disabilities related to vision, mobility and hand functions.

Visit ThisAbles.com for more information and to learn about these new developments as well as existing products suitable for people with disabilities.

Make sure to watch these quick videos to see some of the products in action.

via ThisAbles.com Is Ikea’s New Project That Makes Its Existing Products Accessible – Assistive Technology Blog

, , , , , , , , ,

Leave a comment

[Abstract] Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial

PDF

 

BACKGROUND: When solely mirror therapy is applied for a long period of time, spatial perception and attention to the damaged side may decrease, and the effect of mirror therapy may be limited. To overcome this limitation, it has recently been suggested that the combination of mirror therapy with mirror treatment is effective.
AIM: The aim of this study was to investigate the effects of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors.
DESIGN: A randomized controlled trial.
SETTING: Rehabilitation center.
POPULATION: Thirty stroke survivors were randomly assigned to two groups: the experimental group (n = 15) and the control group (n = 15).
METHODS: Participants of the experimental group received afferent electrical stimulation with mirror therapy, and participants of the control group received sham afferent electrical stimulation with sham mirror therapy for 60 minutes per day, 5 days per week, for 4 weeks. Motor function was measured using a handheld dynamometer and the Modified Ashworth Scale, balance was measured using the Berg Balance Scale, and gait was assessed using the GAITRite at baseline and after 4 weeks.
RESULTS: The experimental group showed significant differences in muscle strength, Modified Ashworth Scale, and Berg Balance Scale results, and velocity, cadence, step length, stride length, and double support time of their gait (p <0.05) in the pre-post intervention comparison. Significant differences between the two groups in muscle strength, Berg Balance Scale, gait velocity, step length, and stride length (p <0.05) were found.
CONCLUSIONS: Mirror therapy with afferent electrical stimulation may effectively improve muscle strength and gait and balance abilities in hemiplegic stroke survivors.
CLINICAL REHABILITATION IMPACT: Afferent electrical stimulation combined with mirror therapy can be used as an effective intervention to improve lower limb motor function, balance, and gait in chronic stroke survivors in clinical settings.

via Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial – European Journal of Physical and Rehabilitation Medicine 2019 Mar 22 – Minerva Medica – Journals

, , , , ,

Leave a comment

[Abstract + References] Virtual System Using Haptic Device for Real-Time Tele-Rehabilitation of Upper Limbs

Abstract

This paper proposes a tool to support the rehabilitation of upper limbs assisted remotely, which makes it possible for the physiotherapist to be able to assist and supervise the therapy to patients who can not go to rehabilitation centers. This virtual system for real-time tele-rehabilitation is non-invasive and focuses on involving the patient with mild or moderate mobility alterations within a dynamic therapy based on virtual games; Haptics Devices are used to reeducate and stimulate the movement of the upper extremities, at the same time that both motor skills and Visual-Motor Integration skills are developed. The system contains a virtual interface that emulates real-world environments and activities. The functionality of the Novint Falcon device is exploited to send a feedback response that corrects and stimulates the patient to perform the therapy session correctly. In addition, the therapy session can vary in intensity through the levels presented by the application, and the amount of time, successes and mistakes made by the patient are registered in a database. The first results show the acceptance of the virtual system designed for real-time tele-rehabilitation.

References

  1. 1.
    Ingram, T.T.S.: A historical review of the definition of cerebral palsy, the epidemiology of the cerebral palsies. In: Stanley, F.A.E. (ed.) The Epidemiology of the Cerebral Palsies, pp. 1–11. Lippincott, Philadelphia (1984)Google Scholar
  2. 2.
    Jones, M.W., Morgan, E., Shelton, J.E., Thorogood, C.: Cerebral palsy: introduction and diagnosis (part I). J. Pediatr. Health Care 21(3), 146–152 (2007)CrossRefGoogle Scholar
  3. 3.
    Aicardi, J.: Disease of the Nervous System in Childhood. MacKeith Press, London (1992)Google Scholar
  4. 4.
    Feldman, H.M., Chaves-Gnecco, D., Hofkosh, D.: Developmental-behavioral pediatrics. In: Zitelli, B.J., McIntire, S.C., Norwalk, A.J. (eds.) Atlas of Pediatric Diagnosis, Chap. 3, 6th edn. Elsevier Saunders, Philadelphia (2012)Google Scholar
  5. 5.
    Ketelaar, M., Vermeer, A., Hart, H., et al.: Effects of a functional therapy program on motor abilities of children with cerebral palsy. Phys. Ther. 81, 1534–1545 (2001)CrossRefGoogle Scholar
  6. 6.
    Taub, E., Ramey, S., DeLuca, S., Echols, K.: Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics 113, 305–312 (2004)CrossRefGoogle Scholar
  7. 7.
    Sakzewski, L., Ziviani, J., Boyd, R.N.: Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics 133(1), e175–e204 (2014)CrossRefGoogle Scholar
  8. 8.
    Galil, A., Carmel, S., Lubetzky, H., Heiman, N.: Compliance with home rehabilitation therapy by parents of children with disabilities in Jews and Bedouin in Israel. Dev. Med. Child Neurol. 43(4), 261–268 (2001)CrossRefGoogle Scholar
  9. 9.
    De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
  10. 10.
    Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
  11. 11.
    Weiss, P.L.T., Tirosh, E., Fehlings, D.: Role of virtual reality for cerebral palsy management. J. Child Neurol. 29(8), 1119–1124 (2014). 0883073814533007CrossRefGoogle Scholar
  12. 12.
    Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)CrossRefGoogle Scholar
  13. 13.
    Snider, L., Majnemer, A., Darsaklis, V.: Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 13, 120–128 (2010)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.P., Lee, S.Y., Howard, A.M.: Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis. Pediatric Phys. Therapy 26(3), 289–300 (2014)CrossRefGoogle Scholar
  15. 15.
    Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8 (2010)CrossRefGoogle Scholar
  16. 16.
    Shin, J., Song, G., Hwangbo, G.: Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Therapy Sci. 27(7), 2151–2154 (2015).  https://doi.org/10.1589/jpts.27.2151CrossRefGoogle Scholar
  17. 17.
    Chen, Y.P., Kang, L.J., Chuang, T.Y., Doong, J.L., Lee, S.J., Tsai, M.W., Sung, W.H.: Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys. Therapy 87(11), 1441–1457 (2007)CrossRefGoogle Scholar
  18. 18.
    Bortone, I., Leonardis, D., Solazzi, M., Procopio, C., Crecchi, A., Bonfiglio, L., Frisoli, A.: Integration of serious games and wearable haptic interfaces for Neuro Rehabilitation of children with movement disorders: a feasibility study. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1094–1099. IEEE, July 2017Google Scholar
  19. 19.
    Gupta, A., O’Malley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)CrossRefGoogle Scholar
  20. 20.
    Kozhaeva, T., Zhestkov, S., Bulakh, D., Houlden, N.: Programmable gesture manipulator for hand injuries rehabilitation. In: Internet Technologies and Applications (ITA), pp. 134–136. IEEE, September 2017Google Scholar
  21. 21.
    Pruna, E., et al.: 3D virtual system using a haptic device for fine motor rehabilitation. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 648–656. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56538-5_66CrossRefGoogle Scholar
  22. 22.
    Bortone, I., Leonardis, D., Solazzi, M., Procopio, C., Crecchi, A., Briscese, L., Andre, P., Bonfiglio, L., Frisoli, A.: Serious game and wearable haptic devices for neuro motor rehabilitation of children with cerebral palsy. In: Converging Clinical and Engineering Research on Neurorehabilitation II, pp. 443–447. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-46669-9_74Google Scholar
  23. 23.
    Khor, K.X., Chin, P.J.H., Hisyam, A.R., Yeong, C.F., Narayanan, A.L.T., Su, E.L.M.: Development of CR2-Haptic: a compact and portable rehabilitation robot for wrist and forearm training. In: IEEEIECBES International Conference on Biomedical Engineering and Sciences, pp. 424–429 (2014)Google Scholar
  24. 24.
    Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11, 3 (2014)CrossRefGoogle Scholar
  25. 25.
    Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959 (2002)CrossRefGoogle Scholar

via Virtual System Using Haptic Device for Real-Time Tele-Rehabilitation of Upper Limbs | SpringerLink

, , , , , , , ,

Leave a comment

[WEB SITE] Vagus Nerve Stimulation Enhances Brain Plasticity

Sebastian Kaulitzki/Shutterstock

Vagus nerve illustrated in yellow.
Source: Sebastian Kaulitzki/Shutterstock

Vagus nerve stimulation (VNS) enhances targeted neuroplasticity, helping the brain build stronger neural connections after a stroke, according to pioneering research from the University of Texas at Dallas. Using an animal model, the researchers have demonstrated for the first time that pairing VNS with a physical therapy task accelerates the recovery of motor skills.

The researchers published their findings, “Vagus Nerve Stimulation Enhances Stable Plasticity and Generalization of Stroke Recovery,” in the journal Stroke. A human clinical trial of the same treatment, “Pivotal Study of VNS During Rehab After Stroke (VNS-REHAB),” is currently underway at 18 research sites across the US and in the UK. The goal of the study is to gauge the efficacy of paired vagus nerve stimulation in helping stroke patients recover motor skills more quickly.

What Is Vagus Nerve Stimulation?

Alila Medical Media/Shutterstock

Source: Alila Medical Media/Shutterstock

Vagus nerve stimulation is delivered via a small, surgically implanted device that uses electrical impulses of varying intensities and pulse-widths to activate the vagus nerve. Electrical stimulation of the vagus nerve using VNS is an FDA-approved treatment for drug-resistant epilepsy and treatment-resistant depression. A recent proof-of-concept human study also found that VNS is a viable treatment for inflammatory joint diseases such as rheumatoid arthritis.

The sudden loss of blood flow after a stroke causes neurons in any stroke-affected brain region to die, which cuts off connections to other nerve cells. The loss of motor skills in an arm or leg after a stroke is caused by a loss of connectivity between nerve cells in the limb with corresponding motor regions of the brain.

Using an animal model, the UT Dallas researchers found that brief bursts of VNS strengthen communication pathways by building stronger cell connections in the brain after a stroke. In fact, their results show that coupling VNS with targeted movement therapies dramatically boosts the benefit of rehabilitative training after a stroke. And, in animal studies, these improvements lasted for months after the completion of VNS targeted therapy.

As the authors of this study, led by Eric C. Meyers, explain: “This study provides the first evidence that VNS paired with rehabilitative training after stroke (1) doubles long-lasting recovery on a complex task involving forelimb supination, (2) doubles recovery on a simple motor task that was not paired with VNS, and (3) enhances structural plasticity in motor networks.”

Michael Kilgard, associate director of the Texas Biomedical Device Center and professor of neuroscience in the School of Behavioral and Brain Sciences at UT Dallas, was a senior co-author of this research. Kilgard is the principal investigator at the UTD Cortical Plasticity Laboratory. His teamalso includes Seth Hays, a postdoctoral researcher in the School of Behavioral and Brain Sciences at UT Dallas, who specializes in targeted plasticity therapy to alleviate motor dysfunction.

“Our experiment was designed to ask this new question: After a stroke, do you have to rehabilitate every single action?” Kilgard said in a statement. “If VNS helps you, is it only helping with the exact motion or function you paired with stimulation? What we found was that it also improves similar motor skills as well, and that those results were sustained months beyond the completion of VNS-paired therapy.”

The UT Dallas researchers are optimistic that their latest research on targeted vagus nerve stimulation is a pivotal step toward creating guidelines for standardized usage of VNS during post-stroke therapy in humans. “We have long hypothesized that VNS is making new connections in the brain, but nothing was known for sure,” Hays said in a statement. “This is the first evidence that we are driving changes in the brain in animals after brain injury. It’s a big step forward in understanding how the therapy works — this reorganization that we predicted would underlie the benefits of VNS.”

Another recent study from UT Dallas found that moderate intensity vagus nerve stimulation optimized the neuroplasticity-enhancing and memory-enhancing effects of VNS more effectively than low or high-intensity stimulation. Notably, the researchers pinpointed that the optimal pulse width and current intensity were marked by an “inverted-U” pattern in which too much or too little VNS was less effective than a ‘Goldilocks’ sweet spot of moderate intensity that was just right. These 2017 findings were published in the journal Brain Stimulation.

Paired Vagus Nerve Stimulation Offers New Hope for Stroke Rehabilitation

In 2017, the makers of a vagus nerve stimulation device launched a randomized, double-blind clinical trial of VNS rehab for patients after a cerebrovascular stroke. This study, currently underway, will include up to 120 subjects at 18 clinical locations across the US and in the UK. The estimated conclusion date of preliminary research for this clinical trial is June 30, 2019.

The Ohio State University is one of the institutions participating in the paired VNS clinical trial. Marcie Bockbrader of the Wexner Medical Center at OSU is their principal investigator for the trial.

In a recent press release, Bockbrader said: “This nerve stimulation is like turning on a switch, making the patient’s brain more receptive to therapy. The goal is to see if we can improve motor recovery in people who have what is, in effect, a brain pacemaker implanted in their body. The idea is to combine this brain pacing with normal rehab, and see if patients who’ve been through all of their other usual therapies after a stroke can get even better.”

Below is a YouTube video of Marcie Bockbrader and colleagues in their paired VNS therapy lab along with a patient describing his stroke rehab process:

For this clinical trial, each study participant receives three one-hour sessions of intensive physiotherapy per week for a total of six weeks. The goal is to improve task-specific motor arm function. Half of the group participating in this clinical trial had a vagus nerve stimulation device surgically implanted; the other half will serve as a control group.

During each rehabilitation therapy session, whenever a patient correctly performs a particular motor skill, the therapist pushes a button to trigger an optimal pulse width and current intensity of vagus nerve stimulation. The hypothesis is that if precise and accurate movements are positively reinforced by a brief burst of VNS during a trial-and-error learning process that these actions become “hardwired” into the brain more quickly.

“We are trying to see if this neurostimulator could be used to boost the effective therapy, creating a sort of ‘supercharged therapy.’ We want to determine if patients can recover more quickly through the use of this stimulation,” Bockbrader concluded.

References

Eric C. Meyers, Bleyda R. Solorzano, Justin James, Patrick D. Ganzer, Elaine S. Lai, Robert L. Rennaker, Michael P. Kilgard, Seth A. Hays. “Vagus Nerve Stimulation Enhances Stable Plasticity and Generalization of Stroke Recovery.” Stroke (First published online: January 25,  2018) DOI: 10.1161/STROKEAHA.117.019202

Kristofer W. Loerwald, Michael S. Borland, Robert L. Rennaker II, Seth A. Hays, Michael P. Kilgard. “The Interaction of Pulse Width and Current Intensity on the Extent of Cortical Plasticity Evoked by Vagus Nerve Stimulation.” Brain Stimulation (First published online: November 15, 2017) DOI: 10.1016/j.brs.2017.11.007

via Vagus Nerve Stimulation Enhances Brain Plasticity | Psychology Today

, , , ,

Leave a comment

[Abstract] Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis

Background. Enhancement of sensory input in the form of repetitive peripheral sensory stimulation (RPSS) can enhance excitability of the motor cortex and upper limb performance.

Objective. To perform a systematic review and meta-analysis of effects of RPSS compared with control stimulation on improvement of motor outcomes in the upper limb of subjects with stroke.

Methods. We searched studies published between 1948 and December 2017 and selected 5 studies that provided individual data and applied a specific paradigm of stimulation (trains of 1-ms pulses at 10 Hz, delivered at 1 Hz). Continuous data were analyzed with means and standard deviations of differences in performance before and after active or control interventions. Adverse events were also assessed.

Results. There was a statistically significant beneficial effect of RPSS on motor performance (standard mean difference between active and control RPSS, 0.67; 95% CI, 0.09-1.24; I2= 65%). Only 1 study included subjects in the subacute phase after stroke. Subgroup analysis of studies that only included subjects in the chronic phase showed a significant effect (1.04; 95% CI, 0.66-1.42) with no heterogeneity. Significant results were obtained for outcomes of body structure and function as well as for outcomes of activity limitation according to the International Classification of Function, Disability and Health, when only studies that included subjects in the chronic phase were analyzed. No serious adverse events were reported.

Conclusions. RPSS is a safe intervention with potential to become an adjuvant tool for upper extremity paresis rehabilitation in subjects with stroke in the chronic phase.

 

via Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis – Adriana Bastos Conforto, Sarah Monteiro dos Anjos, Wanderley Marques Bernardo, Arnaldo Alves da Silva, Juliana Conti, André G. Machado, Leonardo G. Cohen, 2018

, , , , , , , , , ,

Leave a comment

[ARTICLE] EXERGAMES AS A TOOL FOR THE ACQUISITION AND DEVELOPMENT OF MOTOR SKILLS AND ABILITIES: A SYSTEMATIC REVIEW – Full Text

ABSTRACT

Objective:

To analyze the literature on the effectiveness of exergames in physical education classes and in the acquisition and development of motor skills and abilities.

Data source:

The analyses were carried out by two independent evaluators, limited to English and Portuguese, in four databases: Web of Science, Science Direct, Scopus and PubMed, without restrictions related with year. The keywords used were: “Exergames and motor learning and motor skill” and “Exergames and motor skill and physical education”. The inclusion criteria were: articles that evaluated the effectiveness of exergames in physical education classes regarding the acquisition and development of motor skills. The following were excluded: books, theses and dissertations; repetitions; articles published in proceedings and conference summaries; and studies with sick children and/or use of the tool for rehabilitation purposes.

Data synthesis:

96 publications were found, and 8 studies were selected for a final review. The quality of the articles was evaluated using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) scale and the Physiotherapy Evidence Database (PEDro) scale. Evidence was found on the recurring positive effects of exergames in both motor skills acquisition and motor skills development.

Conclusions:

Exergames, when used in a conscious manner – so as to not completely replace sports and other recreational activities -, incorporate good strategies for parents and physical education teachers in motivating children and adolescents to practice physical exercise.

INTRODUCTION

As an indispensable factor for success in sports activities, games and other physical activities, basic motor skills in childhood are determinant for a healthy and active lifestyle. 1 On the other hand, physical inactivity in childhood may result in the inability to acquire and develop motor skills and abilities, which leads to posterior deficit in learning and in the perfection of specialized motor abilities. 2 Some variables make it difficult to practice physical activity in school environments, such as: limited time, large number of students per class and lack of adequate spaces. Besides, throughout the years there has been a change in the behavior of children, leading to the removal of games that involve the movement of several body segments, and to the approximation with technology and entertainment using a screen. Facing this phenomenon, new strategies are required to keep the children motivated for the practice of physical activity. 3

Aiming at allying technology and physical activity, the active games came up – or exergames, name given to the technologies that require the whole body to move, combining physical exercises and videogames. 4 These tools convert the real movements to the virtual environment, allowing the users to be more active 5 , practicing virtual sports, fitness exercises and/or other ludic and interactive physical activities, using movements that are similar to real life tasks. 6 The exergames are different from sedentary videogames 7due to the physical effort and motor skills and abilities required during the games. 5

The insertion of exergames in the daily life may help children and adolescents to reach the recommended levels of physical activity, and, probably, have a positive impactive on the lives of children, since this is a useful way to acquire and develop motor skills and abilities. 4 ,, , 10 Even if exergames are a reality in the lives of children and adolescents – and some researchers have been studying their applicability for the motor performance -, identifying evidence in the scientific literature that indicates the successful or little efficient initiatives in relation to their use for the acquisition and development of motor skills and abilities is essential to formulate new proposals for its broad application in the school context.

In this context, the objective of this study was to analyze the literature as to the efficacy of the use of exergames in Physical Education classes and in the acquisition and development of motor skills and abilities.[…]

 

Continue —>  EXERGAMES AS A TOOL FOR THE ACQUISITION AND DEVELOPMENT OF MOTOR SKILLS AND ABILITIES: A SYSTEMATIC REVIEW

An external file that holds a picture, illustration, etc.Object name is 0103-0582-rpp-2017-35-4-00013-gf1.jpg

Figure 1:
Flowchart of the articles found .

, , ,

Leave a comment

[Abstract] Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis

Background. Enhancement of sensory input in the form of repetitive peripheral sensory stimulation (RPSS) can enhance excitability of the motor cortex and upper limb performance.

Objective. To perform a systematic review and meta-analysis of effects of RPSS compared with control stimulation on improvement of motor outcomes in the upper limb of subjects with stroke.

Methods. We searched studies published between 1948 and December 2017 and selected 5 studies that provided individual data and applied a specific paradigm of stimulation (trains of 1-ms pulses at 10 Hz, delivered at 1 Hz). Continuous data were analyzed with means and standard deviations of differences in performance before and after active or control interventions. Adverse events were also assessed.

Results. There was a statistically significant beneficial effect of RPSS on motor performance (standard mean difference between active and control RPSS, 0.67; 95% CI, 0.09-1.24; I2 = 65%). Only 1 study included subjects in the subacute phase after stroke. Subgroup analysis of studies that only included subjects in the chronic phase showed a significant effect (1.04; 95% CI, 0.66-1.42) with no heterogeneity. Significant results were obtained for outcomes of body structure and function as well as for outcomes of activity limitation according to the International Classification of Function, Disability and Health, when only studies that included subjects in the chronic phase were analyzed. No serious adverse events were reported.

Conclusions. RPSS is a safe intervention with potential to become an adjuvant tool for upper extremity paresis rehabilitation in subjects with stroke in the chronic phase.

via Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis – Adriana Bastos Conforto, Sarah Monteiro dos Anjos, Wanderley Marques Bernardo, Arnaldo Alves da Silva, Juliana Conti, André G. Machado, Leonardo G. Cohen, 2018

, , , , , , , , , ,

Leave a comment

[Abstract] Eye Movements Interfere With Limb Motor Control in Stroke Survivors

Background. Humans use voluntary eye movements to actively gather visual information during many activities of daily living, such as driving, walking, and preparing meals. Most stroke survivors have difficulties performing these functional motor tasks, and we recently demonstrated that stroke survivors who require many saccades (rapid eye movements) to plan reaching movements exhibit poor motor performance. However, the nature of this relationship remains unclear.

Objective. Here we investigate if saccades interfere with speed and smoothness of reaching movements in stroke survivors, and if excessive saccades are associated with difficulties performing functional tasks.

Methods. We used a robotic device and eye tracking to examine reaching and saccades in stroke survivors and age-matched controls who performed the Trail Making Test, a visuomotor task that uses organized patterns of saccades to plan reaching movements. We also used the Stroke Impact Scale to examine difficulties performing functional tasks.

Results. Compared with controls, stroke survivors made many saccades during ongoing reaching movements, and most of these saccades closely preceded transient decreases in reaching speed. We also found that the number of saccades that stroke survivors made during ongoing reaching movements was strongly associated with slower reaching speed, decreased reaching smoothness, and greater difficulty performing functional tasks.

Conclusions. Our findings indicate that poststroke interference between eye and limb movements may contribute to difficulties performing functional tasks. This suggests that interventions aimed at treating impaired organization of eye movements may improve functional recovery after stroke.

  

via Eye Movements Interfere With Limb Motor Control in Stroke Survivors – Tarkeshwar Singh, Christopher M. Perry, Stacy L. Fritz, Julius Fridriksson, Troy M. Herter, 2018

, , , , , ,

Leave a comment

[SYSTEMATIC REVIEW] EXERGAMES AS A TOOL FOR THE ACQUISITION AND DEVELOPMENT OF MOTOR SKILLS AND ABILITIES – Full Text

ABSTRACT

Objective:

To analyze the literature on the effectiveness of exergames in physical education classes and in the acquisition and development of motor skills and abilities.

Data source:

The analyses were carried out by two independent evaluators, limited to English and Portuguese, in four databases: Web of Science, Science Direct, Scopus and PubMed, without restrictions related with year. The keywords used were: “Exergames and motor learning and motor skill” and “Exergames and motor skill and physical education”. The inclusion criteria were: articles that evaluated the effectiveness of exergames in physical education classes regarding the acquisition and development of motor skills. The following were excluded: books, theses and dissertations; repetitions; articles published in proceedings and conference summaries; and studies with sick children and/or use of the tool for rehabilitation purposes.

Data synthesis:

96 publications were found, and 8 studies were selected for a final review. The quality of the articles was evaluated using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) scale and the Physiotherapy Evidence Database (PEDro) scale. Evidence was found on the recurring positive effects of exergames in both motor skills acquisition and motor skills development.

Conclusions:

Exergames, when used in a conscious manner – so as to not completely replace sports and other recreational activities -, incorporate good strategies for parents and physical education teachers in motivating children and adolescents to practice physical exercise.

INTRODUCTION

As an indispensable factor for success in sports activities, games and other physical activities, basic motor skills in childhood are determinant for a healthy and active lifestyle. 1 On the other hand, physical inactivity in childhood may result in the inability to acquire and develop motor skills and abilities, which leads to posterior deficit in learning and in the perfection of specialized motor abilities. 2Some variables make it difficult to practice physical activity in school environments, such as: limited time, large number of students per class and lack of adequate spaces. Besides, throughout the years there has been a change in the behavior of children, leading to the removal of games that involve the movement of several body segments, and to the approximation with technology and entertainment using a screen. Facing this phenomenon, new strategies are required to keep the children motivated for the practice of physical activity. 3

Aiming at allying technology and physical activity, the active games came up – or exergames, name given to the technologies that require the whole body to move, combining physical exercises and videogames. 4 These tools convert the real movements to the virtual environment, allowing the users to be more active 5 , practicing virtual sports, fitness exercises and/or other ludic and interactive physical activities, using movements that are similar to real life tasks. 6 The exergames are different from sedentary videogames 7 due to the physical effort and motor skills and abilities required during the games. 5

The insertion of exergames in the daily life may help children and adolescents to reach the recommended levels of physical activity, and, probably, have a positive impactive on the lives of children, since this is a useful way to acquire and develop motor skills and abilities. 4 , , , 10 Even if exergames are a reality in the lives of children and adolescents – and some researchers have been studying their applicability for the motor performance -, identifying evidence in the scientific literature that indicates the successful or little efficient initiatives in relation to their use for the acquisition and development of motor skills and abilities is essential to formulate new proposals for its broad application in the school context.

In this context, the objective of this study was to analyze the literature as to the efficacy of the use of exergames in Physical Education classes and in the acquisition and development of motor skills and abilities.[…]

 

Continue —>  EXERGAMES AS A TOOL FOR THE ACQUISITION AND DEVELOPMENT OF MOTOR SKILLS AND ABILITIES: A SYSTEMATIC REVIEW

, ,

Leave a comment

[Abstract] Eye Movements Interfere With Limb Motor Control in Stroke Survivors

Background. Humans use voluntary eye movements to actively gather visual information during many activities of daily living, such as driving, walking, and preparing meals. Most stroke survivors have difficulties performing these functional motor tasks, and we recently demonstrated that stroke survivors who require many saccades (rapid eye movements) to plan reaching movements exhibit poor motor performance. However, the nature of this relationship remains unclear.

Objective. Here we investigate if saccades interfere with speed and smoothness of reaching movements in stroke survivors, and if excessive saccades are associated with difficulties performing functional tasks.

Methods. We used a robotic device and eye tracking to examine reaching and saccades in stroke survivors and age-matched controls who performed the Trail Making Test, a visuomotor task that uses organized patterns of saccades to plan reaching movements. We also used the Stroke Impact Scale to examine difficulties performing functional tasks.

Results. Compared with controls, stroke survivors made many saccades during ongoing reaching movements, and most of these saccades closely preceded transient decreases in reaching speed. We also found that the number of saccades that stroke survivors made during ongoing reaching movements was strongly associated with slower reaching speed, decreased reaching smoothness, and greater difficulty performing functional tasks.

Conclusions. Our findings indicate that poststroke interference between eye and limb movements may contribute to difficulties performing functional tasks. This suggests that interventions aimed at treating impaired organization of eye movements may improve functional recovery after stroke.

via Eye Movements Interfere With Limb Motor Control in Stroke Survivors – Tarkeshwar Singh, Christopher M. Perry, Stacy L. Fritz, Julius Fridriksson, Troy M. Herter, 2018

, , , , , , , ,

Leave a comment

%d bloggers like this: