Posts Tagged Movement

[ARTICLE] Upper Limb Kinematics in Stroke and Healthy Controls Using Target-to-Target Task in Virtual Reality – Full Text

Background: Kinematic analysis using virtual reality (VR) environment provides quantitative assessment of upper limb movements. This technique has rarely been used in evaluating motor function in stroke despite its availability in stroke rehabilitation.

Objective: To determine the discriminative validity of VR-based kinematics during target-to-target pointing task in individuals with mild or moderate arm impairment following stroke and in healthy controls.

Methods: Sixty-seven participants with moderate (32–57 points) or mild (58–65 points) stroke impairment as assessed with Fugl-Meyer Assessment for Upper Extremity were included from the Stroke Arm Longitudinal study at the University of Gothenburg—SALGOT cohort of non-selected individuals within the first year of stroke. The stroke groups and 43 healthy controls performed the target-to-target pointing task, where 32 circular targets appear one after the other and disappear when pointed at by the haptic handheld stylus in a three-dimensional VR environment. The kinematic parameters captured by the stylus included movement time, velocities, and smoothness of movement.

Results: The movement time, mean velocity, and peak velocity were discriminative between groups with moderate and mild stroke impairment and healthy controls. The movement time was longer and mean and peak velocity were lower for individuals with stroke. The number of velocity peaks, representing smoothness, was also discriminative and significantly higher in both stroke groups (mild, moderate) compared to controls. Movement trajectories in stroke more frequently showed clustering (spider’s web) close to the target indicating deficits in movement precision.

Conclusion: The target-to-target pointing task can provide valuable and specific information about sensorimotor impairment of the upper limb following stroke that might not be captured using traditional clinical scale.

Introduction

In stroke, the prevalence of upper limb impairment is approximately 50–80% in the acute phase (13) and 40–50% in the chronic phase (24). The frequently observed upper limb impairments after stroke are paresis, abnormal muscle tone, decreased somatosensation, and coordination. As a consequence of these impairments, individuals with stroke may experience reduced ability to perform everyday activities such as opening a door, handling a key, or working with a computer. Therefore, assessment of upper limb motor function is critical for determining the prognosis and evaluating the treatment effects following stroke (56).

The assessment of motor functions in stroke is usually performed using standardized clinical scales. Some of the most frequently used clinical instruments for assessing upper extremity impairment and activity capacity in stroke are Fugl-Meyer Assessment of Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT) (79). These scales are reliable (1012) and responsive to change (1314) for measuring gross changes in motor function. They have also been recommended as core measures to be included in every stroke recovery trial (6). However, observer-based ordinal instruments like FMA-UE and ARAT lack the sensitivity to assess subtle, yet, potentially important changes in movement performance (15). These clinical scales tend to have ceiling effect since they rely on scoring criteria rather than a continuous measurement construct (16).

Kinematic assessment is one solution for the need for a more objective, accurate, and sensitive measurement method (6). Kinematic assessment is being increasingly used in upper limb evaluation after stroke, out of which motion capture systems (17), robotic devices, and virtual reality (VR) systems with haptic devices (18) have become popular in the last decade. Kinematic assessment has revealed that the arm movements in subjects with stroke are slower, less accurate, less smooth, and more segmented than healthy subjects (1926).

Kinematic assessment involving the use of VR with haptic device has shown to be a promising tool for upper limb stroke rehabilitation (2728). Despite the availability of the VR system for stroke rehabilitation, it has been rarely used in assessment of upper limb movements after stroke. Individuals with stroke use similar strategies for reaching objects in both real and virtual environments (29). Previous studies using the target-to-target pointing task have shown that the movement time, velocity, and trajectory straightness were improved after a 5-week computer gaming practice in individuals with stroke (30). Movement time, mean velocity, and trajectory straightness were also stable in a test–retest study in healthy subjects (31). A clear advantage with VR systems as a measurement tool is its standardized instructions, adaptation of tasks according to patients’ functioning level, and availability of quick feedback (32). The VR assessment and training are often described as enjoyable and challenging by the users (3334).

The target-to-target pointing task is similar to routinely used tasks in everyday life, such as interacting with touch screens, using electrical switches, and pushing buttons on various devices. The choice of a regularly performed, purposeful task for this study increases its ecological validity. With VR technologies becoming more available, it opens up an opportunity to use the VR interface to acquire accurate and detailed kinematic data of upper limb movements after stroke (35). The novelty of this study is in evaluating a compact and easy-to-use haptic device coupled with VR in 3D space in order to measure movement performance during a common upper limb task.

The aim of this study was to identify the end-point kinematic variables obtained during the VR-based target-to-target pointing task that discriminate among individuals with mild and moderate upper limb impairment after stroke and healthy controls.[…]

 

Continue —>  Frontiers | Upper Limb Kinematics in Stroke and Healthy Controls Using Target-to-Target Task in Virtual Reality | Neurology

Advertisements

, , , , , , , , , ,

Leave a comment

[Fact Sheet] Recovery After Stroke: Movement And Balance – PDF file

Moving around safely and easily may not be something you think about, unless you’ve had a stroke. Many stroke survivors have trouble moving around. These problems range from balance issues to arm or leg paralysis. As a result, about 40 percent of stroke survivors have serious falls within a year of their strokes. But, there is good news. Rehab and therapy may improve your balance and ability to move.

Download this fact sheet

via National Stroke Association at http://www.stroke.org

, , , ,

Leave a comment

[European Commission] Let the music move you: involvement of motor networks of the brain in music processing – CORDIS : Projects and Results

Objective

More —>  European Commission: CORDIS : Projects and Results : Let the music move you: involvement of motor networks of the brain in music processing

, , ,

Leave a comment

[Editorial] Motor Priming for Motor Recovery: Neural Mechanisms and Clinical Perspectives – Neurology

Editorial on the Research Topic

Motor Priming for Motor Recovery: Neural Mechanisms and Clinical Perspectives

The Oxford dictionary defines the term priming as “a substance that prepares something for use or action.” In this special issue, we define motor priming as a technique, experience, or activity targeting the motor cortex resulting in subsequent changes in motor behavior. Inadequate functional recovery after neural damage is a persisting burden for many, and this insufficiency highlights the need for new neurorehabilitation paradigms that facilitate the capacity of the brain to learn and recover. The concept of motor priming has gained importance in the last decade. Numerous motor priming paradigms have emerged to demonstrate success to improve functional recovery after injury. Some of the successful priming paradigms that have shown to alter motor behavior and are easily implementable in clinical practice include non-invasive brain stimulation, movement priming, motor imagery, and sensory priming. The full clinical impact of these priming paradigms has not yet been realized due to limited evidence regarding neural mechanisms, safety and effectiveness, dosage, individualization of parameters, identification of the appropriate therapies that need to be provided in combination with the priming technique, and the vital time window to maximize the effectiveness of priming. In this special issue, four manuscripts address critical questions that will enhance our understanding of motor priming paradigms and attempt to bridge the gap between neurophysiology and clinical implementation.

In their study, “Non-Invasive Brain Stimulation to Enhance Upper Limb Motor Practice Poststroke: A Model for Selection of Cortical Site,” Harris-Love and Harrington elegantly address the extremely important issue of individualizing brain stimulation for upper limb stroke recovery. Many brain stimulation techniques show high interindividual variability and low reliability as the “one-size-for-all” does not fit the vast heterogeneity in recovery observed in stroke survivors. In this article, the authors propose a novel framework that personalizes the application of non-invasive brain stimulation based on understanding of the structural anatomy, neural connectivity, and task attributes. They further provide experimental support for this idea with data from severely impaired stroke survivors that validate the proposed framework.

The issue of heterogeneity poststroke is also addressed by Lefebvre and Liew in “Anatomical Parameters of tDCS to modulate the motor system after stroke: A review.” These authors discuss the variability in research using tDCS for the poststroke population. According to the authors, the most likely sources of variability include the heterogeneity of poststroke populations and the experimental paradigms. Individually based variability of results could be related to various factors including: (1) molecular factors such as baseline measures of GABA, levels of dopamine receptor activity, and propensity of brain-derived neurotropic factor expression; (2) time poststroke, (3) lesion location; (4) type of stroke; and (5) level of poststroke motor impairment. Variability related to experimental paradigms include the timing of the stimulation (pre- or post-training), the experimental task, and whether the protocol emphasizes motor performance (a temporary change in motor ability) or motor learning based (more permanent change in motor ability). Finally, the numerous possibilities of electrode placement, neural targets, and the different setups (monocephalic versus bi-hemispheric) add further complexity. For future work with the poststroke population, the authors suggest that tDCS experimental paradigms explore individualized neural targets determined by neuronavigation.

In another exciting study in this issue, Estes et al. tackle the timely topic of spinal reflex excitability modulated by motor priming in individuals with spinal cord injury. The authors choose to test four non-pharmacological interventions: stretching, continuous passive motion, transcranial direct current stimulation, and transcutaneous spinal cord stimulation to reduce spasticity. Three out of four techniques were associated with reduction in spasticity immediately after treatment, to an extent comparable to pharmacological approaches. These priming approaches provide a low-cost and low-risk alternative to anti-spasticity medications.

In another clinical study in individuals with spinal cord injury, Gomes-Osman et al. examined effects of two different approaches to priming. Participants were randomized to either peripheral nerve stimulation (PNS) plus functional task practice, PNS alone, or conventional exercise therapy. The findings were unexpected. There was no change in somatosensory function or power grip strength in any of the groups. Interestingly, all of the interventions produced changes in precision grip of the weaker hand following training. However, only PNS plus functional task practice improved precision grip in both hands. The authors found that baseline corticospinal excitability were significantly correlated to changes in precision grip strength of the weaker hand. The lack of change in grip strength in any of the groups was surprising. Previous evidence suggests, however, that the corticomotor system is more strongly activated during precision grip as compared to power grip, and the authors suggest that interventions targeting the corticomotor system (i.e., various priming methods) may more strongly effect precision grip.

Overall, this special issue brings together an array of original research articles and reviews that further enhance our understanding of motor priming for motor recovery with an emphasis on neural mechanisms and clinical implementation. We hope that the studies presented encourage future studies on motor priming paradigms to optimize the potential for functional recovery in the neurologically disadvantaged population, and further our understanding of neuroplasticity after injury.

Author Contributions

SM and MS have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

SM is supported by funding from the National Institutes of Health (R01HD075777).

Source: Frontiers | Editorial: Motor Priming for Motor Recovery: Neural Mechanisms and Clinical Perspectives | Neurology

, , , , , , , , , , ,

Leave a comment

[BOOK] Neurophysiological Basis of Movement – Mark L. Latash – Google books

Προεπισκόπηση αυτού του βιβλίου »

Neurophysiological Basis of Movement, Second Edition, has been thoroughly updated and expanded, making it more comprehensive and accessible to students. With eight new chapters and 130 pages of fresh material, this second edition covers a wide range of topics, including movement disorders and current theories of motor control and coordination. By emphasizing the neurophysiological mechanisms relevant to the processes of generating voluntary movements, the text targets advanced undergraduates or beginning graduate students who want to better understand how the brain generates control signals and how the peripheral apparatus executes them.

The new chapters in Neurophysiological Basis of Movement, Second Edition, focus on motor control and motor synergies, prehension, changes in movement with aging, typical and atypical development, neuromuscular peripheral disorders, and disorders of the spinal cord, basal ganglia, cerebellum, and cortex. The text is designed so that instructors can cover all chapters or select the topics most relevant to their specific courses. In addition, this edition of Neurophysiological Basis of Movementoffers these features:

-A new reference section with more than 700 references, providing supplemental resources that encourage students to read and understand research literature on the neurophysiology of movements

-A more reader-friendly presentation of material with an added color, improved illustrations, and introductions to the chapters that provide better transitions

-A new PowerPoint presentation package that includes 8 to 15 slides of art and text for every chapter, helping instructors prepare for lectures and allowing students to better understand the material

Author Mark Latash presents the material using six levels, or worlds, of analysis of the neurophysiology of movements. These worlds are cells, connections, structures, behaviors (control and coordination), evolving and changing behaviors, and motor disorders. The first three levels are the basis for the analysis of a variety of actions, such as standing, locomotion, eye movements, and reaching. Further, changes in movement with fatigue, development, aging, disorder, and rehabilitation are discussed.

The text also presents six labs to help students perform experiments to address typical “template” research problems, and one-minute drills and self-test questions encourage students to think independently and to test their knowledge as they read. The answers to the self-test questions require students to think critically and explain why they selected a particular answer, as the problems have several answers with varying degrees of correctness.

Neurophysiological Basis of Movement, Second Edition, promotes independent thinking and enhances knowledge of basic facts about the design of cells, muscles, neuronal structures, and the whole body for better understanding of typical and atypical movement production related to the nervous system and the functioning brain.

Source: Neurophysiological Basis of Movement – Mark L. Latash – Βιβλία Google

, ,

Leave a comment

[Review] Motor Imagery-Based Rehabilitation: Potential Neural Correlates and Clinical Application for Functional Recovery of Motor Deficits after Stroke – Full Text PDF

ABSTRACT:

Motor imagery (MI), defined as the mental implementation of an action in the absence of movement or muscle activation, is a rehabilitation technique that offers a means to replace or restore lost motor function in stroke patients when used in conjunction with conventional physiotherapy procedures. This article briefly reviews the concepts and neural correlates of MI in order to promote improved understanding, as well as to enhance the clinical utility of MI-based rehabilitation regimens. We specifically highlight the role of the cerebellum and basal ganglia, premotor, supplementary motor, and prefrontal areas, primary motor cortex, and parietal cortex. Additionally, we examine the recent literature related to MI and its potential as a therapeutic technique in both upper and lower limb stroke rehabilitation.

Download Full Text PDF

, , , , , , , , , ,

Leave a comment

[ARTICLE] Usability evaluation of low-cost virtual reality hand and arm rehabilitation games – Full Text PDF

Abstract

The emergence of lower-cost motion tracking devices enables home-based virtual reality rehabilitation activities and increased accessibility to patients. Currently, little documentation on patients’ expectations for virtual reality rehabilitation is available.

This study surveyed 10 people with stroke for their expectations of virtual reality rehabilitation games. This study also evaluated the usability of three lowercost virtual reality rehabilitation games using a survey and House of Quality analysis. The games (kitchen, archery, and puzzle) were developed in the laboratory to encourage coordinated finger and arm movements.

Lower-cost motion tracking devices, the P5 Glove and Microsoft Kinect, were used to record the movements. People with stroke were found to desire motivating and easy-to-use games with clinical insights and encouragement from therapists. The House of Quality analysis revealed that the games should be improved by obtaining evidence for clinical effectiveness, including clinical feedback regarding improving functional abilities, adapting the games to the user’s changing functional ability, and improving usability of the motion-tracking devices.

This study reports the expectations of people with stroke for rehabilitation games and usability analysis that can help guide development of future games.

Full Text PDF

, , , , , , , , , , , , ,

Leave a comment

[REVIEW] Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

Highlights

  • Synergies have been extensively studied by neuroscientists to understand the control of multi-joint movements.
  • Synergies are thought to emerge from the interaction of neural and biomechanical factors.
  • The field of robotics has recently exploited the concept of synergies to design and build artificial hands.
  • Neuroscience has leveraged recent advances in robotics research by using novel tools and approaches to study hand control.

Abstract

The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments.

The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.

Source: Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

, , , , , , , , ,

Leave a comment

[Abstract] Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

Highlights

Cover imageSynergies have been extensively studied by neuroscientists to understand the control of movements involving multiple muscles and joints.

The overarching theoretical framework underlying the concept of synergies is that they emerge from the interaction of neural and biomechanical factors. This interaction leads to a reduction in the number of independent degrees of freedom to be controlled.

The field of robotics has recently exploited the concept of synergies to design and build artificial systems, in particular artificial hands, and reduce the complexity associated with controlling a large number of degrees of freedom.

Neuroscience has leveraged recent advances in robotics research by using novel tools and methodological approaches to study how the central nervous system integrates sensory feedback with motor commands for hand control.


Abstract

The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments.

The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.

 

Source: Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

, , , , , , , , ,

Leave a comment

[ARTICLE] Organizing motor imageries – Full Text

Highlights

  • Motor imagery is widely defined as mental rehearsal of movement.
  • Here, motor imagery is characterized based on four different factors.
  • Previous motor imagery studies can be re-interpreted using these four factors.

Abstract

Over the last few decades, motor imagery has attracted the attention of researchers as a prototypical example of ‘embodied cognition’ and also as a basis for neuro-rehabilitation and brain–machine interfaces. The current definition of motor imagery is widely accepted, but it is important to note that various abilities rather than a single cognitive entity are dealt with under a single term. Here, motor imagery has been characterized based on four factors:

  1. motor control
  2. explicitness,
  3. sensory modalities
  4. agency.

Sorting out these factors characterizing motor imagery may explain some discrepancies and variability in the findings from previous studies and will help to optimize a study design in accordance with the purpose of each study in the future.

Somatotopically arranged brain activity during mental rotation (MR) of hands and ...

Somatotopically arranged brain activity during mental rotation (MR) of hands and feet (Hanakawa et al., 2007). Activity greater for the foot MR than for the hand MR (green) is situated dorsal to activity greater for the hand MR than for the foot MR (red). This arrangement agrees with the motor somatotopy of the motor and somatosensory areas where the foot representations are situated dorsal to the hand representations. Primary motor cortex (M1), primary somatosensory cortex (S1), dorsal premotor cortex (PMd), supplementary motor cortex (SMA).

Continue —> Organizing motor imageries

, , , , ,

Leave a comment

%d bloggers like this: