Posts Tagged MULTIMEDIA/NETWORKING/INTERFACE DESIGN

[NEWS] Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk

Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk again and exhibit partial motor recovery

IMAGE

IMAGE: THE NON-INVASIVE CLOSED-LOOP NEUROREHABILITATION PROTOCOL: I) EEG: ELECTROENCEPHALOGRAPHY, NON-INVASIVE BRAIN-RECORDING. II) BRAIN-MACHINE INTERFACE: REAL-TIME DECODING OF MOTOR INTENTIONS. III) THE LEFT OR RIGHT LEG MUSCLES ARE STIMULATED TO TRIGGER THE… view more 
CREDIT: WALK AGAIN PROJECT – ASSOCIAÇÃO ALBERTO SANTOS DUMONT PARA APOIO À PESQUISA

In another major clinical breakthrough of the Walk Again Project, a non-profit international consortium aimed at developing new neuro-rehabilitation protocols, technologies and therapies for spinal cord injury, two patients with paraplegia regained the ability to walk with minimal assistance, through the employment of a fully non-invasive brain-machine interface that does not require the use of any invasive spinal cord surgical procedure. The results of this study appeared on the May 1 issue of the journal Scientific Reports.

The two patients with paraplegia (AIS C) used their own brain activity to control the non-invasive delivery of electrical pulses to a total of 16 muscles (eight in each leg), allowing them to produce a more physiological walk than previously reported, requiring only a conventional walker and a body weight support system as assistive devices. Overall, the two patients were able to produce more than 4,500 steps using this new technology, which combines a non-invasive brain-machine interface, based on a 16-channel EEG, to control a multi-channel functional electrical stimulation system (FES), tailored to produce a much smoother gait pattern than the state of the art of this technique.

“What surprised us was that, in addition to allowing these patients to walk with little help, one of them displayed a clear motor improvement by practicing with this new approach. Patients required approximatively 25 sessions to master the training before they were able to walk using this apparatus,” said Solaiman Shokur one of the authors of the study.

The two patients that used this new rehabilitation approach had previously participated in the long-term neurorehabilitation study carried out using the Walk Again Project Neurorehabilitation (WANR) protocol. As reported in a recent publication from the same team (Shokur et al., PLoS One, Nov. 2018), all seven patients who participated in that protocol for a period of 28 months improved their clinical status, from complete paraplegia (AIS A or B, meaning no motor functions below the level of the injury, according to the ASIA classification) to partial paraplegia (AIS C, meaning partial recovery of sensory and motor function below the injury level). This significant neurological recovery included major clinical improvements in sensory discrimination (tactile, nociception, vibration, and pressure), voluntary motor control of abdomen and leg muscles, and important gains in autonomic control, such as bladder, bowel, and sexual functions.

“The last two studies published by the Walk Again Project clearly indicate that partial neurological and functional recovery can be induced in chronic spinal cord injury patients by combining multiple non-invasive technologies that are based around the concept of using a brain-machine interface to control different types of actuators, like virtual avatars, robotic walkers, or muscle stimulating devices, to allow the total involvement of patients in their own rehabilitation routine,” said Miguel Nicolelis, scientific director of the Walk Again Project and one of the authors of the study.

In a recent report by another group, one AIS C and two AIS D patients were able to walk thanks to the employment of an invasive method for spinal cord electrical stimulation, which required a spinal surgical procedure. In contrast, in the present study two AIS C patients – which originally were AIS A (see Supplemental Material below)- and a third AIS B subject, who recently achieved similar results, were able to regain a significant degree of autonomous walking without the need for such invasive treatments. Instead, these patients only received electrical stimulation patterns delivered to the skin surface of their legs, so that a total of eight muscles in each limb could be electrically stimulated in a physiologically accurate sequence. This was done in order to produce a smoother and more natural pattern of locomotion.

“Crucial for this implementation was the development of a closed-loop controller that allowed real-time correction of the patients’ walking pattern, taking into account muscle fatigue and external perturbations, in order to produce a predefined gait trajectory. Another major component of our approach was the use of a wearable haptic display to deliver tactile feedback to the patients´ forearms in order to provide them with a continuous source of proprioceptive feedback related to their walking,” said Solaiman Shokur.

To control the pattern of electrical muscle stimulation in each leg, these patients utilized an EEG-based brain-machine interface. In this setup, patients learned to alternate the generation of “stepping motor imagery” activity in their right and left motor cortices, in order to create alternated movements of their left and right legs.

According to the authors, the patients exhibited not only “less dependency on walking assistance, but also partial neurological recovery, with substantial rates of motor improvement in one of them.” The improvement in motor control in this last AIS C patient was 9 points in the lower extremity motor score (LEMS), which was comparable with that observed using invasive spinal cord stimulation.

Based on the results obtained over the past 5 years, the WAP now intends to combine all its neurorehabilitation tools into a single integrated, non-invasive platform to treat spinal cord injury patients. This platform will allow patients to begin training soon after the injury occurs. It will also allow the employment of a multi-dimensional integrated brain-machine interface capable of simultaneously controlling virtual and robotic actuators (like a lowerlimb exoskeleton), a multi-channel non-invasive electrical muscle stimulation system (like the FES used in the present study), and a novel non-invasive spinal cord stimulation approach. In this final configuration, this WAP platform will incorporate all these technologies together in order to maximize neurological and functional recovery in the shortest possible time, without the need of any invasive procedure.

According to Dr. Nicolelis, “there is no silver bullet to treat spinal cord injuries. More and more, it looks like we need to implement multiple techniques simultaneously to achieve the best neurorehabilitation results. In this context, it is also imperative to consider the occurrence of cortical plasticity as a major component in the planning of our rehabilitation approach.”

###

The other authors of this paper are Aurelie Selfslagh, Debora S.F. Campos, Ana R. C. Donati, Sabrina Almeida, Seidi Y. Yamauti, Daniel B. Coelho and Mohamed Bouri. This project was developed through a collaboration between the Neurorehabilitation Laboratory of the Associação Alberto Santos Dumont para Apoio à Pesquisa (AASDAP), the headquarters of the Walk Again Project, the Biomechanics and Motor Control Laboratory at the Federal University of ABC (UFABC), and the Laboratory of Robotic System at the Swiss Institute of Technology of Lausanne (EPFL). It was funded by a grant from the Brazilian Financing Agency for Studies and Projects (FINEP) 01.12.0514.00, Ministry of Science, Technology, Innovation and Communications (MCTIC), to AASDAP.

Supplemental Material:

https://www.youtube.com/watch?v=AZbQeuJiSOI

Supporting Research Studies:

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206464

https://www.nature.com/articles/s41598-019-43041-9

 

via Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk | EurekAlert! Science News

 

, , , , , , , , , ,

Leave a comment

[WEB SITE] ‘Smart’ robotic system could offer home-based rehabilitation

IMAGE

IMAGE: EARLY PROTOTYPES OF ROBOTIC REHABILITATION SYSTEMS CONTROLLED BY THE USER’S OWN BRAIN REQUIRED THE USE OF SKULLCAPS EMBEDDED WITH SENSORS, BUT RESEARCHERS ARE DEVELOPING A SIMPLER VERSION THAT CAN BE… view more 
CREDIT: UNIVERSITY OF HOUSTON

Researchers in Houston and elsewhere have shown that robotic systems controlled by the user’s own brain activity can help patients recovering from stroke and other disabling injuries. But the demonstrations have taken place in highly controlled settings, and none of the systems have been approved for use in clinics or patient’s homes.

An engineer from the University of Houston is leading a team of researchers, health care providers and industry to fast-track the commercialization of a groundbreaking robotic rehabilitation system. Backed by a $750,000 grant from the National Science Foundation’s Partnerships for Innovation program (PFI), the goal is to build a system that can be approved by the U.S. Food and Drug Administration and is sturdy, simple and inexpensive enough for stroke patients to use at home.

“We want to break that wall between the lab and home,” said Jose Luis Contreras-Vidal, professor of electrical and computer engineering at UH and co-director of the Building Reliable Advances and Innovation in Neurotechnology (BRAIN) Center, a NSF-supported Industry/University Collaborative Research Center based at UH and Arizona State University. “We want to build a system that can be used at home with FDA approval.”

The NSF PFI program allows academic innovators to advance prior NSF-funded research by further developing technologies that show promise for commercialization and societal impact. Such technology development efforts benefit from industry-academic collaborations that are needed to accelerate the transition of technology from the academic lab to the marketplace.

The rehabilitation systems work by capturing electrical activity in the brain, which can be translated into movement through the use of algorithms that decode movement intent from patterned brain activity. Early versions of this brain-computer interface relied upon a skull cap embedded with the sensors, but Contreras-Vidal said any system intended for home use will have to be far simpler for patients to use.

He has worked for years with TIRR Memorial Hermann, a nationally ranked rehabilitation hospital, in a quest to design medical systems that can assist in recovery from strokes and other injuries and illnesses.

Other partners in the project are National Instruments Corp. and Harmonic Bionics, both based in Austin, and TIRR Memorial Hermann. The UH Office of Intellectual Property Management will help with commercialization, and Jeff Feng, associate professor for the UH Gerald D. Hines College of Architecture and Design who has a background in the design of medical devices, will work with Contreras-Vidal on the headset design to optimize usability and form factor.

“It has to be very user friendly,” Contreras-Vidal said. The idea is that use of the device – it will be modeled on a simple rowing machine and at least initially will focus on the upper limbs – will promote plasticity in the brain and the restoration of motor function. Contreras-Vidal said the same concept could apply to the lower limbs to restore a patient’s ability to walk.

While the work also has applications for virtual reality, gaming and consumer electronics, he said the researchers are focused on using it to help people recover from stroke. It will be tested in the clinic at TIRR before being sent home with patients.

“The research team of the physical medicine and rehabilitation department is fortunate to be a part of this project, which will make a difference and improve the quality of life in stroke survivors,” said Dr. Gerard Francisco, chairman and professor of physical medicine & rehabilitation with McGovern Medical School at the University of Texas Health Science Center at Houston and chief medical officer and director of the NeuroRecovery Research Center at TIRR Memorial Hermann.

“Each year, thousands suffer a stroke which can leave them facing a long road of rehabilitation. By developing this device for use at home, it can be an added and convenient component to their rehabilitation journey.”

Harmony Bionics will produce the robotic device, while National Instruments will provide a compact, embedded, hardware solution for the brain-computer interface system and provide technical assistance.

“There is a growing need for accelerating the transition to practice of the discoveries and innovations that start at universities,” said Igor Alvarado, business development manager for academic research at National Instruments. “This project allows us to help advance new at-home rehab technologies for stroke patients by providing the data acquisition and control platform to be used in prototyping, testing and deploying the new rehab device.”

National Instruments also will oversee a national competition, which will release the researchers’ datasets and encourage people elsewhere to suggest improvements in the decoding algorithms.

“That’s STEM outreach,” Contreras-Vidal said. “But it’s also citizen-science and advancing the state of the art.”

 

via ‘Smart’ robotic system could offer home-based rehabilitation | EurekAlert! Science News

, , , , , , ,

Leave a comment

%d bloggers like this: