Posts Tagged Muscle fatigue

[ARTICLE] Compensating the effects of FES-induced muscle fatigue by rehabilitation robotics during arm weight support – Full Text


Motor functions can be hindered in consequence to a stroke or a spinal cord injury. This often results in partial paralyses of the upper limb. The effectiveness of rehabilitation therapy can be improved by the use of rehabilitation robotics and Functional Electrical Stimulation (FES). We consider a hybrid arm weight support combining both.

In order to compensate the effect of FES-induced muscle fatigue, we introduce a method to substitute the decreasing level of FES support by cable-driven robotics. We evaluated the approach in a trial with one healthy subject performing repetitive arm lifting. The controller automatically adapted the support and thus no increase in user generated volitional effort was observed when FES induced muscle fatigue occured.

Continue —> Compensating the effects of FES-induced muscle fatigue by rehabilitation robotics during arm weight support : Current Directions in Biomedical Engineering

, , , , , , , , ,

1 Comment

[ARTICLE] Advances in selective activation of muscles for non-invasive motor neuroprostheses – Full Text


Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments.

Fig. 2 Two versions of SMARTEX electrode. Single electrode array version right corner and 4-electrode array garment for full upper limb sFES applications


A new generation of orthotic and prosthetic devices has started to include active elements capable of providing (or removing) energy to compensate and enhance human function. In this regard, the application of human muscles as actuators of orthotic systems by surface Functional Electrical Stimulation (sFES) is a promising technology [1]. FES systems were introduced as a method to externally activate the sensory-motor system in case of central nervous system (CNS) lesion [2, 3]. FES systems can be applied as motor neuroprostheses of motor functions for recovery in stroke patients [4, 5] or as means for compensation in assistive technologies, for example for control of walking and grasping after spinal cord injury (SCI) [6] or tremor suppression [7]. In general, available sFES systems for motor neuroprostheses face two major limitations, in addition to skin irritation and pain: a) insufficient selective activation of muscles and b) muscle fatigue as a reaction to muscle stimulation [8]. These two challenges remain open and the goal of this review is to assess the recent progress of research groups to overcome these limitations.

Consequently, the following question arises: How can selective and less fatiguing muscle activation be achieved with surface electrode arrays The review of the literature in this article is aimed to answer this question, providing a detailed revision of the state-of-the-art on selective sFES technology, their benefits, advantages and challenges. This work aims to revise both the available surface electrode arrays and the applied control strategies on this kind of sFES applications. The structure of this article is the following. Functional electrical stimulation and selectivity section provides an overview of the theoretical basis of sFES activation; feasibility of selective muscle activation through sFES is discussed. In Electrodes for muscle activation selectivity section novel solutions to design surface electrodes to improve muscle selectivity are revised. Selective control of muscle activation section presents a list of candidate applications of surface array electrodes in motor rehabilitation while Discussion section discusses in detail the current technology applied in most relevant available systems that address selective activation of muscles. Finally, conclusions are presented in Conclusions section.

Continue —> Advances in selective activation of muscles for non-invasive motor neuroprostheses | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , ,

Leave a comment

%d bloggers like this: