Posts Tagged Muscle spasticity


Objective: The main aim of this study was to determine
the utilization patterns and effectiveness of onabotulinumtoxinA (Botox®) for treatment of spasticity in clinical practice.

Design: An international, multicentre, prospective, observational study at selected sites in North America, Europe, and Asia.

Patients: Adult patients with newly diagnosed or established focal spasticity, including those who had previously received treatment with onabotulinumtoxinA.

Methods: Patients were treated with onabotulinumtoxinA, approximately every 12 weeks, according to their physician’s usual clinical practice over a period of up to 96 weeks, with a final follow-up interview at 108 weeks. Patient, physician and caregiver data were collected.

Results: Baseline characteristics are reported. Of the 745 patients enrolled by 75 healthcare providers from 54 sites, 474 patients had previously received onabotulinumtoxinA treatment for spasticity. Lower limb spasticity was more common than upper limb spasticity, with stroke the most common underlying aetiology. The Short-Form 12 (SF-12) health survey scores showed that patients’ spasticity had a greater perceived impact on physical rather than mental aspects.

Conclusion: The data collected in this study will guide the development of administration strategies to optimize the effectiveness of onabotulinumtoxinA in the management of spasticity of various underlying

Download Full Text PDF


, , , , , ,

Leave a comment

[Abstract] Efficacy and safety of botulinum toxin type A for upper limb spasticity after stroke or traumatic brain injury: a systematic review with meta-analysis.



Muscle spasticity is a positive symptom after stroke and traumatic brain injury. Botulinum toxin type A (BoNT-A) injection is widely used for treating post stroke and traumatic brain injury spasticity. This study aimed to evaluate efficacy and safety of BoNT-A for upper limb spasticity after stroke and traumatic brain injury and investigate reliability and conclusiveness of available evidence for BoNT-A intervention.


We searched electronic databases from inception to September 10 of 2016. Randomized controlled trials comparing the effectiveness between BoNT-A and placebo in stroke or traumatic brain injury adults with upper limb spasticity were included. Reliability and conclusiveness of the available evidence were examined with trial sequential analysis.


From 489 citations identified, 22 studies were included, reporting results for 1804 participants. A statistically significant decrease of muscle tone was observed at each time point after BoNT-A injection compared to placebo (SMD at week 4=-0.98, 95% CI: -1.28 to -0.68; I2=66%, P=0.004; SMD at week 6=-0.85, 95% CI: -1.11 to -0.59, I2=1.2%, P=0.409; SMD at week 8=-0.87, 95% CI: -1.15 to -0.6, I2=0%, P=0.713; SMD at week 12=-0.67, 95% CI: -0.88 to -0.46, I2=0%, P=0.896; and SMD over week 12=-0.73, 95% CI: -1.21 to -0.24, I2=63.5%, P=0.065).Trial sequential analysis showed that as of year 2004 sufficient evidence had been accrued to show significant benefit of BoNT-A four weeks after injection over placebo control. BoNT-A treatment also significantly reduced Disability Assessment Scale Score than placebo at 4, 6 and 12-week follow-up period (WMD=-0.33, 95% CI: -0.63 to -0.03, I2=60%, P=0.114; WMD=-0.54, 95% CI: -0.74 to -0.33, I2= 0%, P=0.596 and WMD=-0.3, 95% CI: -0.45 to -0.14, I2=0%, P=0.426 respectively), and significantly increased patients’ global assessment score at week 4 and 6 after injection (SMD=0.56, 95% CI: 0.28 to 0.83; I2=0%, P=0.681 and SMD=1.11, 95% CI: 0.4 to 1.77; I2=72.8%, P=0.025 respectively). No statistical difference was observed in the frequency of adverse events between BoNT-A and placebo group (RR=1.36, 95% CI [0.82, 2.27]; I2=0%, P=0.619).


As compared with placebo, BoNT-A injections have beneficial effects with improved muscle tone and well-tolerated treatment for patients with upper limb spasticity post stroke or traumatic brain injury.

Source: Efficacy and safety of botulinum toxin type A for upper limb spasticity after stroke or traumatic brain injury: a systematic review with meta-analy… – PubMed – NCBI

, , , , , , ,

Leave a comment

[ARTICLE] Rehabilitation plus OnabotulinumtoxinA Improves Motor Function over OnabotulinumtoxinA Alone in Post-Stroke Upper Limb Spasticity: A Single-Blind, Randomized Trial – Full Text HTML


Background: OnabotulinumtoxinA (BoNT-A) can temporarily decrease spasticity following stroke, but whether there is an associated improvement in upper limb function is less clear. This study measured the benefit of adding weekly rehabilitation to a background of BoNT-A treatments for chronic upper limb spasticity following stroke. Methods: This was a multi-center clinical trial. Thirty-one patients with post-stroke upper limb spasticity were treated with BoNT-A. They were then randomly assigned to 24 weeks of weekly upper limb rehabilitation or no rehabilitation. They were injected up to two times, and followed for 24 weeks. The primary outcome was change in the Fugl–Meyer upper extremity score, which measures motor function, sensation, range of motion, coordination, and speed. Results: The ‘rehab’ group significantly improved on the Fugl–Meyer upper extremity score (Visit 1 = 60, Visit 5 = 67) while the ‘no rehab’ group did not improve (Visit 1 = 59, Visit 5 = 59; p = 0.006). This improvement was largely driven by the upper extremity “movement” subscale, which showed that the ‘rehab’ group was improving (Visit 1 = 33, Visit 5 = 37) while the ‘no rehab’ group remained virtually unchanged (Visit 1 = 34, Visit 5 = 33; p = 0.034). Conclusions: Following injection of BoNT-A, adding a program of rehabilitation improved motor recovery compared to an injected group with no rehabilitation.

1. Introduction

While several blinded and open-label studies have demonstrated the ability of botulinum toxin to temporarily decrease spasticity following stroke, as measured by standard assessments such as the Modified Ashworth Scale [1,2,3,4,5,6,7,8], the ability of botulinum toxin to improve upper limb function following stroke is less clear, with some studies [1,3,4,5,6,7,8], though not all [2,7], reporting functional improvement. Two recent meta-analyses of randomized controlled trials demonstrated that botulinum toxin treatment resulted in a moderate improvement in upper limb function [9,10]. Despite large clinical trials [2,3,11] and FDA approval, the exact timing, use of adjunct rehabilitation, and continuation of lifelong botulinum toxin treatment remains unclear [12,13].
A recent Cochrane Review included three randomized clinical trials for post-stroke spasticity involving 91 participants [14]. It aimed to determine the efficacy of multidisciplinary rehabilitation programs following treatment with botulinum toxin, and found some evidence supporting modified constraint-induced movement therapy and dynamic elbow splinting. There have been varied study designs exploring rehabilitation in persons after the injection of botulinum toxin or a placebo [13,15], rehabilitation in persons after the injection of botulinum toxin or no injection [16], or rehabilitation after the injection of botulinum toxin with no control condition [17]. As the use of botulinum toxin expands and is beneficial in reducing spasticity and costs [18], the benefit of adding upper limb rehabilitation continues to be questioned. We designed this multi-center, randomized, single-blind clinical trial to assess improvement in patient sensory and motor outcome following the injection of onabotulinumtoxinA (BoNT-A), comparing the effects of rehabilitation versus no rehabilitation, using the upper extremity portion of the Fugl–Meyer Assessment of Sensorimotor Recovery After Stroke [19] as the primary outcome measure. While patients could not be blinded to their randomization to receive additional rehabilitation versus no rehabilitation, the assessments of all of the outcome measures were performed by evaluators blinded to rehabilitation assignment in this single-blind design.

2. Results

Thirty-one patients with post-stroke upper limb spasticity were enrolled, with 29 completing the study (Figure 1). The strokes occurred an average of 6 years prior to study entry, with a range of 6 months to 16½ years. The upper extremity postures treated included flexed elbow, pronated forearm, flexed wrist, flexed fingers, and clenched fist, and were evenly distributed between the treatment groups (the initial dose of BoNT-A administered was left up to the clinician’s judgment based on the amount of spasticity present, and did not differ between groups). One participant (‘no rehab’, injected at Visits 1 and 3A) left the study after Visit 3A due to a deterioration in general health and an inability to travel to study visits. A second participant (‘no rehab’, injected at Visits 1 and 3A) left the study after Visit 4 due to a fall with a broken affected wrist. All of the participants were injected at Visit 1, 19 were injected at Visit 3 (8 ‘rehab’; 11 ‘no rehab’), and 7 were injected at Visit 3A (3 ‘rehab’; 4 ‘no rehab’). Those participants who did not receive injections at Visits 3 or 3A had a level of spasticity that either did not meet the injection criteria due to an Ashworth score of <2 in the wrist (and/or fingers) or one that was felt to be too low to warrant injection. Table 1 provides a description of each group with regard to age, sex, race, whether the stroke occurred in the dominant hemisphere, and clinical measures. At baseline, the treatment groups did not differ on any demographic or clinical variables. […]

Continue—>  Toxins | Free Full-Text | Rehabilitation plus OnabotulinumtoxinA Improves Motor Function over OnabotulinumtoxinA Alone in Post-Stroke Upper Limb Spasticity: A Single-Blind, Randomized Trial | HTML

, , , , , , , , ,

Leave a comment

[ARTICLE] Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the Mont-Godinne interdisciplinary group – Full Text

Objective: To present interdisciplinary practical guidance for the assessment and treatment of spastic equinovarus foot after stroke.

Results: Clinical examination and diagnostic nerve block with anaesthetics determine the relative role of the factors leading to spastic equinovarus foot after stroke: calf spasticity, triceps surae – Achilles tendon complex shortening and dorsiflexor muscles weakness and/or imbalance. Diagnostic nerve block is a mandatory step in determining the cause(s) of, and the most appropriate treatment(s) for, spastic equinovarus foot. Based on interdisciplinary discussion, and according to a patient-oriented goal approach, a medical and/or surgical treatment plan is proposed in association with a rehabilitation programme. Spasticity is treated with botulinum toxin or phenol–alcohol chemodenervation and neurotomy, shortening is treated by stretching and muscle-tendon lengthening, and weakness is treated by ankle-foot orthosis, functional electrical stimulation and tendon transfer. These treatments are frequently combined.

Conclusion: Based on 20 years of interdisciplinary expertise of management of the spastic foot, guidance was established to clarify a complex problem in order to help clinicians treat spastic equinovarus foot. This work should be the first step in a more global international consensus.


Stroke is the third most common cause of death and the primary cause of severe disability in industrialized countries. Following stroke, approximately 80% of patients regain walking function with decreased gait velocity and asymmetrical gait pattern (1). Spastic equinovarus foot (SEVF) is one of the most common disabling deformities observed among hemiplegic patients. SEVF is frequently associated with other kinematic gait abnormalities, such as stiff knee gait, genu recurvatum, and painful claw toes. SEVF deformity forces the patient to increase their hip and knee flexion in the swing phase. If they are unable to do this (e.g. if they have associated stiff knee gait), the patient will present a hip circumbduction in the swing phase. Correction of such equinus may therefore improve distal as well as proximal gait disturbances.

SEVF deformity has 4 main causes (2, 3). The first is spasticity of the calf muscles (soleus, gastrocnemius, tibialis posterior, flexor digitorum and flexor hallucis longus muscles), responsible for SEVF in the stance phase of gait and for painful toe curling with callosities on the pulp and dorsum of the toes. The peroneus longus and brevis muscles may also be spastic (often with clonus), but such spasticity is useful to limit the varus and stabilize the ankle. Secondly, the spastic muscles have a tendency to remain in a shortened position for prolonged periods, which, in turn, results in soft-tissue changes and contractures, leading to a fixed deformity (4). Thirdly, weakness of the ankle dorsiflexor muscles (tibialis anterior, extensor digitorum and hallucis muscles) as well as the peroneus longus and brevis muscles is responsible for drop-foot in the swing phase of gait. Such weakness is often emphasized by triceps spastic co-contraction and/or contracture. The weakness also affects the triceps surae muscles, leading to a lack of propulsion at the end of the stance phase of gait. Lastly, an imbalance between the tibialis anterior and the peroneus muscles leads to varus of the hind-foot in the swing phase, as peroneus activation must compensate for physiological varus positioning related to contraction of the tibialis anterior. In such a case, the foot will be placed in an unstable varus position during the swing phase and at the beginning of the stance phase.

The respective role of the main causes of SEVF (spasticity, shortening, weakness, and imbalance) varies from patient to patient, and therapeutic decisions are therefore challenging. Indeed, as emphasized by Fuller, the causes of SEVF are varied and complex, due to a variety of deforming forces, and thus a single procedure does not exist to correct all deformities (3). Hence there is a need for guidance and guidelines.

Treatments for SEVF described in the literature are multimodal and include rehabilitation, orthosis, botulinum toxin (BoNT-A) injections, alcohol and phenol nerve blocks, functional neurosurgery (selective neurotomy and intrathecal baclofen therapy) and orthopaedic surgery (tendon transfer, tendon lengthening and bone surgery) (5). SEVF rehabilitation programmes include strengthening of the tibialis anterior and peroneus muscles, electrical stimulation, stretching of the triceps surae to reduce spasticity and prevent contracture, and gait and balance training. Modern therapeutic approaches, such as task-oriented strategy and treadmill with bodyweight support, are promoted. Several publications support the effectiveness of these treatments in SEVF (6–8). However, only 3 studies have compared different treatment options (9–11). A systematic review of surgical correction in adult patients with stroke emphasized the need to compare treatments in order to generate evidence on which to base algorithms (8). In fact, no practical guidelines are available for use in daily practice. Evidence regarding choice of treatment is poor, thus therapeutic decision-making is based on professional personal preferences and beliefs rather than on scientific evidence. An interdisciplinary approach with a physical medicine and rehabilitation (PMR) specialist and rehabilitation team, neurosurgeon, and orthopaedic surgeon is therefore mandatory in order to optimize treatments.

The aim of this paper is to present and discuss the Mont-Godinne interdisciplinary guidance (Fig. 1), based on the existing literature and on 20 years of experience of an interdisciplinary medical and surgical approach to SEVF.

Continue —> Journal of Rehabilitation Medicine – Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the Mont-Godinne interdisciplinary group – HTML

, , ,

Leave a comment

[ARTICLE] Influence of physician empathy on the outcome of botulinum toxin treatment for upper limb spasticity in patients with chronic stroke: A cohort study – Full Text


Objective: To examine the relationship between patient-rated physician empathy and outcome of botulinum toxin treatment for post-stroke upper limb spasticity.

Design: Cohort study.

Subjects: Twenty chronic stroke patients with upper limb spasticity.

Methods: All patients received incobotulinumtoxinA injection in at least one muscle for each of the following patterns: flexed elbow, flexed wrist and clenched fist. Each treatment was performed by 1 of 5 physiatrists with equivalent clinical experience. Patient-rated physician empathy was quantified with the Consultation and Relational Empathy Measure immediately after botulinum toxin treatment. Patients were evaluated before and at 4 weeks after botulinum toxin treatment by means of the following outcome measures: Modified Ashworth Scale; Wolf Motor Function Test; Disability Assessment Scale; Goal Attainment Scaling.

Results: Ordinal regression analysis showed a significant influence of patient-rated physician empathy (independent variable) on the outcome (dependent variables) of botulinum toxin treatment at 4 weeks after injection, as measured by Goal Attainment Scaling (p < 0.001).

Conclusion: These findings support the hypothesis that patient-rated physician empathy may influence the outcome of botulinum toxin treatment in chronic stroke patients with upper limb spasticity as measured by Goal Attainment Scaling.


Stroke is a leading cause of adult disability (1, 2). Damage to the descending tracts and sensory-motor networks results in the positive and negative signs of the upper motor neurone syndrome (UMNS) (1–3). The upper limb is commonly involved after stroke, with up to 69% of patients having arm weakness on admission to hospital (4). Recovery of upper limb function has been found to correlate with the degree of initial paresis and its topical distribution according to the cortico-motoneuronal representation of arm movements (5–9).

Spasticity is a main feature of UMNS. It is defined as a state of increased muscle tone with exaggerated reflexes characterized by a velocity-dependent increase in resistance to passive movement (10). Upper limb spasticity has been found to be associated with reduced arm function, low levels of independence and high burden of direct care costs during the first year post-stroke (11). It affects nearly half of patients with initial impaired arm function, with a prevalence varying from 17% to 38% of all patients at one year post-stroke (11). Up to 13% of patients with stroke need some form of spasticity treatment (drug therapy, physical therapy or other rehabilitation approaches) within 6–12 months post-onset (11, 12). Botulinum toxin type A (BoNT-A) has been proven safe and effective for reducing upper limb spasticity and improving arm passive function in adult patients (13, 14). While current literature reports highly patient-specific potential gains in function after BoNT-A treatment, there is inadequate evidence to determine the efficacy of BoNT-A in improving active function associated with adult upper limb spasticity (13).

Empathy refers to the ability to understand and share the feelings, thoughts or attitudes of another person (15). It is an essential component of the physician-patient relationship and a key dimension of patient-centred care (15, 16). This is even more important in rehabilitation medicine, where persons with disabilities often report encountering attitudinal and environmental barriers when trying to obtain rehabilitative care and express the need for better communication with their healthcare providers (17).

To the best of our knowledge, no previous research has investigated the influence of physician empathy on patient outcome after spasticity treatment. The aim of this study was to examine the relationship between patient-rated physician empathy and clinical outcome of BoNT-A treatment for upper limb spasticity due to chronic stroke. […]

Continue —> Journal of Rehabilitation Medicine – Influence of physician empathy on the outcome of botulinum toxin treatment for upper limb spasticity in patients with chronic stroke: A cohort study – HTML


, , , , , , , , ,

Leave a comment

[Abstract] Electro-acupuncture for post-stroke spasticity: a systematic review and meta-analysis



To evaluate the effects and safety of electro-acupuncture (EA) for stroke patients with spasticity.

Data Sources

Five English (PubMed, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials and AMED) and four Chinese databases (CBM, CNKI, CQVIP and Wanfang) were searched from their inception to September 2016.

Data Selection

Randomized controlled trials were included if they measured spasticity with Modified Ashworth Scale in stroke patients and investigated the add-on effects of electro-acupuncture to routine pharmacotherapy and rehabilitation therapies.

Data Extraction

Information on patients, study design, treatment details and outcomes assessing spasticity severity, motor function and activity of daily living were extracted.

Data Synthesis

In total, 22 trials met the search criteria and were included involving 1,425 participants. The estimated add-on effects of EA to reduce spasticity in upper limb measured by MAS (SMD: -0.57[-0.84, -0.29]) and improve overall motor function measured by FMA (MD: 10.60[8.67, 12.53]) were significant. It was also found that for spasticity in lower limb, lower-limb motor function and activity of daily living, significant add-on effects of EA were also shown (SMD: -0.88[-1.42, -0.35], MD:4.42[0.06, 8.78] and MD: 6.85[3.64, 10.05] respectively), though with high heterogeneity. For upper-limb motor function, no significant add-on effects of EA was received.


Electro-acupuncture combined with conventional routine care has the potential of reducing spasticity in upper and lower limb and improving overall and lower extremity motor function and activity of daily living for spasticity patients within 180 days post stroke. Further studies of high methodological and reporting quality are needed to confirm the effects and safety of electro-acupuncture, and to explore the adequate and optimal protocol of EA for post-stroke spasticity incorporating a group of comprehensive outcome measures in different populations.

Source: Electro-acupuncture for post-stroke spasticity: a systematic review and meta-analysis – Archives of Physical Medicine and Rehabilitation

, , , ,

Leave a comment

[ARTICLE] Quantifying spasticity in individual muscles using shear wave elastography – Full Text


Spasticity is common following stroke; however, high subject variability and unreliable measurement techniques limit research and treatment advances. Our objective was to investigate the use of shear wave elastography (SWE) to characterize the spastic reflex in the biceps brachii during passive elbow extension in an individual with spasticity. The patient was a 42-year-old right-hand-dominant male with history of right middle cerebral artery-distribution ischemic infarction causing spastic left hemiparesis. We compared Fugl-Meyer scores (numerical evaluation of motor function, sensation, motion, and pain), Modified Ashworth scores (most commonly used clinical assessment of spasticity), and SWE measures of bilateral biceps brachii during passive elbow extension. We detected a catch that featured markedly increased stiffness of the brachialis muscle during several trials of the contralateral limb, especially at higher extension velocities. SWE was able to detect velocity-related increases in stiffness with extension of the contralateral limb, likely indicative of the spastic reflex. This study offers optimism that SWE can provide a rapid, real-time, quantitative technique that is readily accessible to clinicians for evaluating spasticity.


An estimated 795,000 Americans experience stroke every year [1], and stroke incidence is expected to increase as the population ages [2]. It is estimated that the prevalence of spasticity after stroke ranges from 18% to 39% [3], [4] and [5], and spasticity-associated functional limitations create significant burdens on survivors and caregivers [6]. Health care costs for individuals with stroke who develop spasticity are estimated to be fourfold higher than those without spasticity [7]. However, high subject variability and indeterminate measurement techniques limit research investigation and treatment advances [8] and [9].

Though classically considered to have increased stiffness resulting solely from the over-active velocity-dependent stretch reflex, chronically spastic muscles associated with stroke appear to also have increased nonreflex stiffness when compared to the side of the body ipsilateral to the lesioned hemisphere, as well as healthy controls [9] and [10]. Clinically, spasticity is diagnosed and monitored using the 5-point Modified Ashworth Scale (MAS): a simple technique that requires no equipment, though is subjective, qualitative, and varies widely with muscle groups [11] and [12]. Though the precise mechanism behind spasticity is not known, we now recognize a variety of biomechanical changes within skeletal muscle connective tissue that likely limit the effectiveness of a simplistic tool, such as the MAS, for evaluating spasticity in chronic stroke [13] and [14]. Electromyography or biomechanical measures may offer more reliable, quantitative information, though are impractical for routine clinical use [14], [15] and [16]. Furthermore, elevated muscle tone in persons with spasticity may not be related to activation of the muscle groups in question [17] and [18].

A variety of imaging-based elastography techniques have emerged with great promise for skeletal muscle evaluation, including ultrasound elastography and magnetic resonance elastography [18], [19], [20], [21] and [22]. Strain elastography, a qualitative measure of relative stiffness, is also available but offers little advantage over the MAS, as neither offers a quantitative, objective measure [21], [23] and [24]. The two quantitative imaging modalities, magnetic resonance elastography and ultrasound shear wave elastography (SWE), show good agreement in both phantoms and tissues, though SWE is especially promising for its flexibility, accessibility, and real-time results [25], [26] and [27]. For this reason, SWE may be uniquely suited for evaluating pathologic alterations in stiffness of individual muscles, especially for quantifying spasticity [18], [28], [29], [30] and [31].

This study evaluated the feasibility of using SWE to characterize the spastic reflex during passive elbow extension in an individual with spasticity caused by stroke. We hypothesized that SWE would capture heightened skeletal muscle stiffness, representing the spastic reflex, during passive elbow range of motion.

Continue —> Quantifying spasticity in individual muscles using shear wave elastography

Fig. 1. Shear wave speeds, ultrasound images, and elastograms for 60°/s ipsilateral elbow extension trials. (A) Ipsilateral biceps; (B) ipsilateral brachialis; (C) ultrasound images and elastograms from trial 1 with sample regions of interest demonstrated in the first panel.

, , , ,

Leave a comment

[Abstract] Ankle plantarflexor spasticity is not differentially disabling for those who are weak following traumatic brain injury


Primary objectives: The main aim of this study was to determine whether the presence of distal lower-limb spasticity had a greater impact on mobility for those who had greater levels of muscle paresis following traumatic brain injury (TBI).

Research design: This was a cross-sectional cohort study of convenience. Seventy-five people attending physiotherapy for mobility limitations following TBI participated in this study. All participants had sustained a moderate–severe TBI and were grouped according to the presence or absence of ankle plantarflexor spasticity for comparison.

Main outcomes and results: The primary outcome measure for mobility was self-selected walking speed and the primary outcome measure for muscle strength was hand-held dynamometry. Secondary outcome measures for mobility and muscle strength were the High-level Mobility Assessment Tool (HiMAT) and ankle power generation (APG) at push-off. Spasticity was quantified with the Modified Tardieu scale. Participants with ankle plantarflexor spasticity (Group 2) had slower self-selected walking speeds. There was no statistically significant effect for Group and plantarflexor strength (p = 0.81).

Conclusion: Although participants with ankle plantarflexor spasticity walked significantly slower than those without, the presence of ankle plantarflexor spasticity did not lead to greater mobility limitations for those who were weak.

Source: Ankle plantarflexor spasticity is not differentially disabling for those who are weak following traumatic brain injury: Brain Injury: Vol 0, No 0

, , , , ,

Leave a comment

[Abstract] Common goal areas in the treatment of upper limb spasticity: a multicentre analysis.


Objective: We aimed to develop a goal classification of individualised goals for spasticity treatment incorporating botulinum toxin intervention for upper limb spasticity to under-pin a more structured approach to future goal setting.

Design: Individualised goals for spasticity treatment incorporating botulinum toxin intervention for upper limb spasticity (n=696) were analysed initially from four studies published in 2008-2012, spanning a total of 18 centres (12 in the UK and 6 in Australia). Goals were categorised and mapped onto the closest matching domains of the WHO International Classification of Functioning. Confirmatory analysis included a further 927 goals from a large international cohort study spanning 22 countries published in 2013.

Results: Goal categories could be assigned into two domains, each subdivided into three key goal areas: Domain 1: symptoms/impairment n=322 (46%): a. pain/discomfort n=78 (11%), b. involuntary movements n=75 (11%), c. range of movement/contracture prevention n=162 (23%). Domain 2: Activities/function n=374 (54%): a. passive function (ease of caring for the affected limb) n=242 (35%), b active function (using the affected limb in active tasks) n=84 (12%), c. mobility n=11 (2%).

Over 99% of the goals from the large international cohort fell into the same six areas, confirming the international applicability of the classification.

Conclusions: Goals for management of upper limb spasticity, in worldwide clinical practice, fall into six main goal areas.


Source: Common goal areas in the treatment of upper limb spasticity: a multicentre analysis

, , , , , , , ,

Leave a comment

[ARTICLE] Effect of Dual Therapy with Botulinum Toxin A Injection and Electromyography-controlled Functional Electrical Stimulation on Active Function in the Spastic Paretic Hand – Full Text PDF

Background: Many previous studies have demonstrated that botulinum toxin A (BTX-A) injections satisfactorily reduce spasticity. Nevertheless, BTX-A, with or without an adjuvant therapy, effectively improves the direct functional movement in few patients with spastic upper extremity paralysis. Therefore the present study aimed to determine the effectiveness of task-orientated therapy on spasticity and functional movement by using electromyography-triggered functional electrical stimulation (EMG-FES) after BTX-A injections. Design: Open-label, prospective clinical trial Method: The subjects were 15 patients with spastic paresis (12 male, 3 female; age range, 17-74 years; 14 due to stroke, 1 due to spinal cord injury) who received BTX-A injections. Before the study was started, all subjects had undergone task-orientated therapy sessions with EMG-FES for 4 months. Despite all patients showing a various extent of improved upper extremity function, upper extremity function reached a plateau because of upper extremity spasticity. After BTX-A injection, all patients underwent task-orientated therapy sessions with EMG-FES for 4 months. The outcomes were assessed with the modified Ashworth scale, the simple test for evaluating hand function, box and block test, grip and release test, finger individual movement test, and grip strength. Assessments were performed at baseline and 10 days and 4 months after BTX-A injection. Results: The median modified Ashworth scale score decreased from 2 at baseline to 1 at 10 days and 4 months after BTX-A injection. The finger individual movement test score increased slightly at 10 days (p=0.29) and further increased at 4 months (p<0.05). The simple test for evaluating hand function, grip and release test, box and block test, and grip strength decreased after 10 days (p<0.05, p=0.26, p<0.01, andp<0.01, respectively) but increased after 4 months (p<0.01, p<0.05, p<0.01, and p=0.18, respectively). Conclusion: Task-orientated therapy with EMG-FES after BTX-A injection effectively reduced spasticity and improved upper limb motor function. Our results also suggest that spasticity occurs as a compensation for the force of the affected muscles and leads to misuse movements and ostensible dexterity in many patients. In addition, we hypothesize that BTX-A injection initializes the abnormal adapted movement pattern and that more active hand movements with facilitation of the paretic muscles when using EMG-FES induce an efficient muscle reeducation of the inherent physiological movement pattern that ultimately could prove useful in the activities of daily living.

Source: Effect of Dual Therapy with Botulinum Toxin A Injection and Electromyography-controlled Functional Electrical Stimulation on Active Function in the Spastic Paretic Hand

, , , , , , , , ,

Leave a comment

%d bloggers like this: