Posts Tagged Musculoskeletal system

[Abstract] Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances – PM&R

Abstract

Recent technologic advancements have enabled the creation of portable, low-cost, and unobtrusive sensors with tremendous potential to alter the clinical practice of rehabilitation. The application of wearable sensors to track movement has emerged as a promising paradigm to enhance the care provided to patients with neurologic or musculoskeletal conditions. These sensors enable quantification of motor behavior across disparate patient populations and emerging research shows their potential for identifying motor biomarkers, differentiating between restitution and compensation motor recovery mechanisms, remote monitoring, telerehabilitation, and robotics. Moreover, the big data recorded across these applications serve as a pathway to personalized and precision medicine. This article presents state-of-the-art and next-generation wearable movement sensors, ranging from inertial measurement units to soft sensors. An overview of clinical applications is presented across a wide spectrum of conditions that have potential to benefit from wearable sensors, including stroke, movement disorders, knee osteoarthritis, and running injuries. Complementary applications enabled by next-generation sensors that will enable point-of-care monitoring of neural activity and muscle dynamics during movement also are discussed.

 

via Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances – PM&R

, , , , , , , , ,

Leave a comment

[Abstract] Feasibility study of a serious game based on Kinect system for functional rehabilitation of the lower limbs

Summary

Introduction

Conventional functional rehabilitation costs time, money and effort for the patients and for the medical staff. Serious games have been used as a new approach to improve the performance as well as to possibly reduce medical cost in the future for cognitive rehabilitation and body balance control. The objective of this present work was to perform a feasibility study on the use of a new real-time serious game system for improving the musculoskeletal rehabilitation of the lower limbs.

Materials and methods

A basic functional rehabilitation exercise database was established with different levels of difficulties. A 3D virtual avatar was created and scaled to represent each subject-specific body. A portable and affordable Kinect sensor was used to capture real-time kinematics during each exercise. A specific data coupling process was developed. An evaluation campaign was established to assess the developed system.

Results

The squats exercise was the hardest challenge. Moreover, the performance of each functional rehabilitation exercise depended on the physiological profile of each participant. Our game system was clear and attractive for all functional rehabilitation exercises. All testing subjects felt motivated and secure when playing the rehabilitation game.

Discussion

The comparison with other systems showed that our system was the first one focusing on the functional rehabilitation exercises of the lower limbs.

Conclusions

Our system showed useful functionalities for a large range of applications (rehabilitation at home, sports training). Looking forward, new in-situation exercises will be investigated for specific musculoskeletal disorders.

via Feasibility study of a serious game based on Kinect system for functional rehabilitation of the lower limbs – ScienceDirect

, , , , , , ,

Leave a comment

[Technical note] Serious game and functional rehabilitation for the lower limbs

Summary

Introduction

Conventional functional rehabilitation consists of a therapeutic consultation, a motor exercise assignment, and an execution task with or without assistance of the therapist. The objective of this technical note was to present a new real-time 3D serious game system concept for musculoskeletal rehabilitation of the lower limbs.

Materials and method

A generic development workflow of real-time 3D serious game systems for functional rehabilitation of the lower limbs was proposed. A user-friendly system flowchart was also established for a better interaction between end-users and the game system.

Result and discussion

Different system components like avatar modeling, subject registration, rehabilitation game and feedback visualization and control were detailed and their advantages and limitations were discussed.

Conclusions

3D serious game technologies open new perspectives for a large range of rehabilitation applications (at home or in clinic environment, sports training).

via Serious game and functional rehabilitation for the lower limbs – ScienceDirect

, , , , ,

Leave a comment

[Abstract] Serious game and functional rehabilitation for the lower limbs.

Summary

Introduction

Conventional functional rehabilitation consists of a therapeutic consultation, a motor exercise assignment, and an execution task with or without assistance of the therapist. The objective of this technical note was to present a new real-time 3D serious game system concept for musculoskeletal rehabilitation of the lower limbs.

Materials and method

A generic development workflow of real-time 3D serious game systems for functional rehabilitation of the lower limbs was proposed. A user-friendly system flowchart was also established for a better interaction between end-users and the game system.

Result and discussion

Different system components like avatar modeling, subject registration, rehabilitation game and feedback visualization and control were detailed and their advantages and limitations were discussed.

Conclusions

3D serious game technologies open new perspectives for a large range of rehabilitation applications (at home or in clinic environment, sports training).

Source: Serious game and functional rehabilitation for the lower limbs

, , , , , ,

Leave a comment

%d bloggers like this: