Posts Tagged Music-supported therapy

[ARTICLE] Musical Sonification of Arm Movements in Stroke Rehabilitation Yields Limited Benefits – Full Text

Neurologic music therapy in rehabilitation of stroke patients has been shown to be a promising supplement to the often strenuous conventional rehabilitation strategies. The aim of this study was threefold: (i) replicate results from a previous study with a sample from one clinic (henceforth called Site 1; N = 12) using an already established recording system, and (ii) conceptually replicate previous findings with a less costly hand-tracking system in Site 2 (N = 30), and (iii) compare both sub-studies’ outcomes to estimate the efficiency of neurologic music therapy. Stroke patients in both sites were randomly assigned to treatment or control groups and received daily training of guided sequential upper limb movements additional to their standard stroke rehabilitation protocol. Treatment groups received sonification (i.e., changes in musical pitch) of their movements when they moved their affected hand up and down to reproduce a sequence of the first six notes of a C major scale. Controls received the same movement protocol, however, without auditory feedback. Sensors at the upper arm and the forearm (Xsens) or an optic sensor device (Leapmotion) allowed to measure kinematics of movements and movement smoothness. Behavioral measures pre and post intervention included the Fugl-Meyer assessment (FMA) and the Stroke Impact Scale (SIS) and movement data. Bayesian regression did not show evidence supporting an additional effect of sonification on clinical mobility assessments. However, combined movement data from both sites showed slight improvements in movement smoothness for the treatment group, and an advantage for one of the two motion capturing systems. Exploratory analyses of EEG-EMG phase coherence during movement of the paretic arm in a subset of patients suggested increases in cortico-muscular phase coherence specifically in the ipsilesional hemisphere after sonification therapy, but not after standard rehabilitation therapy. Our findings show that musical sonification is a viable treatment supplement to current neurorehabilitation methods, with limited clinical benefits. However, given patients’ enthusiasm during training and the low hardware price of one of the systems it may be considered as an add-on home-based neurorehabilitation therapy.

Introduction

Stroke survivors frequently suffer from severe disabilities. Stroke may lead to impairments in motor and sensory systems, emotion regulation, language perception, and cognitive functions (Morris and Taub, 2008). Impaired arm function caused by gross-motor disability is also a common consequence of stroke immensely affecting quality of life in a considerable number of patients. In this case, regaining control over body movements is one of the crucial components in post-stroke recovery. There is an urgent need for effective motor rehabilitation approaches to improve quality of life in stroke survivors. Different therapeutic approaches such as Constraint Induced Movement Therapy (CIMT), mental practice, robot-aided therapy, electromyographic biofeedback, and repetitive task training have been applied to improve arm function after stroke (Langhorne et al., 2009). Of note, in a recent review it has been suggested that neurologic music therapy might be more effective than conventional physiotherapy (for a recent review see Sihvonen et al., 2017).

Motivational factors seem to play an important role for the beneficial effects of neurologic music therapy. From the patients’ informal descriptions of their experience with music-supported training, it appears that this is frequently highly enjoyable and a highlight of their rehabilitation process, regardless of the form of auditory stimulation, be it piano tones, or sonification of movement with other timbres [for a review see Altenmüller and Stewart (2018)]. However, effects of music supported therapy in stroke rehabilitation are not always consistent. In a recent review, seven controlled studies that evaluated the efficacy of music as an add-on therapy in stroke rehabilitation were identified (Sihvonen et al., 2017). In these studies, training of finger dexterity of the paretic hand was done using either a piano-keyboard, or, for wrist movements, drum-pads tuned to a C major scale. Superiority of the music group over fine motor training without music and over conventional physiotherapy was evident in one study after intervention comprising five 30-min sessions per week for 3 weeks (Schneider et al., 2010). The beneficial effect seen in the music group could be specifically attributed to the musical component of the training rather than the motor training per se, since patients practicing with mute instruments remained inferior to the music group. Here, the Fugl-Meyer Assessment (FMA) was applied before and after 20 sessions of either music supported therapy on a keyboard or equivalent therapy without sound. FMA scores of the motor functions of the upper limb improved by 16 in the music group and by 5 in the control group, both improvements being statistically significant although to a lesser degree in the control group (p = 0.02 vs. p = 0.04; Tong et al. (2015)).

With regard to the neurophysiological mechanisms of neurological music therapy, it was demonstrated that patients undergoing music supported therapy not only regained their motor abilities at a faster rate but also improved in timing, precision and smoothness of fine motor skills as well as showing increases in neuronal connectivity between sensorimotor and auditory cortices as assessed by means of EEG-EEG-coherence (Altenmüller et al., 2009Schneider et al., 2010).

These findings are corroborated by a case study of a patient who underwent music supported training 20 months after suffering a stroke. Along with the clinical improvement, functional magnetic resonance imaging (fMRI) demonstrated activation of motor and premotor areas, when listening to simple piano tunes, thus providing additional evidence for the establishment of an auditory-sensorimotor co-representation due to the training procedure (Rojo et al., 2011). Likewise, in a larger group of 20 chronic stroke patients, increases in motor cortex excitability following 4 weeks of music-supported therapy were demonstrated using transcranial magnetic stimulation (TMS), which were accompanied by marked improvements of fine motor skills (Amengual et al., 2013).

In addition to functional reorganization of the auditory-sensorimotor network, recent findings have reported changes in cognition and emotion after music-supported therapy in chronic stroke patients. Fujioka et al. (2018) demonstrated in a 10-week-long randomized controlled trial (RCT), including 14 patients with music supported therapy and 14 patients receiving conventional physiotherapy, that both groups only showed minor improvements. However, the music group performed significantly better in the trail making test, indicating an improvement in cognitive flexibility, and furthermore showed enhanced social and communal participation in the Stroke Impairment Scale and in PANAS (Positive and Negative Affect Schedule, Watson et al., 1988), lending support to the prosocial and motivational effects of music. In another RCT with an intervention of only 4 weeks, Grau-Sánchez et al. (2018) demonstrated no superiority in fine motor skills in the music group as compared to a control group, but instead an increase in general quality of life as assessed by the Profile of Mood states and the stroke specific quality of live questionnaire. Despite growing evidence, the neurophysiological mechanisms of neurological music therapy remain poorly understood.

Most of the existing studies on music-supported therapy have focused on rehabilitation of fine motor functions of the hand. Much less evidence exists on post-stroke rehabilitation of gross motor functions of the upper limbs. In a previous study we thus developed a movement sonification therapy in order to train upper arm and shoulder functions (Scholz et al., 2015). Gross movements of the arm were transformed into discrete sounds, providing a continuous feedback in a melodic way, tuned to a major scale (i.e., patients could use movements of their paretic arms as a musical instrument). In this way, sound perception substituted for defective proprioception. In a first pilot study in subacute stroke patients we were able to demonstrate that musical sonification therapy reduced joint pain in the Fugl-Meyer pain subscale (difference between groups: −10; d = 1.96) and improved smoothness of movements (d = 1.16) in comparison to movement therapy without sound (Scholz et al., 2016). Here, we extend these findings by comparing the effects of the established musical sonification setup (Scholz et al., 2016) with a newly developed, less expensive sonification device in a group of subacute stroke patients with upper limb motor impairments. The only apparent differences between both data acquisition methods were the improved sound quality and the loss of need to strap sensors to patient limbs. In order to further elucidate the neurophysiological underpinnings of musical sonification therapy we simultaneously recorded EEG and EMG data from a subset of patients to analyze cortico-muscular phase coherence during upper limb movements (Chen et al., 2018Pan et al., 2018). According to previous studies (Pan et al., 2018) we hypothesized that cortico-muscular phase coherence increases in the ipsilesional hemisphere after musical sonification therapy. […]

 

Continue —->  Frontiers | Musical Sonification of Arm Movements in Stroke Rehabilitation Yields Limited Benefits | Neuroscience

Figure 2. Experimental setup. (A) three-dimensional space (the Leapmotion controller at Site 2 was placed on the board at the position marked in purple), with axis labels describing qualitative sound changes when the hand was moved relative to the frame (and hence, the body). (B) Xsens sensors as used at Site 1, attached to wrist and upper arm of patient. (C) Leapmotion controller as used at Site 2, with the space axes superimposed. Panel (A) taken from Scholz et al. (2016).

, , , , , , , , , , ,

Leave a comment

[Abstract] Music supported therapy promotes motor plasticity in individuals with chronic stroke

Abstract

Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits.

Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST.

Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.

Source: Music supported therapy promotes motor plasticity in individuals with chronic stroke – Online First – Springer

, , , ,

1 Comment

[ARTICLE] The Motor Function Improvement of the Affected Hand after Stroke Induced by Music-supported Therapy: A Randomized Control Clinical Trail – Full Text PDF

Abstract

Stroke is the second most common cause of death and major cause of disability worldwide. Hand motor dysfunction is a common impairment in stroke patients, as the cortical projection area of our fingers is large. Once it is damaged, it will be very difficult to restore the function, and has long been the focus and difficulty of stroke rehabilitation. Music- supported therapy in recent study was shown to induce improvements in motor skills in stroke survivors.

Objective: This study aimed at assessing the motor recovery of the affected hand induced by music-supported therapy in chronic stroke patients.

Methods: 14 patients with subcortical stroke, mild to moderately impaired hand function fulfilling the inclusion criteria were randomly assigned to the music group and control group. Both groups received keyboard (Yamaha) training for 30min, 20 times over 4 weeks in addition to conventional treatments. And the only difference between the two groups was that control group’s keyboard could not make any sound. They were trained in an intensive step by step training program. Patients were assessed by Wolf Motor Function Test before and after training.

Results: Both groups showed improvement in motor function assessed by Wolf Motor Function Test scores, and the improvement in music group was significantly better than that of the control group.

Conclusions: The music-supported training with sound can enhance the restoration of hand function much better than the training with no sound in which the music played an important role.

Introduction

Stroke is the second most common cause of death and major cause of disability worldwide [1]. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Music therapy has been used to improve patients’ health in several domains, such as cognitive functioning, emotional development, social skills, and quality of life, by using music experiences such as free improvisation, singing, and listening to, discussing, and moving to music to achieve treatment goals. Music- supported therapy (MST) in recent studies has been used in the rehabilitation of stroke survivors with mild or moderate motor disfunction [2-7]. Most of the randomized controlled trial studies were interested in the gross motor function of affected upper extremities after stroke, and the results often showed greater improvements compared with other traditional rehabilitation therapies. But the affected hand function was not especially focused on. Hand motor dysfunction is a common impairment in stroke patients, as the cortical projection area of our fingers is large. Once it is damaged, it will be very difficult to restore the function, and has long been the focus and difficulty of stroke rehabilitation. So we wanted to find out what can music-supported therapy do to the affected hand function after stroke. Since the improvement of the upper extremities after music- supported training was demonstrate, we supposed that the affected hand function would also regain after certain MST programme. It is well known that repetitive practice is one of the basic elements of music supported therapy which can induce the recovery of motor function after stroke, and we would like to find out what the music itself played part in this new therapy.

Full Text PDF

, , ,

Leave a comment

[ARTICLE] Home-based Neurologic Music Therapy for Upper Limb Rehabilitation with Stroke Patients at Community Rehabilitation Stage – a Feasibility Study Protocol.

Background: Impairment of upper limb function following stroke is more common than lower limb impairment and is also more resistant to treatment. Several lab-based studies with stroke patients have produced statistically significant gains in upper limb function when using musical instrument playing and techniques where rhythm acts as an external time-keeper for the priming and timing of upper limb movements.

Methods: For this feasibility study a small sample size of 14 participants (3 – 60 months post stroke) has been determined through clinical discussion between the researcher and study host in order to test for management, feasibility and effects, before planning a larger trial determined through power analysis. A cross-over design with five repeated measures will be used, whereby participants will be randomized into either a treatment (n=7) or wait list control (n=7) group. Intervention will take place twice weekly over 6 weeks. The ARAT and 9HPT will be used to measure for quantitative gains in arm function and finger dexterity, pre/post treatment interviews will serve to investigate treatment compliance and tolerance. A lab based EEG case comparison study will be undertaken to explore audio-motor coupling, brain connectivity and neural reorganization with this intervention, as evidenced in similar studies.

Discussion: Before evaluating the effectiveness of a home-based intervention in a larger scale study, it is important to assess whether implementation of the trial methodology is feasible. This study investigates the feasibility, efficacy and patient experience of a music therapy treatment protocol comprising a chart of 12 different instrumental exercises and variations, which aims at promoting measurable changes in upper limb function in hemiparetic stroke patients. The study proposes to examine several new aspects including home-based treatment and dosage, and will provide data on recruitment, adherence and variability of outcomes.

Source: Frontiers | Home-based Neurologic Music Therapy for Upper Limb Rehabilitation with Stroke Patients at Community Rehabilitation Stage – a Feasibility Study Protocol. | Frontiers in Human Neuroscience

, , , , , , , , , ,

Leave a comment

[ARTICLE] Music-supported therapy (MST) in improving post-stroke patients’ upper-limb motor function

Abstract

Objective: Music-supported therapy (MST) is a new approach for motor rehabilitation of stroke patients. Recently, many studies have demonstrated that MST improved the motor functions of post-stroke patients. However, the underlying mechanism for this effect is still unclear. It may result from repeated practice or repeated practice combined with musical stimulation. Currently, few studies have been designed to clarify this discrepancy. In this study, the application of “mute” musical instruments allowed for the study of music as an independent factor.

Methods: Thirty-three post-stroke patients with no substantial previous musical training were included. Participants were assigned to either audible music group (MG) or mute music group (CG), permitting observation of music’s independent effect. All subjects received the conventional rehabilitation treatments. Patients in MG (n = 15) received 20 extra sessions of audible musical instrument training over 4 weeks. Patients in CG (n = 18) received “mute” musical instrument training of the same protocol as that of MG. Wolf motor function test (WMFT) and Fugl—Meyer assessment (FMA) for upper limbs were utilised to evaluate motor functions of patients in both groups before and after the treatment. Three patients in CG dropped out.

Results: All participants in both groups showed significant improvements in motor functions of upper limbs after 4 weeks’ treatment. However, significant differences in the WMFT were found between the two groups (WMFT-quality: P = 0.025; WMFT-time: P = 0.037), but not in the FMA (P = 0.448). In short, all participants showed significant improvement after 4 weeks’ treatment, but subjects in MG demonstrated greater improvement than those in CG.

Discussion: This study supports that MST, when combined with conventional treatment, is effective for the recovery of motor skills in post-stroke patients. Additionally, it suggests that apart from the repetitive practices of MST, music may play a unique role in improving upper-limb motor function for post-stroke patients.

via Music-supported therapy (MST) in improving post-stroke patients’ upper-limb motor function: a randomised controlled pilot study: Neurological Research: Vol 0, No 0.

, , , , , , , , ,

Leave a comment

%d bloggers like this: