Posts Tagged Music therapy

[ARTICLE] Music meets robotics: a prospective randomized study on motivation during robot aided therapy – Full Text

Abstract

Background

Robots have been successfully applied in motor training during neurorehabilitation. As music is known to improve motor function and motivation in neurorehabilitation training, we aimed at integrating music creation into robotic-assisted motor therapy. We developed a virtual game-like environment with music for the arm therapy robot ARMin, containing four different motion training conditions: a condition promoting creativity (C+) and one not promoting creativity (C–), each in a condition with (V+) and without (V–) a visual display (i.e., a monitor). The visual display was presenting the game workspace but not contributing to the creative process itself. In all four conditions the therapy robot haptically displayed the game workspace. Our aim was to asses the effects of creativity and visual display on motivation.

Methods

In a prospective randomized single-center study, healthy participants were randomly assigned to play two of the four training conditions, either with (V+) or without visual display (V–). In the third round, the participants played a repetition of the preferred condition of the two first rounds, this time with a new V condition (i.e., with or without visual display). For each of the three rounds, motivation was measured with the Intrinsic Motivation Inventory (IMI) in the subscales interest/enjoyment, perceived choice, value/usefulness, and man-machine-relation. We recorded the actual training time, the time of free movement, and the velocity profile and administered a questionnaire to measure perceived training time and perceived effort. All measures were analysed using linear mixed models. Furthermore, we asked if the participants would like to receive the created music piece.

Results

Sixteen healthy subjects (ten males, six females, mean age: 27.2 years, standard deviation: 4.1 years) with no known motor or cognitive deficit participated. Promotion of creativity (i.e., C+ instead of C–) significantly increased the IMI-item interest/enjoyment (p=0.001) and the IMI-item perceived choice (p=0.010). We found no significant effects in the IMI-items man-machine relation and value/usefulness. Conditions promoting creativity (with or without visual display) were preferred compared to the ones not promoting creativity. An interaction effect of promotion of creativity and omission of visual display was present for training time (p=0.013) and training intensity (p<0.001). No differences in relative perceived training time, perceived effort, and perceived value among the four training conditions were found.

Conclusions

Promoting creativity in a visuo-audio-haptic or audio-haptic environment increases motivation in robot-assisted therapy. We demonstrated the feasibility of performing an audio-haptic music creation task and recommend to try the system on patients with neuromuscular disorders.

 

Background

Following a stroke, 80-90% of patients suffer from arm paresis, which remains chronic in about 30-40% of all cases [123]. Task-oriented, intensive, and motivational training is important to increase arm function post-stroke [245678].

Intensity is recognized as a key feature of successful rehabilitation therapy [9]. Robots in neurorehabilitation allow for highly-intensive, task-oriented training and have the potential to be superior to conventional therapies (i.e., physical or occupational therapy) in improving motor function post-stroke [10]. Robotic therapy may embed functional training tasks into computer games to facilitate motor learning and to stimulate motivation [11].

Autonomy, competence, and relatedness can be regarded as the main components of intrinsic motivation [1213]. While extrinsic motivation can be described as a goal-directed drive towards an externally provided reward (e.g., a score in a game), intrinsic motivation is a process oriented and internally provided reward due to a satisfying, interesting, meaningful or enjoyable activity [1415]. The knowledge regarding the meaningfulness of an activity is a positive determinant of patient motivation [7]. Thus, for patients, an activity should not only be enjoyable, but also lead to a rehabilitation progress. Furthermore, patient engagement is related to the expected reduction of impairment during game-based therapy in stroke [16].

Activities with a close relation to intrinsic motivation are frequently associated with activities promoting creativity [171819]. This might be because activities promoting creativity involve one’s own accord, active decision making, and a resulting product, thus satisfying the need of autonomy, competence, and relatedness [12202122].

In addition to encouraging creativity, music is a promising stimulator for intrinsic motivation in the context of rehabilitation [2324]. Music effectively promotes post-stroke recovery in motor and cognitive functions, and furthermore in emotional and social domains [25262728293031]. Studies that compared conventional therapy forms to therapy tasks embedded in active music making revealed that music-associated training increases the level of motivation significantly [2432].

Auditory displays have already been determined to be effective for navigation within complex systems [33]. Accordingly, sound is an audible source for navigation through the execution of a task in virtual scenarios without the need for a visual display unit, the advantage being that the visual focus can be on the trained limb rather than a graphical display, thus promoting visuo-motor control [3435].

We developed tasks for robot-assisted training of the arm that aim to increase intrinsic motivation with a focussed stimulation of the two aspects: creativity and music. To investigate whether a music condition promoting creativity influences motivation differently than a music condition not promoting creativity, we compared motivational effects of both versions. We investigated the effect of the presence or absence of a visual display for both conditions regarding promotion of creativity. As the training goal of the presented gamified task is to induce high intensity during exercise, the game is operated by repetitive horizontal movements.

For this current study, we designed audio-haptic tasks in a way that they can be performed either with visual display (i.e., a monitor presenting the game workspace) as an audio-visuo-haptic environment or without a visual display as an audio-haptic environment only. To reduce the cognitive load of the participants and have more cognitive resources for creation and decision making processes, we designed the visual display and the haptic environment such that they both presented the same game workspace [36]. Accordingly, the visuals were not essential to complete the audio-haptic task.

Given these related works, the primary hypothesis was that a gamified task promoting creativity embedded in a task for motor therapy increases intrinsic motivation more than a gamified task not promoting creativity. Our second hypothesis was that a gamified task in motor therapy without visual display increases intrinsic motivation more than a gamified task with visual display. Moreover, we hypothesized that promoting creativity and omitting a visual display would increase total training time, free movement time and perceived product value. We further hypothesized that promoting creativity and omitting a visual display would reduce energy expenditure, relative perceived training time and perceived effort.[…]

 

Fig. 1

Fig. 1ARMin arm rehabilitation robot. Additionally for this study, a keyboard was placed close to the participant’s left hand so that the space bar could be used as input device

Continue —>  Music meets robotics: a prospective randomized study on motivation during robot aided therapy | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , ,

Leave a comment

[BLOG POST] Therapy for Brain Injuries: Facing the Music

Therapy for Brain Injuries: Facing the Music

July 31, 2018

 

I recently attended a very interesting workshop delivered by Chroma, which focused on the important role that music therapy can play in the rehabilitation of those who have suffered brain injuries.

Chroma is a national provider of art therapy, music therapy and drama therapy.  Their team of therapists works with a range of organisations and professions, including solicitors, to deliver their services.

The workshop touched on the different holistic approaches to rehabilitation that are available to those who have suffered both traumatic and acquired brain injuries ― but focused mainly on a specific type of music therapy known as Neurologic Music Therapy (NMT).

Ref: https://merrymakers.org/music-brings-memories-back-to-injured-brain/

Music Therapy

Dealing with a brain injury can cause increased stress and difficulties for those who are affected.  Because music evokes emotion and memories in people, it can help them to deal with their anger, anxiety or depression by increasing positive emotions.  It can even help improve concentration and coordination, and can assist with basic abilities such as speech and physical movement.

Neurologic Music Therapy

NMT is an advanced type of music therapy, which uses recognised techniques to treat the brain using music and rhythm.  NMT can help brain injured patients by using the musical part of the brain, which is undamaged, to encourage them to achieve goals such as re-teaching language or re-learning how to walk.

 

When merged with other, more traditional therapies (such as physiotherapy and speech and language therapy), NMT is seen to have quite incredible results.

  • NMT and language

For instance, where someone has suffered loss of speech due to a stroke, music can create new ways of learning how to verbally communicate again.

To illustrate how this can be achieved, we watched the following short clip showing Peter’s story:

Peter’s progress is a clear example of the positive impact NMT can have on speech and language in even a short period of time – just 5 months in his case.

  • NMT and mobility

Where someone’s mobility has been impaired as a result of a brain injury, music can also help to improve their ability to walk, particularly when combined with physiotherapy.  This is because rhythm accesses movement centres of the brain.

Here is another clip demonstrating the power of NMT – focusing on mobility this time.

As you can see, George was only able to walk for 40 ft with a walking stick at the start of the session.  After just one session, he was able to walk 250 ft, without the aid of the stick and at a much quicker pace.

Costs Benefits of NMT

The above examples demonstrate how effective NMT can be when combined with conventional therapies.  Because clients respond to NMT so quickly and with such improved outcomes, the overall rehabilitation costs are often greatly reduced.  When combined with traditional rehabilitation treatments, NMT is therefore a cost-effective therapy for clients with either an acquired or traumatic brain injury. 

Who can access NMT?

NMT can benefit people with traumatic brain injuries (caused as a result of trauma or a blow to the head) or acquired brain injuries (present since birth or as a result of conditions such as stroke, encephalitis, brain haemorrhage or tumour).  NMT can also help people with neurologic disorders such as Parkinson’s Disease, dementia, and multiple sclerosis.

How can we help?

At Bolt Burdon Kemp, we are constantly looking for new and innovative treatments that can help our clients.

If we have supportive evidence from an independent medical expert to say that you suffered a brain injury due to negligent medical treatment and that you could benefit from music therapy, then we can look to recover the costs of the therapy as part of your compensation.

Even while the claim is ongoing, we will do everything that we can to obtain interim payments from the Defendant to pay for this therapy.  This means that even before your case has concluded, we can obtain a payout of some compensation to be able to cover the costs of your therapy.  This can allow you to access rehabilitation early on in the claim and means you can fund therapies (such as NMT) which may not be freely available on the NHS.

Kate O’Brien is a solicitor in the Adult Brain Injury team at Bolt Burdon Kemp.  If you or a loved one is concerned about the treatment you have received, contact Kate free of charge and in confidence on 020 7288 4814 or at KateO’Brien@boltburdonkemp.co.uk.  Alternatively, complete this form and one of the solicitors in the Medical Negligence team will contact you.  Find out more about the Adult Brain Injury team.

via Therapy for Brain Injuries: Facing the Music – Bolt Burdon Kemp

, , , ,

Leave a comment

[ARTICLE] Let’s Improvise! iPad-based music therapy with functional electrical stimulation for upper limb stroke rehabilitation – Full Text

In plain language

In the western world, stroke has been identified as the leading cause of disability in adults. Impairment to the arm/hand and depressive symptoms seem to be among the most frequent resultants of stroke. This article describes a collaborative occupational therapy and music therapy intervention for post-stroke arm/hand recovery.  The intervention itself combines principles of music therapy with tablet technology and functional electrical stimulation. The implementation of this novel intervention, described in this clinical case report, has implications for benefits to physical and motivational aspects of rehabilitation. Recommendations for further research of this intervention are also discussed.

Abstract

This retrospective clinical case report will examine the implementation of a novel intervention combining a Functional Electrical Stimulation (FES) protocol with an iPad application. A 74-year-old female retired pianist and Professor of Music was admitted to a rehabilitation hospital following a left pontine stroke. On assessment, she was unable to use her right upper limb functionally. Conventional occupational therapy commenced soon after admission and consisted of functional retraining, including FES to the wrist and finger extensors. At week 4, the Registered Music Therapist (RMT) and Occupational Therapist (OT) collaborated to commence a trial of forearm FES in combination with an iPad-based music making application; ThumbJam. This application was used to encourage the patient to participate in touch sensitive musical improvisation using the affected hand in an attempt to promote engagement in complex motor patterns and non-verbal expression. Within 3 weeks, the patient was able to use ThumbJam without the FES, progressed to the keyboard in 4 weeks and has since commenced independent scales on the piano at home (21 weeks), as well as successful use of the upper limb in Activities of Daily Living (ADLs). On follow up (7 months), the patient reflected on the motivating elements of the intervention that helped her to achieve a functional outcome in her upper limb. This retrospective clinical case report will review the evidence with regard to FES and music therapy, outline the treatment protocol used and make recommendations for future research of “FES+ThumbJam” in upper limb stroke rehabilitation.[…]

Continue —> Let’s Improvise! iPad-based music therapy with functional electrical stimulation for upper limb stroke rehabilitation | Australian Music Therapy Association

DOWNLOAD PDF

, , , , , , , , ,

Leave a comment

[ARTICLE] Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trial – Full Text

To assess the feasibility of a randomized controlled trial to evaluate music therapy as a home-based intervention for arm hemiparesis in stroke.

A pilot feasibility randomized controlled trial, with cross-over design. Randomization by statistician using computer-generated, random numbers concealed in opaque envelopes.

Participants’ homes across Cambridgeshire, UK.

Eleven people with stroke and arm hemiparesis, 3–60 months post stroke, following discharge from community rehabilitation.

Each participant engaged in therapeutic instrumental music performance in 12 individual clinical contacts, twice weekly for six weeks.

Feasibility was estimated by recruitment from three community stroke teams over a 12-month period, attrition rates, completion of treatment and successful data collection. Structured interviews were conducted pre and post intervention to establish participant tolerance and preference. Action Research Arm Test and Nine-hole Peg Test data were collected at weeks 1, 6, 9, 15 and 18, pre and post intervention by a blinded assessor.

A total of 11 of 14 invited participants were recruited (intervention n = 6, waitlist n = 5). In total, 10 completed treatment and data collection.

It cannot be concluded whether a larger trial would be feasible due to unavailable data regarding a number of eligible patients screened. Adherence to treatment, retention and interview responses might suggest that the intervention was motivating for participants.

Continue —>  Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trialClinical Rehabilitation – Alexander J Street, Wendy L Magee, Andrew Bateman, Michael Parker, Helen Odell-Miller, Jorg Fachner, 2018

, , , , , , , , , ,

Leave a comment

[WEB SITE] Music Training and Neuroplasticity

With our multi sensory brain, music harnesses powers of nature, culture, and mind. How much is the brain changed by the effects of music training and neuroplasticity?

Music is one of the most demanding cognitive and neural challenges, requiring very accurate timing of multiple actions, precise interval control of pitch not involved in language, and multiple different ways of producing sound. Auditory and motor actions influence each other in a constant interplay, which is largely unknown.

Brain Lesion Effects on Music

All brain imaging is done in a time scale of seconds, but the brain functions in the scale of milliseconds. Imaging studies do not really correlate exactly to mental states (see post on limits of imaging). Because of this limitation, a major way to study specific regions of brain related to music has been study of brain lesions.

  • A lesion in the auditory cortex causes “amusia” where a patient can speak and understand everyday sounds, but cannot notice wrong notes in tunes, or remember melodies.
  • Another case, a 71-year-old cellist, had encephalitis and lost ordinary memory, but remembers music. 
  • Patients with a lesion in right temporal can lose pitch perception.
  • Damage to right temporal lobe can distort sound to have negative response to music.
  • Patients with lesion in right temporal can lose pitch perception.

But, recent research shows that when studying infants these differences do not necessarily exist. In infancy there is much more overlap of music and language in the brain.  

What Is Known About Music in the Brain?

Perhaps some generalizations can be made:

Timing – some think timing is organized in the cerebellum (center of motor memory and learning.) Purely auditory perception has been observed in the cerebellum, but a single region does not control it.

Pitch – Different factors of a tune -contour, specific interval size, duration of notes, ratios of tones – are processed in different circuits throughout the brain. The right hemisphere does tonal processing.

Musical imagery is analyzed in regions of the frontal lobe.

Singing is dominant in right temporal lobe, while syntax of speech and music is left dominant.

The motor processes involve pre motor cortex, supplementary motor cortex, cerebellum, and basal ganglia, but in different amounts for different tasks.

Rhythm, Melody and emotion work in different parts of the brain

There are multiple different streams of neuronal activity for auditory processing pathways – the dorsal and ventral streams are important but especially dorsal with parietal and premotor cortex.

All neural systems – motor, sensory, emotional and analysis – are active in both performers and observersListening, as well as performing, use both motor and sensory systems, since observers trigger the muscles that are being utilized by the performers and dancers they are watching.

Recent studies show that learning absolute pitch, a very measurable skill, occurs only with genetic ability plus training before 12 to 15.[…]

 For more visit site —> Music Training and Neuroplasticity

, ,

Leave a comment

[ARTICLE] Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trial – Full Text

 

Continue —> Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trialClinical Rehabilitation – Alexander J Street, Wendy L Magee, Andrew Bateman, Michael Parker, Helen Odell-Miller, Jorg Fachner, 2017

figure

Figure 1. Study flow diagram. Data collection occurred at weeks 1, 6, 9, 15 and 18. Cross-over analysis required data from weeks 1, 6, 9 and 15.

, , , , , , , , , ,

Leave a comment

[Abstract] Active music therapy approach for stroke patients in the post-acute rehabilitation

Abstract

Guidelines in stroke rehabilitation recommend the use of a multidisciplinary approach. Different approaches and techniques with music are used in the stroke rehabilitation to improve motor and cognitive functions but also psychological outcomes. In this randomized controlled pilot trial, relational active music therapy approaches were tested in the post-acute phase of disease. Thirty-eight hospitalized patients with ischemic and hemorrhagic stroke were recruited and allocated in two groups. The experimental group underwent the standard of care (physiotherapy and occupational therapy daily sessions) and relational active music therapy treatments. The control group underwent the standard of care only. Motor functions and psychological aspects were assessed before and after treatments. Music therapy process was also evaluated using a specific rating scale. All groups showed a positive trend in quality of life, functional and disability levels, and gross mobility. The experimental group showed a decrease of anxiety and, in particular, of depression (p = 0.016). In addition, the strength of non-dominant hand (grip) significantly increased in the experimental group (p = 0.041). Music therapy assessment showed a significant improvement over time of non-verbal and sonorous-music relationships. Future studies, including a greater number of patients and follow-up evaluations, are needed to confirm promising results of this study.

Source: Active music therapy approach for stroke patients in the post-acute rehabilitation | SpringerLink

, , , , , ,

Leave a comment

[ARTICLE] Improvement in Stroke-induced Motor Dysfunction by Music-supported Therapy: A Systematic Review and Meta-analysis

Abstract

To conduct a meta-analysis of clinical trials that examined the effect of music-supported therapy on stroke-induced motor dysfunction, comprehensive literature searches of PubMed, Embase and the Cochrane Library from their inception to April 2016 were performed. A total of 10 studies (13 analyses, 358 subjects) were included; all had acceptable quality according to PEDro scale score. The baseline differences between the two groups were confirmed to be comparable. Compared with the control group, the standardized mean difference of 9-Hole Peg Test was 0.28 (−0.01, 0.57), 0.64 (0.31, 0.97) in Box and Block Test, 0.47 (0.08, 0.87) in Arm Paresis Score and 0.35 (−0.04, 0.75) in Action Research Arm Test for upper-limb motor function, 0.11 (−0.24, 0.46) in Berg Balance Scale score, 0.09 (−0.36, 0.54) in Fugl-Meyer Assessment score, 0.30 (−0.15, 0.74) in Wolf Motor Function Test, 0.30 (−0.15, 0.74) in Wolf Motor Function time, 0.65 (0.14, 1.16) in Stride length and 0.62 (0.01, 1.24) in Gait Velocity for total motor function, and 1.75 (0.94, 2.56) in Frontal Assessment Battery score for executive function. There was evidence of a positive effect of music-supported therapy, supporting its use for the treatment of stroke-induced motor dysfunction. This study was registered at PRESPERO (CRD42016037106).

Introduction

Stroke is a multifaceted and complicated condition. Stroke disease is one of the major causes of long-term disability and one of the leading causes of death worldwide1,2. The time frequency and functional source analysis of the signals facilitate the quantification of the functional changes occurring in the brain in association with motor tasks after stroke and the detection of damage to neuro-motor functioning3. The personal burden of being a stroke survivor is often devastating and has major consequences for the patient’s quality of life4. Rehabilitation of upper-limb motor dysfunction and total motor dysfunction have been revealed to improve the quality of life of patients after stroke5 and are safe and effective methods for restoring social and occupational functioning.

Motor dysfunction therapy relies on both pharmacological6 and non-pharmacological treatments7. Currently, pharmacological therapy is essentially symptomatic and does not have a satisfactory impact on symptoms related to the progression of neurodegenerative diseases. Therefore, several health institutions recommend the development of non-pharmacological complementary interventions as a first-line treatment. For example, intensive motor therapy can improve important motor functions. However, the effectiveness of standard physiotherapeutic approaches in stroke rehabilitation has been found to be limited8. In the human brain, one of the most powerful sources of auditory stimulation is provided by music9. As a result, more attention has been given to the effectiveness of non-pharmacological approaches in dysfunction therapy, including a growing interest in music therapy and music-based stimulation10.

The power of music and its nonverbal nature make it an effective medium of communication when language is diminished or abolished, though the curative effect of music is still uncertain. Music easily elicits movement, stimulating interactions between perception and action systems11. Thus, music-making may be an effective way to induce plastic changes in the motor system. Music-supported therapy is a prospective new series of therapy programs, and comprehensive research suggests that it could be useful because of its promotion of relaxation and of cognitive and motor improvement in post-stroke rehabilitation12. Therefore, music-supported therapy has been developed with the aim of improving motor recovery after stroke. The definition of music-supported therapy is not only hearing the music but also singing and playing rhythm and percussion instruments and is based on four principles: (i) massive repetition and exercising of simple finger and arm movements; (ii) auditory-motor coupling and integration and reinforcement of motor effects due to immediate auditory feedback; (iii) shaping and adapting the training according to individual progress; and (iv) emotion-motivation effects due to the playfulness and emotional impact of music and the acquisition of a new skill13. Music-supported therapy may involve, for example, rhythmic auditory stimulation14, the use of a MusicGlove15 or listening to CDs16. However, the differences between these music-supported techniques have not been comprehensively considered.

Music-supported therapy has been shown to be effective in post-stroke rehabilitation of motor function in some clinical trials14,15,16,17,18,19,20,21,22,23. However, little research has focused on the potential therapeutic mechanisms by which music-supported therapy improves the motor functions of post-stroke patients. Although many researchers suggest that improvement induced by music-supported therapy is due to the combined effects of intensive repetitive practice and musical stimulation21, evidence to support these propositions has been unavailable. To explore the isolated effect of music further, we designed a systematic review on the effect of music-supported therapy on the recovery of upper-limb motor function and total motor function after stroke. No previous reviews have provided a comprehensive overview with meta-analyses.

Continue —> Improvement in Stroke-induced Motor Dysfunction by Music-supported Therapy: A Systematic Review and Meta-analysis : Scientific Reports

Figure 1: Flow of studies through the review process for systematic review and meta-analysis.

, , , ,

Leave a comment

[ARTICLE] Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program

Abstract — Individuals with chronic stroke have limited options for hand rehabilitation at home. Here, we sought to determine the feasibility and efficacy of home-based MusicGlove therapy. Seventeen participants with moderate hand impairment in the chronic phase of stroke were randomized to 3 wk of home-based exercise with either the MusicGlove or conventional tabletop exercises. The primary outcome measure was the change in the Box and Blocks test score from baseline to 1 mo post treatment. Both groups significantly improved their Box and Blocks test score, but no significant difference was found between groups. The MusicGlove group did exhibit significantly greater improvements than the conventional exercise group in Motor Activity Log Quality of Movement and Amount of Use scores 1 mo posttherapy (p = 0.007 and p = 0.04, respectively). Participants significantly increased their use of MusicGlove over time, completing 466 gripping movements per day on average at study end. MusicGlove therapy was not superior to conventional tabletop exercises for the primary end point but was nevertheless feasible and led to a significantly greater increase in self-reported functional use and quality of movement of the impaired hand than conventional home exercises.

 

INTRODUCTION

Hand impairment after stroke contributes substantially to disability in the United States and around the world [1]. Intensive movement practice can reduce hand impairment [2–6], but issues such as cost and access may limit the dose of rehabilitation exercise delivered one-on-one with a therapist. Because of these and other factors, most individuals do not perform the large number of exercise repetitions required during therapy to maximize recovery [7–8]. Home-based rehabilitation programs may be prescribed after stroke with the intent to increase the amount of rehabilitation exercise individuals perform. However, the most common approach to home-based hand therapy is following a printed handout of exercises. This approach is often not motivating and thus is associated with low compliance and high dropout rates [9–13].

To address this problem, other types of home-based rehabilitation programs for the hand have been proposed. For example, one pilot study explored a modified form of constraint-induced movement therapy performed under the supervision of a nonprofessional coach in the home and found similar benefits to the same program performed with a trained therapist in a clinic [14]; a larger study using this protocol found that home-based constraint-induced movement therapy led to significantly greater self-reported use of the impaired limb than conventional therapy [15]. Another common approach is telerehabilitation, which allows a therapist to guide therapy remotely [16]. While this approach is gaining popularity, a recent Cochrane systematic review of 10 trials with 933 total participants found limited evidence to support its use and no studies that examined its cost-effectiveness [17]. Other approaches to home-based hand rehabilitation include functional electrical stimulation [18], computer gaming with custom devices [19–21], and music-based therapy [22]. However, despite the variety of options, few home-based programs have been tested in controlled studies [23]. Further, it is still unclear which methods are the most effective and efficient means of providing an increased dose of rehabilitation, though the use of computer games and music has been found to be highly motivating [20,24–26].

We developed the MusicGlove, an instrumented glove with sensors on each of the fingertips and the lateral aspect of the index finger. The MusicGlove requires the user to practice functional gripping movements by touching the sensor on the tip of the thumb to one of the other five sensors in time with music through a video game that displays scrolling notes on a screen (Figure 1). In previous pilot studies performed in a clinical setting, we found that the MusicGlove motivated individuals with chronic stroke to perform hundreds of functional gripping movements during a 30 min training session and that exercise with the device led to a significantly greater improvement in hand grasping ability, measured with the Box and Blocks test, than a time-matched dose of conventional tabletop therapy performed with a rehabilitation therapist [27–28]. The individuals who used the MusicGlove also reported that the exercise was more motivating than conventional therapy and expressed interest in using the device to exercise at home. An important question, therefore, was whether self-guided exercise with the MusicGlove performed at home is feasible and improves hand function compared with conventional home therapy.

Figure 1. MusicGlove device used in study. Users are visually cued by scrolling notes on screen (top) to make specific grips in time with popular songs, similar to the video game Guitar Hero. Grips include (a) key pinch grip; (b) pincer grip; and (c) finger-thumb opposition with second, third, and fourth fingers. During gameplay, the user must complete the cued grip when a colored note passes over the starred strip shown at bottom of the game screen (time window of about 800 ms). If the user is successful, the colored note disappears, providing visual feedback. If the user is unsuccessful, a beep is played, providing auditory feedback.

Figure 1. MusicGlove device used in study. Users are visually cued by scrolling notes on screen (top) to make specific grips in time with popular songs, similar to the video game Guitar Hero. Grips include (a) key pinch grip; (b) pincer grip; and (c) finger-thumb opposition with second, third, and fourth fingers. During gameplay, the user must complete the cued grip when a colored note passes over the starred strip shown at bottom of the game screen (time window of about 800 ms). If the user is successful, the colored note disappears, providing visual feedback. If the user is unsuccessful, a beep is played, providing auditory feedback.

Continue —> Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program

, , , , , , , , , ,

Leave a comment

[ARTICLE] Music Upper Limb Therapy—Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation – Full Text 

Stroke is a leading cause of disability worldwide. It leads to a sudden and overwhelming disruption in one’s physical body, and alters the stroke survivors’ sense of self. Long-term recovery requires that bodily perception, social participation and sense of self are restored; this is challenging to achieve, particularly with a single intervention. However, rhythmic synchronization of movement to external stimuli facilitates sensorimotor coupling for movement recovery, enhances emotional engagement, and has positive effects on interpersonal relationships.

In this proof-of-concept study, we designed a group music-making intervention, Music Upper Limb Therapy-Integrated (MULT-I), to address the physical, psychological and social domains of rehabilitation simultaneously, and investigated its effects on long-term post-stroke upper limb recovery. The study used a mixed-method pre-post design with one-year follow up.

Thirteen subjects completed the 45-minute intervention twice a week for six weeks. The primary outcome was reduced upper limb motor impairment on the Fugl-Meyer Scale. Secondary outcomes included sensory impairment (two-point discrimination test), activity limitation (Modified Rankin scale), well-being (WHO well-being index), and participation (Stroke Impact Scale). Repeated measures ANOVA was used to test for differences between pre- and post-intervention, and one-year follow up scores. Significant improvement was found in upper limb motor impairment, sensory impairment, activity limitation, and well-being immediately post-intervention that persisted at 1 year. Activities of daily living and social participation improved only from post-intervention to one-year follow up. The improvement in upper limb motor impairment was more pronounced in a subset of lower functioning individuals as determined by their pre-intervention wrist range of motion. Qualitatively, subjects reported new feelings of ownership of their impaired limb, more spontaneous movement, and enhanced emotional engagement.

The results suggest that the MULT-I intervention may help stroke survivors re-create their sense of self by integrating sensorimotor, emotional and interoceptive information, and facilitate long-term recovery across multiple domains of disability, even in the chronic stage post-stroke. Randomized controlled trials are warranted to confirm the efficacy of this approach. Clinical Trial Registration: National Institutes of Health, clinicaltrials.gov, NCT01586221.

Continue —> Frontiers | Music Upper Limb Therapy—Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation | Frontiers in Human Neuroscience

, , , , , , , , , , , , ,

Leave a comment

%d bloggers like this: