Posts Tagged Neck

[WEB SITE] Researchers study how neurostimulator can improve rehabilitation for stroke patients

 

Researchers at The Ohio State University Wexner Medical Center are among the first in the world studying how a specific type of neurostimulator can improve rehabilitation for stroke patients.

As part of the clinical trial, an electrical device called a vagus nerve stimulator is surgically implanted in the patient’s chest wall. The Vivistim device, which connects to the vagus nerve in the neck, is used to “rewire” circuits in the brain associated with certain motor functions. Stroke can result in the loss of brain tissue and negatively affect various bodily functions from speech to movement, depending on the location of the stroke.

In an earlier pilot study, this approach known as Paired Vagus Nerve Stimulation was shown to benefit approximately 85 percent of the people who received the nerve stimulation, said Dr. Marcie Bockbrader, research physiatrist for the Neurological Institute at The Ohio State University Wexner Medical Center.

“This nerve stimulation is like turning on a switch, making the patient’s brain more receptive to therapy,” Bockbrader said. “The goal is to see if we can improve motor recovery in people who have what is, in effect, a brain pacemaker implanted in their body. The idea is to combine this brain pacing with normal rehab, and see if patients who’ve been through all of the other usual therapies after a stroke can get even better.”

The study is recruiting patients who suffered a stroke and have been left with poor arm function as a result. The study is open to patients who have suffered a stroke at least nine months ago up to 10 years ago.


Each participant will receive three one-hour sessions of intensive physiotherapy each week for six weeks to help improve their arm function.

Half of the group will also receive an implanted vagus nerve stimulator. During rehabilitation therapy sessions, when a patient correctly performs an exercise, the therapist pushes a button to trigger the device to stimulate the vagus nerve. This neurostimulator signals the brain to remember that movement.

“We are trying to see if this neurostimulator could be used to boost the effective therapy, creating a sort of ‘supercharged therapy.’ We want to determine if patients can recover more quickly through the use of this stimulation,” Bockbrader said.

Previous research indicates that vagus nerve stimulation causes the release of the brain’s own chemicals, called neurotransmitters that will help the brain form new neural connections which might improve participant’s ability to use their arm.

Traditional vagus nerve stimulation has been used in the United States and around the world to treat more than 100,000 patients for epilepsy.

 

via Researchers study how neurostimulator can improve rehabilitation for stroke patients

, , , , , , , , ,

Leave a comment

[WEB SITE] Radiologist creates dramatic teaching tool using power of VR

Physicians, trainees and even laypeople can now stand right beside an expert radiologist as he performs one of the most difficult medical procedures of its kind – in virtual reality.

Ziv Haskal, MD, of the University of Virginia Health System, has created a dramatic teaching tool using the power of virtual reality. Whether watched on a high-end VR system or an inexpensive cardboard viewer, Haskal’s virtual procedure puts the viewer right next to him as he creates a new blood vessel in a patient’s liver through a small nick in the patient’s neck.

It’s a complicated procedure – Haskal calls it an “interventional radiology heptathlon” – and his use of VR is set to transform how it is taught. “The current means of teaching is a physical person has to arrive … and go over with the doc beforehand. Or they have to look at a lousy 2D animation on a screen,” Haskal said. “Once you put [VR] glasses on people, it’s like you walk them through a completely different door.”

IR in VR

From inside the VR goggles, viewers can look around in 360 degrees as the procedure, known as a transjugular intrahepatic portosystemic shunt, unfolds around them. Haskal guides them step-by-step through the entire procedure, and strategic use of picture-in-picture lets the viewer see both what Haskal is doing and what he is seeing.

Haskal designed the VR experience as a teaching tool for physicians and trainees, but he can foresee many other game-changing applications. VR might be used to show a patient what to expect during a procedure, to teach a nursing student what must be kept sterile in an operating room or to provide a refresher for physicians who have not performed the procedure recently.

“Watching it in a 2D animation, listening to a lecture, watching a physician on a video simply fails to convey the subtleties of the procedure,” Haskal said. “We’re putting the viewer in the actual environment, where they can return again and again.”

Lifting the Curtain

Haskal debuted the VR tool last weekend at the SIR 2018 Scientific Meeting in Los Angeles. He plans to make the VR publicly available to everyone, for free, on the Journal of Vascular and Interventional Radiology website. (Video clips from the VR video can’t do it justice, but to get a sneak peak at what it’s like, visit UVA’s Making of Medicine blog at https://makingofmedicine.virginia.edu/2018/03/13/into-the-or-in-vr/ )

Ultimately, Haskal hopes to create many more virtual-reality teaching tools for healthcare professionals. “With this approach,” he said, “doctors are simply going to be able to do things better.”

 

via Radiologist creates dramatic teaching tool using power of VR

, , , , , , , ,

Leave a comment

[WEB SITE] Vagus nerve stimulation accelerates motor skill recovery after stroke

Researchers at The University of Texas at Dallas have demonstrated a method to accelerate motor skill recovery after a stroke by helping the brain reorganize itself more quickly.

In a preclinical study, the scientists paired vagus nerve stimulation (VNS) with a physical therapy task aimed at improving the function of an upper limb in rodents. The results showed a doubled long-term recovery rate relative to current therapy methods, not only in the targeted task but also in similar muscle movements that were not specifically rehabbed. Their work was recently published in the journal Stroke.

A clinical trial to test the technique in humans is underway in Dallas and 15 other sites across the country.

Dr. Michael Kilgard, associate director of the Texas Biomedical Device Center (TxBDC) and Margaret Forde Jonsson Professor of Neuroscience in the School of Behavioral and Brain Sciences, led the research team with Dr. Seth Hays, the TxBDC director of preclinical research and assistant professor of bioengineering in the Erik Jonsson School of Engineering and Computer Science, and postdoctoral researcher Eric Meyers PhD’17.

“Our experiment was designed to ask this new question: After a stroke, do you have to rehabilitate every single action?” Kilgard said. “If VNS helps you, is it only helping with the exact motion or function you paired with stimulation? What we found was that it also improves similar motor skills as well, and that those results were sustained months beyond the completion of VNS-paired therapy.”

Kilgard said the results provide an important step toward creating guidelines for standardized usage of VNS for post-stroke therapy.

“This study tells us that if we use this approach on complicated motor skills, those improvements can filter down to improve simpler movements,” he said.

Building Stronger Cell Connections

When a stroke occurs, nerve cells in the brain can die due to lack of blood flow. An arm’s or a leg’s motor skills fail because, though the nerve cells in the limb are fine, there’s no longer a connection between them and the brain. Established rehab methods bypass the brain’s damaged area and enlist other brain cells to handle the lost functions. However, there aren’t many neurons to spare, so the patient has a long-lasting movement deficit.

The vagus nerve controls the parasympathetic nervous system, which oversees elements of many unconscious body functions, including digestion and circulation. Electrical stimulation of the nerve is achieved via an implanted device in the neck. Already used in humans to treat depression and epilepsy, VNS is a well-documented technique for fine-tuning brain function.

The UT Dallas study’s application of VNS strengthens the communication path to the neurons that are taking over for those damaged by stroke. The experiments showed a threefold-to-fivefold increase in engaged neurons when adding VNS to rehab.

“We have long hypothesized that VNS is making new connections in the brain, but nothing was known for sure,” Hays said. “This is the first evidence that we are driving changes in the brain in animals after brain injury. It’s a big step forward in understanding how the therapy works — this reorganization that we predicted would underlie the benefits of VNS.”

In anticipation of the technique’s eventual use in humans, the team is working on an at-home rehab system targeting the upper limbs.

“We’ve designed a tablet app outlining hand and arm tasks for patients to interact with, delivering VNS as needed,” Meyers said. “We can very precisely assess their performance and monitor recovery remotely. This is all doable at home.”

Expanding the Possibilities for Therapy

The researchers are motivated in part by an understanding of the practical limitations of current therapeutic options for patients.

“If you have a stroke, you may have a limited time with a therapist,” Hays said. “So when we create guidelines for a therapist, we now know to advise doing one complex activity as many times as possible, as opposed to a variety of activities. That was an important finding — it was exciting that not only do we improve the task that we trained on, but also relatively similar tasks. You are getting generalization to related things, and you’re getting sustained improvement months down the line.”

For stroke patients, the opportunity to benefit from this technology may not be far off.

“A clinical trial that started here at UTD is now running nationwide, including at UT Southwestern,” Kilgard said. “They are recruiting patients. People in Dallas can enroll now — which is only fitting, because this work developed here, down to publishing this in a journal of the American Heart Association, which is based here in Dallas. This is a homegrown effort.

“The ongoing clinical trial is the last step in getting approved as an established therapy,” Kilgard said. “We’re hopefully within a year of having this be standard practice for chronic stroke.”

 

via Vagus nerve stimulation accelerates motor skill recovery after stroke

, , , , , , , , , , , , , ,

Leave a comment

%d bloggers like this: