Posts Tagged nervous system diseases

[ARTICLE] Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy  – Full Text

 

Abstract

Background

Client-centred task-oriented training is important in neurological rehabilitation but is time consuming and costly in clinical practice. The use of technology, especially motion capture systems (MCS) which are low cost and easy to apply in clinical practice, may be used to support this kind of training, but knowledge and evidence of their use for training is scarce. The present review aims to investigate 1) which motion capture systems are used as training devices in neurological rehabilitation, 2) how they are applied, 3) in which target population, 4) what the content of the training and 5) efficacy of training with MCS is.

Methods

A computerised systematic literature review was conducted in four databases (PubMed, Cinahl, Cochrane Database and IEEE). The following MeSH terms and key words were used: Motion, Movement, Detection, Capture, Kinect, Rehabilitation, Nervous System Diseases, Multiple Sclerosis, Stroke, Spinal Cord, Parkinson Disease, Cerebral Palsy and Traumatic Brain Injury. The Van Tulder’s Quality assessment was used to score the methodological quality of the selected studies. The descriptive analysis is reported by MCS, target population, training parameters and training efficacy.

Results

Eighteen studies were selected (mean Van Tulder score = 8.06 ± 3.67). Based on methodological quality, six studies were selected for analysis of training efficacy. Most commonly used MCS was Microsoft Kinect, training was mostly conducted in upper limb stroke rehabilitation. Training programs varied in intensity, frequency and content. None of the studies reported an individualised training program based on client-centred approach.

Conclusion

Motion capture systems are training devices with potential in neurological rehabilitation to increase the motivation during training and may assist improvement on one or more International Classification of Functioning, Disability and Health (ICF) levels. Although client-centred task-oriented training is important in neurological rehabilitation, the client-centred approach was not included. Future technological developments should take up the challenge to combine MCS with the principles of a client-centred task-oriented approach and prove efficacy using randomised controlled trials with long-term follow-up.

Background

People with central nervous system diseases such as multiple sclerosis (MS), stroke and spinal cord injury (SCI), demonstrate among others loss of motor and sensory function in the upper and lower limbs. Due to motor impairment in upper limbs, the performance of activities of daily life, sports and leisure activities is affected. Motor impairment in the lower limbs, affects mobility in general and balance control during reaching movement. The impairments of both upper and lower limbs reduce functional independence and thus the quality of life of the individual [1, 2, 3, 4, 5, 6]. Exercise therapy has proven to improve impairments [7, 8, 9], therefore rehabilitation is very important for these patients.

In neurological rehabilitation, training should be challenging, repetitive, task-specific, motivating, salient and intensive to activate neuroplasticity [4]. Moreover, studies have shown the importance and benefits of client-centred task-oriented rehabilitation [10, 11]. The concept of client-centredness not only incorporates patient’s wishes and needs in their rehabilitation, but also actively involves the patient in selecting goals for their own rehabilitation process. Definitions of task-oriented training are still very diverse, but it incorporates that training is directed to a specific, functional, task [10, 12]. Task-oriented training has been proven to be effective in arm-hand skilled performance in stroke patients [12, 13], spinal cord [10] and MS [14]. Spooren et al. [14] demonstrated the importance of specificity of training and inclusion of ‘client-centred training’ and ‘exercise progression’. Timmermans et al. [12] concluded that training components, such as random and distributed practice, together with feedback and clear functional goals, should be incorporated in order to enhance the outcomes of task-oriented training. Despite the advantages of a client-centred task-oriented approach with regard to training outcome and motor learning, this approach requires individualised training schemes and guidance of a therapist. Therefore a client-centred and task-oriented approach is more time consuming and costly for therapists and rehabilitation centres. Hence a new approach is needed where client-centred task-oriented rehabilitation can be administered without extra costs and effort of therapists.

Technology-based rehabilitation systems such as robotics and virtual reality (VR) are promising and may be able to deliver a client-centred task-oriented rehabilitation without extra costs and effort of therapists. Several studies addressed the positive effects of robotics and VR systems as additional therapy in neurological rehabilitation [4, 15, 16, 17, 18, 19]. Robotics have shown positive effects such as the enhancement of function and activity of affected limb and increased motivation, but the costs of the devices is high [3, 20]. In addition, the devices are often uncomfortable as the user needs to wear apparatuses on the body and patients have difficulty using such devices [3]. Although a few studies include some aspects of a client-centred approach in robotic rehabilitation, it remains very difficult to incorporate a full client-centred approach because of the wide variety of choices that can be made (e.g. difficult to select individual parameters, specific movements or activities, to use objects, etc. [19, 20]. VR, on the other hand, is a computer-based technology that allows users to interact with simulated environments and receive feedback on performance. VR also stimulates the increase of intensity of movements, therefore it may facilitate motor learning and neuroplasticity through repetition and increased intensity during task-oriented training [2, 3, 4]. Compared to the traditional methods used in motor rehabilitation of patients with neurological disorders, VR has some advantages: 1) patients can perform different rehabilitation exercises, recreated in a virtual way (i.e. virtual rehabilitation exercises), 2) VR can set up the features of the exercises, control their performance and acquire relevant data from the patient’s performance, and 3) VR can facilitate the interaction between patient and system through a variety of available devices, such as MIT-Manus, RemoviEM, etc. [21, 22]. Non-immersive video games are also a form of VR. They are developed by the entertainment industry for healthy population and home use making it less costly and more acceptable. Markerless (i.e. without markers or sensors on the body) motion capture systems (MCS) such as Nintendo Wii and Playstation Move, make use of non-immersive video games and have been used in VR rehabilitation. Studies showed an increase in motivation for rehabilitation as well as improvement in motor function and correctness of movement after training. Although the results are positive, these commercially available MCS systems with VR have to date limited utility in rehabilitation for impaired populations [1, 3, 4]: the standard games are too difficult or progress too quickly, they do not provide impairment-focused training (e.g. no treatment towards flexion synergies), and do not specifically address independent home usability and safety [1]. Only a few studies have looked into customising Kinect games for stroke, but no specific focus was payed to the coordination patterns which are important in stroke recovery, reducing compensation strategies, or usability and safety for independent home use [1, 23]. At present, validity and accuracy of the Microsoft Kinect in clinical assessment is strong regarding postural control and standing balance [24, 25]. The reproducibility of Kinect when analysing planar motions is similar to traditional marker-based stereophotogrammetry systems [26]. Although there is an increasing number of studies involving markerless motion capture systems in neurological rehabilitation, the knowledge and evidence of training content and training efficacy with Kinect or other markerless motion capture systems is scarce [24, 27].

Because little is known about the various markerless MCS used in neurological rehabilitation, their implementation in rehabilitation training, and effectiveness as a potential device in client-centred task-oriented training, the present study aims to investigate 1) which (markerless) motion capture systems are used as training devices in neurological rehabilitation, 2) how they are applied, 3) in which target population, 4) what the content of the training is and 5) what the efficacy of training with MCS is.

Continue —> Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy | Journal of NeuroEngineering and Rehabilitation | Full Text

Advertisements

, , , ,

Leave a comment

[ARTICLE] Functional electrical stimulation versus ankle foot orthoses for foot-drop: a meta-analysis of orthotic effects – Full Text PDF

ABSTRACT

Objective: To compare the effects on walking of Functional Electrical Stimulation (FES) and Ankle Foot Orthoses (AFO) for foot-drop of central neurological origin, assessed in terms of unassisted walking behaviours compared with assisted walking following a period of use (combined-orthotic effects).

Data Sources: MEDLINE, AMED, CINAHL, Cochrane Central Register of Controlled Trials, Scopus, REHABDATA, PEDro, NIHR Centre for Reviews and Dissemination and clinicaltrials.gov. plus reference list, journal, author and citation searches.

Study Selection: English language comparative Randomised Controlled Trials (RCTs).

Data Synthesis: Seven RCTs were eligible for inclusion. Two of these reported different results from the same trial and another two reported results from different follow up periods so were combined; resulting in five synthesised trials with 815 stroke participants. Meta-analyses of data from the final assessment in each study and three overlapping time-points showed comparable improvements in walking speed over ten metres (p=0.04-0.95), functional exercise capacity (p=0.10-0.31), timed up-and-go (p=0.812 and p=0.539) and perceived mobility (p=0.80) for both interventions.

Conclusion: Data suggest that, in contrast to assumptions that predict FES superiority, AFOs have equally positive combined-orthotic effects as FES on key walking measures for foot-drop caused by stroke. However, further long-term, high-quality RCTs are required. These should focus on measuring the mechanisms-of-action; whether there is translation of improvements in impairment to function, plus detailed reporting of the devices used across diagnoses. Only then can robust clinical recommendations be made.

Full Text PDF

 

, , , , , , , , ,

Leave a comment

%d bloggers like this: