Posts Tagged neural plasticity

[WEB SITE] Augmented reality game helps stroke victims recover faster

Article Image

An augmented reality game that helps stroke victims recover. (Photo: Petrie, et al)

More than six million people worldwide die each year from strokes. Every two seconds, someone, somewhere is having one. Not all strokes are fatal, of course. In fact, 80 per cent of stroke victims survive, though many experience one or more serious lingering effects, including paralysis and cognitive and motor impairment. When a stroke occurs, areas of the brain are deprived of oxygen and neural pathways can become damaged. The good news is that the brain is a resourceful organ, and thanks to neural plasticity, it may be possible to relearn forgotten abilities through rehabilitation—targeted repetitive exercises—that helps the neurons re-organize themselves and allows the victim to regain function. The problem is that rehab is hard, and painful, and according to Regan David Petrie, some 69 per cent of stroke patients don’t get the recommended level of rehab activities. This is why the master student at Victoria University of Wellington has been developing an augmented reality (AR) mobile game, an “exergame,” whose purpose is to engage and reward stroke victims in order to keep them engaged in their therapy.

NZ Fauna AR

Petrie’s game was designed using Google’s Tango Augmented Reality platform prior to the search giant switching support to its newer, more consumer-oriented ARCore system. As the game’s player observes his or her surroundings through a mobile device, virtual 3D objects appear to set the scene and with which the player can interact.

AR in room

(Photo: Petrie, et al)

The game, still under development, is called NZ Fauna AR. As its name implies, it’s designed for stroke victims of New Zealand, leveraging their love of the country’s forests to provide a calming and enjoyable context in which play can occur. Fizzy, a virtual Rowi kiwi, is the AR star of the current iteration of the game.

Meet Fizzy AR

(Photo: Petrie, et al)

Players gather blueberries and feed them to Fizzy by performing sit-to-stand exercises, an important form of therapy for stroke victims. The most basic actions of the game are:

• standing up to throw berries to Fizzy

• sitting down to collect more berries from an AR bucket on the floor.

There are game controller buttons with interactive elements, but, says Petrie’s thesis, “The game was designed to incorporate minimal touch interactions—this was driven by the interaction model which was comprised of natural physical movements,” that is, standing up and sitting down.[…]

more —> Augmented reality game helps stroke victims recover faster | Big Think

Advertisements

, , ,

Leave a comment

[WEB SITE] How Virtual Avatars Help Stroke Patients Improve Motor Function

At USC, Dr. Sook-Lei Liew is testing whether watching a virtual avatar that moves in response to brain commands can activate portions of the brain damaged by stroke.
Dr. Sook-Lei Liew (Photo: Nate Jensen)

Photo: Nate Jensen

I am hooked up to a 16-channel brain machine interface with 12 channels of EEG on my head and ears and four channels of electromyography (EMG) on my arms. An Oculus Rift occludes my vision.

Two inertial measurement units (IMU) are stuck to my wrists and forearms, tracking the orientation of my arms, while the EMG monitors my electrical impulses and peripheral nerve activity.

Dr. Sook-Lei Liew, Director of USC’s Neural Plasticity and Neurorehabilitation Laboratory, and Julia Anglin, Research Lab Supervisor and Technician, wait to record my baseline activity and observe a monitor with a representation of my real arm and a virtual limb. I see the same image from inside the Rift.

“Ready?” asks Dr. Liew. “Don’t move—or think.”

I stay still, close my eyes, and let my mind go blank. Anglin records my baseline activity, allowing the brain-machine interface to take signals from the EEG and EMG, alongside the IMU, and use that data to inform an algorithm that drives the virtual avatar hand.

“Now just think about moving your arm to the avatar’s position,” says Dr. Liew.

I don’t move a muscle, but think about movement while looking at the two arms on the screen. Suddenly, my virtual arm moves toward the avatar appendage inside the VR world.

VR rehab at USC

Something happened just because I thought about it! I’ve read tons of data on how this works, even seen other people do it, especially inside gaming environments, but it’s something else to experience it for yourself.

“Very weird isn’t it?” says David Karchem, one of Dr. Liew’s trial patients. Karchem suffered a stroke while driving his car eight years ago, and has shown remarkable recovery using her system.

“My stroke came out of the blue and it was terrifying, because I suddenly couldn’t function. I managed to get my car through an intersection and call the paramedics. I don’t know how,” Karchem says.

He gets around with a walking stick today, and has relatively normal function on the right side of his body. However, his left side is clearly damaged from the stroke. While talking, he unwraps surgical bandages and a splint from his left hand, crooked into his chest, to show Dr. Liew the progress since his last VR session.

As a former software engineer, Karchem isn’t fazed by using advanced technology to aid the clinical process. “I quickly learned, in fact, that the more intellectual and physical stimulation you get, the faster you can recover, as the brain starts to fire. I’m something of a lab rat now and I love it,” he says.

REINVENT Yourself

Karchem is participating in Dr. Liew’s REINVENT (Rehabilitation Environment using the Integration of Neuromuscular-based Virtual Enhancements for Neural Training) project, funded by the American Heart Association, under a National Innovative Research Grant. It’s designed to help patients who have suffered strokes reconnect their brains to their bodies.

VR rehab at USC (Photo: Nate Jensen)“My PhD in Occupational Science, with a concentration in Cognitive Neuroscience, focused on how experience changes brain networks,” explains Dr. Liew. “I continued this work as a Postdoctoral Fellow at the National Institute of Neurological Disorders and Stroke at the National Institutes of Health, before joining USC, in my current role, in 2015.

“Our main goal here is to enhance neural plasticity or neural recovery in individuals using noninvasive brain stimulation, brain-computer interfaces and novel learning paradigms to improve patients’ quality of life and engagement in meaningful activities,” she says.

Here’s the science bit: the human putative mirror neuron system (MNS) is a key motor network in the brain that is active both when you perform an action, like moving your arm, and when you simply watch someone else—like a virtual avatar—perform that same action. Dr. Liew hypothesizes that, for stroke patients who can’t move their arm, simply watching a virtual avatar that moves in response to their brain commands will activate the MNS and retrain damaged or neighboring motor regions of the brain to take over the role of motor performance. This should lead to improved motor function.

“In previous occupational therapy sessions, we found many people with severe strokes got frustrated because they didn’t know if they were activating the right neural networks when we asked them to ‘think about moving’ while we physically helped them to do so,” Dr. Liew says. “If they can’t move at all, even if the right neurological signals are happening, they have no biological feedback to reinforce the learning and help them continue the physical therapy to recover.”

For many people, the knowledge that there’s “intent before movement”—in that the brain has to “think” about moving before the body will do so, is news. We also contain a “body map” inside our heads that predicts our spacetime presence in the world (so we don’t bash into things all the time and know when something is wrong). Both of these brain-body elements face massive disruption after a stroke. The brain literally doesn’t know how to help the body move.

What Dr. Liew’s VR platform has done is show patients how this causal link works and aid speedier, and less frustrating, recovery in real life.

From the Conference Hall to the Lab

She got the idea while geeking out in Northern California one day.

“I went to the Experiential Technology Conference in San Francisco in 2015, and saw demos of intersections of neuroscience and technology, including EEG-based experiments, wearables, and so on. I could see the potential to help our clinical population by building a sensory-visual motor contingency between your own body and an avatar that you’re told is ‘you,’ which provides rewarding sensory feedback to reestablish brain-body signals.

“Inside VR you start to map the two together, it’s astonishing. It becomes an automatic process. We have seen that people who have had a stroke are able to ’embody’ an avatar that does move, even though their own body, right now, cannot,” she says.

VR rehab at USC

Dr. Liew’s system is somewhat hacked together, in the best possible Maker Movement style; she built what didn’t exist and modified what did to her requirements.

“We wanted to keep costs low and build a working device that patients could actually afford to buy. We use Oculus for the [head-mounted display]. Then, while most EEG systems are $10,000 or more, we used an OpenBCI system to build our own, with EMG, for under $1,000.

“We needed an EEG cap, but most EEG manufacturers wanted to charge us $200 or more. So, we decided to hack the rest of the system together, ordering a swim cap from Amazon, taking a mallet and bashing holes in it to match up where the 12 positions on the head electrodes needed to be placed (within the 10-10 international EEG system). We also 3D print the EEG clips and IMU holders here at the lab.

VR rehab at USC

“For the EMG, we use off-the-shelf disposable sensors. This allows us to track the electromyography, if they do have trace muscular activity. In terms of the software platform, we coded custom elements in C#, from Microsoft, and implemented them in the Unity3D game engine.”

Dr. Liew is very keen to bridge the gap between academia and the tech industry; she just submitted a new academic paper with the latest successful trial results from her work for publication. Last year, she spoke at SXSW 2017 about how VR affects the brain, and debuted REINVENT at the conference’s VR Film Festival. It received a “Special Jury Recognition for Innovative Use of Virtual Reality in the Field of Health.”

Going forward, Dr. Liew would like to bring her research to a wider audience.

RELATED

“I feel the future of brain-computer interfaces splits into adaptive, as with implanted electrodes, and rehabilitative, which is what we work on. What we hope to do with REINVENT is allow patients to use our system to re-train their neural pathways, [so they] eventually won’t need it, as they’ll have recovered.

“We’re talking now about a commercial spin-off potential. We’re able to license the technology right now, but, as researchers, our focus, for the moment, is in furthering this field and delivering more trial results in published peer-reviewed papers. Once we have enough data we can use machine learning to tailor the system precisely for each patient and share our results around the world.”

If you’re in L.A., Dr. Liew and her team will be participating in the Creating Reality VR Hackathon from March 12-15 at USC. Details here.

via How Virtual Avatars Help Stroke Patients Improve Motor Function | News & Opinion | PCMag.com

, , , , , , , , ,

Leave a comment

[ARTICLE] A motion intention-based upper limb rehabilitation training system to stimulate motor nerve through virtual reality – Full Text

Motor rehabilitation strategies for treating motor deficits after stroke are based on the understanding of the neural plasticity. In recent years, various upper limb rehabilitation robots have been proposed for the stroke survivors to provide relearning of motor skills by stimulating the motor nerve. However, several aspects including costing, human–robot interaction, and effective stimulation of motor nerve still remain as major issues. In this article, a new upper limb rehabilitation training system named as motion intention-based virtual reality training system is developed to close the aforementioned issues. The system identifies the user’s motion intention via force sensors mounted on the rehabilitation robot to conduct therapeutic exercises and stimulates the user’s motor nerve by introducing the illusion of immersion in virtual reality environment. The illusion of immersion is developed by creating Virtual Exoskeleton Robot model which is driven by user’s motion intention and reflecting the motion states in real time. The users can be present to the training exercises by themselves and fully engage in the virtual reality environment, so that they can relax, move, and recreate motor neuro-pathways. As preliminary phase, six healthy subjects were invited to participate in experiments. The experimental results showed that the motion intention-based virtual reality training system is effective for the upper limb rehabilitation exoskeleton and the evaluations of the developed system showed a significant reduction of the performance error in the training task.

Stroke is a major cause of acquired physical disability in adults worldwide. Motor deficits affecting the upper limb are a common manifestation of stroke and greatly contribute to decreasing the individual’s functional performance.1 It is widely appreciated that motor rehabilitation after stroke plays an essential role in reducing the individual’s physical disability.2 The rehabilitation strategies for treating motor deficits after stroke are based on the understanding of the neural plasticity which is known by the phenomenon that the human brain changes itself in response to different types of experience through the reorganization of its neuronal connections.3 To exhibit the neural plasticity, motor relearning is the most important matter because it can produce changes in synapses, neurons, and neuronal networks within specific brain regions.4 Exoskeletons are robotic systems designed to work linked with parts (or the whole) of the human body. The robotic exoskeleton structure is always maintaining contact with the human operator’s limb. It can be suitably employed in robotic-assisted rehabilitation to assist the users to proceed relearning movement training exercises. And it can also make the process of upper limb rehabilitation repeatable, with objective estimation and decrease the dependence on specialized personnel availability.

About 30 existing robotic exoskeleton devices are reviewed by Proietti et al.5 As it has been mentioned, most publications in the field of exoskeletons focused only on mechatronic design of the devices, while we do believe a paramount aspect for robots potentiality lays on the control side. So the development of innovative and improved human–robot interaction control strategies will make a certain contribution to the upper limb rehabilitation assisted by the robotic exoskeleton devices.

The virtual reality (VR) technology has been proved useful in terms of motivating and challenging patients for longer training duration and cadence, modifying patient’s participating level, and updating subjects with their training performance.6 VR-based rehabilitation protocols may significantly improve the quality of rehabilitation by offering strong functional motivations to the patient who can therefore be more attentive to the movement to be performed. VR can provide an even more stimulating video game-like rehabilitation environment when integrated with force feedback devices, thus enhancing the quality of the rehabilitation.7

An upper limb force feedback exoskeleton for robotic assisted rehabilitation in VR is presented in Frisoli et al.8 A specific VR application focused on the reaching task was developed and evaluated in the system, but the system can’t provide adjustment when the reaching is far away too much. And little details are given to the control aspects of the robotic exoskeleton. An assistive control system with a special kinematic structure of an upper limb rehabilitation robot embedded with force/torque sensors is presented by Chen et al.9 A three-dimensional (3-D) GUI system for upper limb rehabilitation using electromyography and inertia measurement unit sensor feedback is developed by Alhajjar et al.10 It encourages the patients by recording the results and providing 3-D VR arm to simulate the arm movement during the exercise. A haptic device and an inertial sensor are used to implement rehabilitation tasks proposed by Song et al.,11 the system provides the vision through the monitor and force feedback through the haptic device. Gesture therapy was presented by Sucar et al.,12 a VR-based platform for rehabilitation of the upper limb was introduced. Similarly, the patients’ use of a home-based VR system portrayed by Standen et al.13 provides a low-cost VR system that translates movements of the hand, fingers, and thumb into game play which was designed to provide a flexible and motivating approach to increasing adherence to home-based rehabilitation. It is suitable for the patients with slight independence ability, which doesn’t have to be assisted by the robotic exoskeleton.

By considering all the aforementioned limitations, motion intention-based virtual reality training system (MIVRTS) is developed by integrating motion intention identification-based upper limb therapeutic exercises and the illusion of immersion in VR. The system identifies the user’s motion intention via force sensors mounted on the rehabilitation robot to conduct therapeutic exercises and stimulates the user’s motor nerve by introducing the illusion of immersion in VR environment. The illusion of immersion is developed by creating Virtual Exoskeleton Robot model which is driven by user’s motion intention and reflecting the motion states in real time.

The rest of the article is organized as follows. “The rehabilitation robotic exoskeleton” section presents the main features of the rehabilitation robotic exoskeleton system. An overview of the developed MIVRTS system employed in this study for the validation of the exoskeleton in upper limb rehabilitation is given in “MIVRTS system” section. In “Motion intention-based application” section, the motion intention identifying method is described and an application for rehabilitation exercises is developed. “Evaluation on six participants” section explains the experiment and evaluation results, followed by conclusion described in the final section.[…]

Figure

Figure 1. 5-DOF upper limb rehabilitative exoskeleton robot. DOF: degrees of freedom.

Continue —-> A motion intention-based upper limb rehabilitation training system to stimulate motor nerve through virtual realityInternational Journal of Advanced Robotic Systems – Li Xing, Xiaofeng Wang, Jianhui Wang, 2017

, , , , , , , , ,

Leave a comment

[WEB SITE] Inosine treatment helps recovery of motor functions after brain injury.

First study in primates shows promise reports restorative neurology and neuroscience

Date:
August 3, 2016
Source:
IOS Press
Summary:
Brain tissue can die as the result of stroke, traumatic brain injury, or neurodegenerative disease. When the affected area includes the motor cortex, impairment of the fine motor control of the hand can result. Researchers found that inosine, a naturally occurring purine nucleoside that is released by cells in response to metabolic stress, can help to restore motor control after brain injury.

Brain tissue can die as the result of stroke, traumatic brain injury, or neurodegenerative disease. When the affected area includes the motor cortex, impairment of the fine motor control of the hand can result. In a new study published inRestorative Neurology and Neuroscience, researchers found that inosine, a naturally occurring purine nucleoside that is released by cells in response to metabolic stress, can help to restore motor control after brain injury.

Based on evidence from rodent studies, researchers used eight rhesus monkeys ranging in age from 5 to 10 years (approximately equivalent to humans from 15 to 30 years of age). All received medical examinations and motor skills were tested, including video recording of fine motor functions used to retrieve small food rewards. All monkeys were given initial MRI scans to ensure there were no hidden brain abnormalities.

Brain injuries were created in the area controlling each monkey’s favored hand. Four monkeys received inosine treatment, while four received a placebo. Research staff were not informed regarding which monkeys were included in the treatment vs placebo groups. Recovery of motor function was then measured for a period of 14 weeks after surgery.

While both the treated and placebo groups recovered significant function, three out of four of the treated monkeys were able to return to their pre-operative grasping methods. The placebo group developed a compensatory grasping method for retrieving food rewards unlike the original thumb-and-finger method.

“In the clinical context, the enhanced recovery of grasp pattern suggests that inosine facilitates greater recovery from this type of cortical injury and motor impairment,” explained lead investigator Tara L. Moore, PhD, of the Department of Anatomy & Neurobiology and the Department of Neurology, Boston University School of Medicine, Boston, MA, USA. “To our knowledge, this is the first study to demonstrate the positive effects of inosine for promoting recovery of function following cortical injury in a non-human primate.”

Inosine has also been administered in human clinical trials for multiple sclerosis and Parkinson’s disease and has been proven to be safe in doses up 3000 mg/day. Athletes have used inosine as a nutritional supplement for decades, and inosine supplements are widely available commercially. “Given the effectiveness of inosine in promoting cortical plasticity, axonal sprouting, and dendritic branching, the present evidence of efficacy after cortical injury in a non-human primate, combined with a long history of safe use, indicates a need for clinical trials with inosine after cortical injury and spinal cord injury,” noted Dr. Moore.

The study points to neural plasticity, whereby the brain essentially “re-wires” connections between neurons to reestablish control pathways, as a therapeutic target for the recovery of fine motor control and grasping ability. Further study of cortical tissue from these monkeys is currently being completed and may provide further insights into the mechanisms underlying recovery.


Story Source:

The above post is reprinted from materials provided by IOS Press. Note: Content may be edited for style and length.


Journal Reference:

  1. Tara L. Moore, Monica A. Pessina, Seth P. Finklestein, Ronald J. Killiany, Bethany Bowley, Larry Benowitz, Douglas L. Rosene. Inosine enhances recovery of grasp following cortical injury to the primary motor cortex of the rhesus monkey. Restorative Neurology and Neuroscience, 2016; 1 DOI: 10.3233/RNN-160661

Source: Inosine treatment helps recovery of motor functions after brain injury: First study in primates shows promise reports restorative neurology and neuroscience — ScienceDaily

, , , ,

Leave a comment

[ARTICLE] Neural Plasticity in Rehabilitation and Psychotherapy: New Perspectives and Findings.

Publication Cover

Print ISSN: 2190-8370 Online ISSN: 2151-2604 Published in German from 1890 to 2006 and in English since 2007

It is only a short period of time since one of the most basic convictions about the brain, postulated by the Spanish neuroanatomist, Santiago Ramon y Cajal, became undermined by new and opposing discoveries. In 1928, Ramon y Cajal postulated that the neural setup of the human brain would be fixed and unable to change beyond the end of maturation of the brain around the age of 22–24 years. What structure or function of the human brain is not shaped until that time point by an individual’s interaction with her/his physical and social environments and through learning and adaptation would not be changeable any more during the succeeding years of life. The only accepted reason for change was damage of the brain by traumatization and/or inflammation or by changes in genetic functioning. This view of the human brain has changed considerably since the early 1970s and has been replaced by a myriad of experimental evidence demonstrating that the brain’s structure and functions are open to change throughout the whole lifetime.

The terms coined for this form of modification are “neuroplasticity” and “reorganization.” Although there is currently no generally accepted definition of neuroplasticity and reorganization, most contemporary scientists in this field would agree that neuroplasticity refers to a property at all levels of the human brain, that is, from molecules to larger cortical neural networks, to adapt its structures and functions to environmental pressures, experiences, and challenges, including brain damage (Johansson, 2011; Merzenich, Van Vleet, & Nahum, 2014). In addition, neural reorganization refers to the capacity of the brain to extend and/or change the control of behavior, cognition, and emotion by enlarging the neural networks involved through learning-induced response coordination (Merzenich et al., 2014). Other options represent optimization and economizing the activity of neural networks or the transference of the control of behavior and cognition to other structures that formerly did not control these actions (Merzenich, 2013). The latter was often addressed as rewiring the brain.

Three forms of neuroplasticity and reorganization can further be distinguished by: (a) developmental or maturational plasticity, where changes of brain structures and functions occur as a function of natural development and maturation; (b) adaptive neuroplasticity, where plasticity is induced in the course of adaptation to new environmental conditions, by learning and by skill formation, and (c) restorative neuroplasticity, where plasticity and reorganization occur as a consequence of trauma, inflammation, or epigenetic reprogramming (Will, Dalrymple-Alford, Wolff, & Cassel, 2008).

Following the conviction of the Nobel laureate Eric Kandel (1979, 2008) that any positive outcome of therapy and rehabilitative measure will only occur when the interventions significantly change the underlying neural structures and/or functions of the brain, the present topical issue of the Zeitschrift für Psychologie focuses on structural and functional plasticity of the brain as a result of behavioral and cognitive training and training of emotion regulation in several areas of therapy and rehabilitation.

The first article by Thomas Straube (2016) presents recent findings and developments of neuroplasticity in the psychotherapy of anxiety disorders. He summarizes current evidence that cognitive and behavioral interventions have demonstrated massive cortical plasticity of structures and functions that are considered central in the generation and individual expression of anxiety, like the amygdala, the anterior cerebral cortex (ACC), the insula, and the bed nucleus of the stria terminalis. He also presents a number of methodological issues in the use of functional brain imaging techniques that are critical in order to obtain valid experimental results in this field.

Thomas Weiss (2016) comprehensively summarizes current evidence for neural plasticity and cortical reorganization in subjects suffering from chronic pain in the next paper. In contrast to traditional views that postulated changes of peripheral neural systems being central causes of chronicity, he shows that cortical neuroplasticity and reorganization of neural networks in the somatosensory cortex, motor cortex, limbic and cognitive functional structures mainly account for the chronification of pain, and that these structures are also relevant targets for successful interventions in the behavioral and cognitive treatment of pain.

Eckart Altenmüller’s and Christos Ioannou’s paper (Altenmüller & Ioannou, 2016) specifies some negative sides of neuroplasticity, namely that neuroplasticity is not always beneficial but can lead to massive impairments of motor functions. Too intensive behavioral training of musicians in order to master their instruments might induce a serious condition known as musician’s dystonia and related disorders. Altenmüller and Ioannou elegantly show that in most cases such developments are consequences of training-induced maladaptive processes of plasticity in cortical and subcortical networks.

The paper by Wolfgang Miltner (2016) summarizes a number of processes that demonstrate the enormous plasticity and reorganization capacity of the human brain following brain lesion and highlights a series of behavioral and neuroscientific studies that indicate that successful intensive behavioral rehabilitation is paralleled by plastic changes of brain structures and by cortical reorganization. He shows that the amount of such plastic changes is obviously significantly determining the overall outcome of rehabilitation.

In the final review article, Klingner, Brodoehl, Volk, Guntinas-Lichius, and Witte (2016) explore the plasticity which is induced in the brain when it experiences a pronounced disturbance of the expected body responses: within the face, a lesion of the seventh nerve causes a motor paralysis with intact sensory input which is conveyed through the fifth cranial nerve. As a consequence, the intact brain orders a motor command, which is not executed, resulting in a mismatch between perceived and expected sensory information. This mismatch requires a major adaptive plasticity of the brain, which was studied in detail by this group.

Turning to the original articles, firstly Wolfgang Miltner, Heike Bauder, and Edward Taub (2016)present an example how neuroplasticity can be addressed by means of electroencephalographic measures known as Bereitschaftspotential (BP) that normally precede that execution of voluntary movements of, for example, fingers, hands, and legs. This technique was applied in a group of patients with chronic stroke who were given constraint-induced movement therapy (CIMT) over an intensive 2-week course of treatment. The intervention resulted in a large improvement in use of the more affected upper extremity in the laboratory and in the real-world environment. The evaluation of BP showed that the treatment produced marked changes in cortical activity that correlated with the significant rehabilitative effects. The results are consistent with the rehabilitation treatment having produced a use-dependent cortical reorganization and demonstrate where the physiological data interdigitates with and provides additional credibility to the clinical data.

Brodoehl, Klingner, Schaller, and Witte (2016) explore, in the second original article, the adaptation which the brain performs upon eye closure: with closure of the eyes the brain fundamentally alters the processing of afferent information, from a visually dominated multisensory mode to a monosensory mode. This plasticity is independent of the visual information and takes place in complete darkness, indicating that this switch of processing modes is caused by state-dependent, inherent brain plasticity. Based on these observations one can assume that the ability to cause functional reorganizations can be substantially modified by optimized conditions for such learning processes.

In their opinion piece, Otto Witte and Malgorzata Kossut (2016) emphasize the impact of inflammatory factors on brain plasticity: following a stroke or in the aging brain, the inflammatory system is activated and impairs brain plasticity. The analysis of these processes opens a window for therapeutic interventions that may be employed to enhance the efficacy of behavioral and other rehabilitative procedures.

Altenmüller, E. & Ioannou, C. I. (2016). Maladaptive plasticity induces degradation of fine motor skills in musicians: Apollo’s curse. Zeitschrigt für Psychologie, 224, 8090. doi: 10.1027/2151-2604/a000242 Link
Brodoehl, S., Klingner, C. M., Schaller, D. & Witte, O. W. (2016). Plasticity during short-term visual deprivation. Zeitscrift für Psychologie, 224, 125132. doi: 10.1027/2151-2604/a000246 Link
Johansson, B. B. (2011). Current trends in stroke rehabilitation: A review with focus on brain plasticity. Acta Neurologica Scandinavica, 123, 147159. CrossRef
Kandel, E. R. (1979). Psychotherapy and the single synapse: The impact of psychiatric thought on neurobiological research. New England Journal of Medicine, 301, 10281037. CrossRef
Kandel, E. R. (2008). Psychiatrie, Psychoanalyse und die neue Biologie des Geistes [Psychiatry psychoanalysis, and the new biology of the mind]. Frankfurt/M, Germany: Suhrkamp Verlag.
Klingner, C. M., Brodoehl, S., Volk, G. F., Guntinas-Lichius, O. & Witte, O. W. (2016). Adaptive and maladaptive neural plasticity due to facial nerve palsy: What can we learn from pure deefferentation?Zeitschrift für Psychologie, 224, 102111. doi: 10.1027/2151-2604/a000244 Link
Merzenich, M. M. (2013). Soft-wired: How the new science of brain plasticity can change your life.San Francisco, CA: Parnassus Publishing.
Merzenich, M. M., Van Vleet, T. M. & Nahum, M. (2014). Brain plasticity-based therapeutics.Frontiers in Human Neuroscience, 8, 385. doi: 10.3389/fnhum.2014.00385 CrossRef
Miltner, W. H. R. (2016). Plasticity and reorganization in the rehabilitation of stroke: The constraint-induced movement therapy (CIMT) example. Zeitschrift für Psychologie, 224, 91101. doi:10.1027/2151-2604/a000243 Link
Miltner, W. H. R., Bauder, H. & Taub, E. (2016). Change in movement-related cortical potentials following constraint-induced movement therapy (CIMT) after stroke. Zeitschrift für Psychologie, 224,112124. doi: 10.1027/2151-2604/a000245 Link
Straube, T. (2016). Effects of psychotherapy on brain activation patterns in anxiety disorders.Zeitscrift für Psychologie, 224, 6270. doi: 10.1027/2151-2604/a000240 Link
Weiss, T. (2016). Plasticity and cortical reorganization associated with pain. Zeitschrift für Psychologie, 224, 7179. Abstract
Will, B., Dalrymple-Alford, J., Wolff, M. & Cassel, J.-C. (2008). The concept of brain plasticity: Paillard’s systemic analysis and emphasis on structure and function (followed by the translation of a seminal paper by Paillard on plasticity). Behavioural Brain Research, 192, 27. doi:10.1016/j.bbr.2007.11.008 CrossRef
Witte, O. W. & Kossut, M. (2016). Impairment of brain plasticity by brain inflammation. Zeitschrift für Psychologie, 224, 133138. doi: 10.1027/2151-2604/a000247 Link
Correspondence concerning this article shoud be addressed to:
Wolfgang H. R. Miltner
Department of Biological and Clinical Psychology
Friedrich Schiller University (FSU)
Am Steiger 3/1
07743 Jena
Germany

Tel. +49 3641 945140, Fax +49 3641 945142, E-mail

Source: Neural Plasticity in Rehabilitation and Psychotherapy: Neural Plasticity in Rehabilitation and Psychotherapy: Zeitschrift für Psychologie: Vol 224, No 2

, , , , , , , , , , , ,

Leave a comment

[Abstract] Brain–machine interfaces for rehabilitation of poststroke hemiplegia

Abstract

Noninvasive brain–machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis.

However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma.

In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback.

Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization.

Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed.

 

Source: Brain–machine interfaces for rehabilitation of poststroke hemiplegia

, , , , , , , ,

Leave a comment

[Abstract] Brain–machine interfaces for rehabilitation of poststroke hemiplegia

Abstract

Noninvasive brain–machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis. However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma. In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback. Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization. Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed.

 

Source: Brain–machine interfaces for rehabilitation of poststroke hemiplegia

, , , , , , , , ,

Leave a comment

[Abstract] Brain–machine interfaces for rehabilitation of poststroke hemiplegia

Abstract

Noninvasive brain–machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis. However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma. In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback. Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization. Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed.

Keywords

 

Source: Brain–machine interfaces for rehabilitation of poststroke hemiplegia

, , , , , , , ,

Leave a comment

[Abstract] Combination Protocol of Low-Frequency rTMS and Intensive Occupational Therapy for Post-stroke Upper Limb Hemiparesis: a 6-year Experience of More Than 1700 Japanese Patients

Translational Stroke ResearchAbstract

Several years ago, we proposed a combination protocol of repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy (OT) for upper limb hemiparesis after stroke. Subsequently, the number of patients treated with the protocol has increased in Japan.

We aimed to present the latest data on our proposed combination protocol for post-stroke upper limb hemiparesis as a result of a multi-institutional study. After confirming that a patient met the inclusion criteria for the protocol, they were scheduled to receive the 15-day inpatient protocol. In the protocol, two sessions of 20-min rTMS and 120-min occupational therapy were provided daily, except for Sundays and the days of admission/discharge.

Motor function of the affected upper limb was evaluated by the Fugl-Meyer assessment (FMA) and Wolf motor function test (WMFT) at admission/discharge and at 4 weeks after discharge if possible. A total of 1725 post-stroke patients were studied (mean age at admission 61.4 ± 13.0 years). The scheduled 15-day protocol was completed by all patients. At discharge, the increase in FMA score, shortening in performance time of WMFT, and increase in functional ability scale (FAS) score of WMFT were significant (FMA score 46.8 ± 12.2 to 50.9 ± 11.4 points, p < 0.001; performance time of WMFT 2.57 ± 1.32 to 2.21 ± 1.33, p < 0.001; FAS score of WMFT 47.4 ± 14. to 51.4 ± 14.3 points, p < 0.001).

Our proposed combination protocol can be a potentially safe and useful therapeutic intervention for upper limb hemiparesis after stroke, although its efficacy should be confirmed in a randomized controlled study.

Source: Combination Protocol of Low-Frequency rTMS and Intensive Occupational Therapy for Post-stroke Upper Limb Hemiparesis: a 6-year Experience of More Than 1700 Japanese Patients – Online First – Springer

, , , , , , , , , ,

Leave a comment

[Abstract] Promoting recovery from ischemic stroke – Expert Review of Neurotherapeutics –

21 DEC 2015

Summary

Over recent decades, experimental and clinical stroke studies have identified a number of neurorestorative treatments that stimulate neural plasticity and promote functional recovery. In contrast to the acute stroke treatments thrombolysis and endovascular thrombectomy, neurorestorative treatments are still effective when initiated days after stroke onset, which makes them applicable to virtually all stroke patients. In this article, selected physical, pharmacological and cell-based neurorestorative therapies are discussed, with special emphasis on interventions that have already been transferred from the laboratory to the clinical setting. We explain molecular and structural processes that promote neural plasticity, discuss potential limitations of neurorestorative treatments, and offer a speculative viewpoint on how neurorestorative treatments will evolve.

Related articles

View all related articles

Source: Promoting recovery from ischemic stroke – Expert Review of Neurotherapeutics –

, , , ,

Leave a comment

%d bloggers like this: