Posts Tagged neurological impairments

[Abstract + References] Training of Hand Rehabilitation Using Low Cost Exoskeleton and Vision-Based Game Interface

Abstract

Motivating game-based training have the potential to improve therapy for people with neurological impairments. In recent years, the serious games have become extremely useful tools in rehabilitation field. They aim to stimulate the mobility of the body through an immersive experience that puts the user in interactive virtual environment. This paper is concerned about developing a customized augmented reality system for stroke rehabilitation. This will be done through integrating an interactive serious game interface with a hand exoskeleton device. This game-based rehabilitation system allows users to carry out physical rehabilitation therapies using a natural user interface based on Kinect’s skeletal tracking features and the electromyography (EMG) sensor. During game playing, the interactive user interface provides useful real-time feedback information such as the time required to grasp a desired dynamic virtual object, and the assigned score and thus the ability of the proposed system to provide a compensatory action regarding the dynamic behavior of the virtual target. The main goal of the developed virtual environment is to create positive influences on the rehabilitation process. Patient movement information and signals obtained from the developed exoskeleton device are used together to monitor the rehabilitation progress. The developed exoskeleton hand is a 3D printed low cost device suitable for grasping tasks that can be used even for domestic stroke patients. The developed exoskeleton device is not only a mechanical system able to perform the rehabilitation act but also it presents an effective tracking and traceability software solution. The EMG signals measured during hand motion are used to detect the intention of hand opening or closing which in turn will actuate the mechanical structure to accomplish the desired task. Parameters and results of patients’ exercises are stored and analyzed when needed to evaluate patients’ progress. The developed system is tested experimentally and it is able to restore the functions of the upper limb and mainly give patients more motivation to undergo the rehabilitation exercises.

Supplementary material

(MP4 9.46 MB)

10846_2018_966_MOESM2_ESM.mp4 (412 kb)

(MP4 411 KB)

 

References

  1. 1.
    Aguilar-Pereyra, J.F.: Design of a reconfigurable robotic system for flexoextension fitted to hand fingers size. In: Applied Bionics and Biomechanics (2016)Google Scholar
  2. 2.
    Ajoudani, A., Tsagarakis, N., Bicchi, A.: Tele-impedance: teleoperation with impedance regulation using a body–machine interface. Int. J. Robot. Res. 31, 1642–1656 (2012)CrossRefGoogle Scholar
  3. 3.
    Zhang, X., Chen, X., Li, Y., Lantz, V., Wang, K., Yang, J.: A framework for hand gesture recognition based on accelerometer and EMG sensors. IEEE Trans. Syst. Man Cybern. Syst. Hum. 41(6), 1064–1076 (2011)CrossRefGoogle Scholar
  4. 4.
    Baoguo, X., Aiguo, S., Guopu, Z., Jia, L., Guozheng, X., Lizheng, P., Renhuan, Y., Huijun, L., Jianwei, C.: Eeg-modulated robotic rehabilitation system for upper extremity. Biotechnol. Biotechnol. Equip. 32 (3), 795–803 (2018)CrossRefGoogle Scholar
  5. 5.
    Benabdallah, I., Bouteraa, Y., Boucetta, R., Rekik, C.: Kinect-based computed torque control for lynxmotion robotic arm. In: 2015 7th International Conference on Modelling, Identification and Control (ICMIC), pp. 1–6 (2015)Google Scholar
  6. 6.
    Borboni, A., Mor, M., Faglia, R.: Gloreha-hand robotic rehabilitation: design, mechanical model, and experiments. J. Dyn. Syst. Meas. Control 138(11), 17–28 (2016)CrossRefGoogle Scholar
  7. 7.
    Bouteraa, Y., Abdallah, I.B.: Exoskeleton robots for upper-limb rehabilitation. In: 2016 13th International Multi-conference on Systems, Signals Devices (SSD), pp. 1–6 (2016)Google Scholar
  8. 8.
    Bouteraa, Y., Ben Abdallah, I.: A gesture-based telemanipulation control for a robotic arm with biofeedback-based grasp. Ind. Robot: Int. J. 44, 575–587 (2017)CrossRefGoogle Scholar
  9. 9.
    Bouteraa, Y., Ghommam, J., Derbel, N., Poisson, G.: Non-linear adaptive synchronisation control of multi-agent robotic systems. Int. J. Syst. Control Commun. 4(1–2), 55–71 (2012)CrossRefGoogle Scholar
  10. 10.
    Bouteraa, Y., Ben Abdallah, I., Ghommam, J.: Task-space region-reaching control for medical robot manipulator. Ind. Robot: Int. J. 67, 629–645 (2018)Google Scholar
  11. 11.
    Brown, E.V.D., McCoy, S.W., Amber S Fechko, R.P., Gilbertson, T., Moritz, C.T.: Preliminary investigation of an electromyography-controlled video game as a home program for persons in the chronic phase of stroke recovery. Arch. Phys. Med. Rehabil. 95, 1461–1469 (2012)CrossRefGoogle Scholar
  12. 12.
    Cameirao, M., Badia, B., Duarte, E., Frisoli, A., Verschure, P.: The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. STROKE 43(10), 2720 (2012)CrossRefGoogle Scholar
  13. 13.
    Cesqui, B., Tropea, P., Micera, S., Krebs, H.I.: Emg-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study. J. Neuroeng. Rehabil. 10(1), 75 (2013)CrossRefGoogle Scholar
  14. 14.
    Chaudhary, A., Raheja, J.L., Das, K., Raheja, S., Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey. ArXiv e-prints (2013)Google Scholar
  15. 15.
    Tsai, C.H., Kuo, Y.H., Chu, K.C., Yen, J.C.: Development and evaluation of game-based learning system using the Microsoft Kinect sensor. International Journal of Distributed Sensor Networks 11(7), 498560 (2015)CrossRefGoogle Scholar
  16. 16.
    Cram, J.R., Kasman, G.S., Holtz, J.: Introduction to surface electromyography, 2nd edn. Jones and Bartlett Publishers, Sudbury (2010)Google Scholar
  17. 17.
    De Luca, C., Donald, L., Mikhail, K., Serge, H.: Filtering the surface emg signal: Movement artifact and baseline noise contamination. J. Biochem. 43(8), 1573–1579 (2010)Google Scholar
  18. 18.
    Dipietro, L., Sabatini, A., Dario, P.: A survey of glove-based systems and their applications. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38, 461–482 (2008)CrossRefGoogle Scholar
  19. 19.
    Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T.C., Burdet, E.: HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 16(6), 582–591 (2008).  https://doi.org/10.1109/TNSRE.2008.2010347CrossRefGoogle Scholar
  20. 20.
    Gabriele, B., Sami, H., Alberto, S.: A critical analysis of a hand orthosis reverse engineering and 3d printing process. In: Applied Bionics and Biomechanics (2016)Google Scholar
  21. 21.
    Ho, N.S.K., Tong, K.Y., Hu, X.L., Fung, K.L., Wei, X.J., Rong, W., Susanto, E.A.: An emg-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–5 (2011)Google Scholar
  22. 22.
    Hyesuk, K., Incheol, K.: Dynamic arm gesture recognition using spherical angle features and hidden markov models. In: Advances in Human-Computer Interaction (2015)Google Scholar
  23. 23.
    Zannatha, J.M.I., Tamayo, A.J.M., Sánchez, Á.D.G., Delgado, J.E.L., Cheu, L.E.R., Arévalo, W.A.S.: Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation. Comput. Methods Programs Biomed. 112(2), 239–249 (2013)CrossRefGoogle Scholar
  24. 24.
    Díaz, I., Catalan, J.M., Badesa, F.J., Justo, X., Lledo, L.D., Ugartemendia, A., Gil, J.J., Díez, J., García-Aracil, N.: Development of a robotic device for post-stroke home tele-rehabilitation. Advances in Mechanical Engineering 10(1), 1687814017752302 (2018)CrossRefGoogle Scholar
  25. 25.
    Ismail, B.A., Yassine, B., Chokri, R.: Kinect-based sliding mode control for lynxmotion robotic arm. Adv. Human-Comput. Interact. 7921295:1–7921295:10 (2016)Google Scholar
  26. 26.
    Kiguchi, K.: A study on emg-based human motion prediction for power assist exoskeletons. In: International Symposium on Computational Intelligence in Robotics and Automation, pp. 190–195 (2007)Google Scholar
  27. 27.
    Kofman, J., Verma, S., Wu, X.: Robot-manipulator teleoperation by markerless vision-based handarm tracking. Int. J. Optomechatronics 1, 331–357 (2007)CrossRefGoogle Scholar
  28. 28.
    Kortier, H.G., Sluiter, V.I., Roetenberg, D., Veltink, P.H.: Assessment of hand kinematics using inertial and magnetic sensors. J. Neuroeng. Rehabil. 11(1), 70 (2014)CrossRefGoogle Scholar
  29. 29.
    Kwon, J.S., Park, M.J., Yoon, I.J., Park, S.H.: Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation 31, 379–85 (2012)Google Scholar
  30. 30.
    Le, C.H., Vander Sloten, J., Hung, L.T., Khanh, L., Soe, S., Zlatov, N., Phuoc, L., Trung, D.P.: Medical reverse engineering applications and methods. In: 2nd International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development, MECAHITECH, pp. 232–246 (2010)Google Scholar
  31. 31.
    Lee, G.: Effects of training using video games on the muscle strength, muscle tone, and activities of daily living of chronic stroke patients. J. Phys. Ther. Sci. 25, 595–597 (2013)CrossRefGoogle Scholar
  32. 32.
    Lee, S.W., Wilson, K.M., Lock, B.A., Kamper, D.G.: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 19(5), 558–566 (2011)CrossRefGoogle Scholar
  33. 33.
    Lee, H.W., Liu, C.H., Chu, K.T., Mai, Y.C., Hsieh, P.C., Hsu, K.C., Tseng, H.C.: Kinect who’s coming—applying kinect to human body height measurement to improve character recognition performance. Smart Science 3, 117–121 (2015)CrossRefGoogle Scholar
  34. 34.
    Mello, R.G.T., Oliveira, L., Nadal, J.: Digital butterworth filter for subtracting noise from low magnitude surface electromyogram. Comput. Methods Prog. Biomed. 87, 28–35 (2007)CrossRefGoogle Scholar
  35. 35.
    Mouawad, M.R., Doust, C.G., Max, M., McNulty, P.: Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study. J. Rehabil. Med. 43, 527–533 (2011)CrossRefGoogle Scholar
  36. 36.
    Naik, G.R., Al-Timemy, A.H., Nguyen, H.T.: Transradial amputee gesture classification using an optimal number of semg sensors: an approach using ica clustering. IEEE Trans. Neural Syst. Rehabil. Eng. 24(8), 837–846 (2016)CrossRefGoogle Scholar
  37. 37.
    Naik, G.R., Kumar, D.K.: Twin svm for gesture classification using the surface electromyogram. IEEE Trans. Inf. Technol. Biomed. 14(2), 301–308 (2010)CrossRefGoogle Scholar
  38. 38.
    Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for emg signal classification. Exp. Syst. Appl. 39, 7420–7431 (2012)CrossRefGoogle Scholar
  39. 39.
    Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Fractal analysis features for weak and single-channel upper-limb emg signal. Exp. Syst. Appl. 39, 11156–11163 (2012)CrossRefGoogle Scholar
  40. 40.
    Prochnow, D., Bermúdez i Badia, S., Schmidt, J., Duff, A., Brunheim, S., Kleiser, R., Seitz, R.J., Verschure, P.F.: A functional magnetic resonance imaging study of visuomotor processing in a virtual reality-based paradigm: rehabilitation gaming system. Eur. J. Neurosci. 37, 1441–1447 (2013)CrossRefGoogle Scholar
  41. 41.
    Ferguson, P.W., Dimapasoc, B., Shen, Y., Rosen, J.: Design of a hand exoskeleton for use with upper limb exoskeletons. In: International Symposium on Wearable Robotics, pp. 276–280. Springer, Cham (2018)Google Scholar
  42. 42.
    Sin, H., Lee, G.: Additional virtual reality training using xbox kinect in stroke survivors with hemiplegia. Am. J. Phys. Med. Rehab./Association of Academic Physiatrists 92, 871–80 (2013)CrossRefGoogle Scholar
  43. 43.
    Sushant, N., Suresh, D., Rajesh, K.S.: Basics and applications of rapid prototyping medical models. Rapid Prototyp. J. 20(3), 256–267 (2014)CrossRefGoogle Scholar
  44. 44.
    Takahashi, C.D., Der-Yeghiaian, L., Le, V., Motiwala, R.R., Cramer, S.C.: Robot-based hand motor therapy after stroke. Brain 131(2), 425–437 (2008)Google Scholar
  45. 45.
    Turolla, A., Dam, M., Ventura, L., Tonin, P., Agostini, M., Zucconi, C., Kiper, P., Cagnin, A., Piron, L.: Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J. Neuroeng. Rehabil. 10, 85 (2013)CrossRefGoogle Scholar
  46. 46.
    Zhang, X., Yue, Z., Wang, J.: Robotics in lower-limb rehabilitation after stroke. Behav. Neurol. 2017, 13 (2017). Article ID 3731802Google Scholar
  47. 47.
    Yasemin, C., Abdullah, Y., Mihriban, Y., Ayse Esra, K., Gokhan, K., Alpaslan, G., Gul, G., Huseyin, U., Meliha, K.: Evaluation of invasive and noninvasive methods for the diagnosis of helicobacter pylori infection. Asian Pac. J. Cancer Prev.: APJCP: APJCP 17(12), 5265–5272 (2016)Google Scholar
  48. 48.
    Yates, M., Kelemen, A., Sik-Lányi, C.: Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Inj. 30, 1–9 (2016)CrossRefGoogle Scholar
  49. 49.
    Yeow, C.H., Baisch, A.T., Talbot, S.G., Walsh, C.J.: Cable-driven finger exercise device with extension return springs for recreating standard therapy exercises. ASME J. Med. Devices 8, 014502 (2014)CrossRefGoogle Scholar
  50. 50.
    Yue, Z., Zhang, X., Wang, J.: Hand rehabilitation robotics on poststroke motor recovery. Behav. Neurol. 2017, 20 (2017). Article ID 3908135CrossRefGoogle Scholar

via Training of Hand Rehabilitation Using Low Cost Exoskeleton and Vision-Based Game Interface | SpringerLink

, , , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Restorative Therapies, Inc., Today Announced CE Mark and Canadian Approval for the new Xcite Functional Electrical Stimulation (FES) system

Restorative Therapies, Inc., advances its new era in physical therapy systems for neurological injury and paralysis with CE mark and Canadian medical device licensing of the company’s new Xcite Functional Electrical Stimulation (FES) rehabilitation system.

Baltimore, MD (PRWEB) October 26, 2016

Restorative Therapies, Inc., advances its new era in physical and occupational therapy systems for neurological injury and paralysis with CE mark and Canadian medical device licensing of the company’s new Xcite Functional Electrical Stimulation (FES) rehabilitation system.

Restorative Therapies is the designer of medical devices providing clinic and in-home restoration therapy. Xcite is the next in the series of FES powered therapy systems that started with the company’s hugely successful RT300 FES cycle.

FES is a physical and occupational therapy rehabilitation modality used to evoke functional movements and exercise not otherwise possible for individuals with a neurological impairment such as a spinal cord injury, stroke, multiple sclerosis or cerebral palsy.

The CE mark demonstrates that Xcite meets all the requirements of the European Medical Device Directive and facilitates its sale in numerous markets outside the USA. The Canadian medical device license provides approval to market Xcite in Canada.

The new Xcite FES system delivers up to 12 channels of electrical stimulation to nerves which activate core, leg and arm muscles. Easy to use sequenced stimulation evokes functional movement enabling a patient’s paralyzed or weak muscles to move through dynamic movement patterns and specific functional tasks.

“Xcite is a physical and occupational therapy system which provides a library of coordinated multichannel FES therapies for people with neurological impairments” said Prof. David Ditor of Brock University, in Ontario, Canada, “After being involved in the development trials we are excited to see the system obtain the CE mark and Canadian approval making the system more widely available”.

“It is the first truly practical FES rehabilitation system of this kind that I have seen. In addition to combining several valuable neuro-rehabilitation interventions, functional electrical stimulation, mass practice and neuromuscular re-education, Xcite is portable and easy enough to use that it could be used in the patient’s home,” said Prof. Susan Harkema of the Kentucky Spinal Cord Injury Research Center, University of Louisville. “In the context of rehabilitation influencing neural plasticity as a means for neural restoration, training in the home setting is an essential component of progress and I see Xcite as a great tool in achieving this,” concludes Harkema.

“Xcite system inherits many of the popular RT300 FES cycle’s great features including personalized muscle selection, secure Internet connectivity and physical therapy clinic ease of use.” says Andrew Barriskill, CEO of Restorative Therapies. “We are excited to have obtained CE marking and Canadian approval for this product which will allow us to market the system in Canada and many other international markets.”

Xcite is the latest result of Restorative Therapies commitment to ongoing development of FES powered therapy systems designed to help people with neurological impairments maximize their recovery potential.

About Restorative Therapies

Restorative Therapies mission is to help people with a neurological impairment or in critical care achieve their full recovery potential. Restorative Therapies combines activity-based physical therapy and Functional Electrical Stimulation as a rehabilitation therapy for immobility associated with paralysis such as stroke, multiple sclerosis and spinal cord injury or for patients in critical care

Restorative Therapies is a privately held company headquartered in Baltimore.

To learn more about Restorative Therapies please visit us at http://www.restorative-therapies.com

Facebook: http://www.facebook.com/restorative.therapies.inc

Twitter: @rtifes

YouTube: http://www.youtube.com/user/restothera

Contact:

Judy Kline, Director of Sales and Marketing

Phone: 800 6099166 x301

E-mail: jkline(at)restorative-therapies.com

For the original version on PRWeb visit: http://www.prweb.com/releases/2016/10/prweb13789606.htm

Source: Restorative Therapies, Inc., Today Announced CE Mark and Canadian Approval for the new Xcite Functional Electrical Stimulation (FES) system – Press Release Rocket

, , , , ,

Leave a comment

[THESIS] Game Based Rehabilitation – Full Text PDF

ABSTRACT

Impaired standing balance and stroke incidences occur 800,000 times every year and are expected to rise as the population ages. The neurological impairments that can result from a stroke incident include hemiparesis (paralysis of one side of the body), coordination difficulties, apraxia (inability to perform particular purposive actions), and impairments in postural control that have a detrimental effect on a person’s functional ability and increase their risk of falling. The use of exercise and conventional physical therapy is one way and is considered the standard way of improving the standing balance.

Although the conventional physical therapy has often been shown to improve balance and mobility, poor adherence and inadequate exercise techniques often result in poor outcome for the patient and delay their balance recovery. There is growing evidence that the game based rehabilitation for balance control improves the body balance. The primary measure to balance stability is the center of pressure of the body. Currently the physical therapist has no validated system to precisely quantify center of pressure, an important component for standing balance. However Nintendo Wii Balance Board (WBB) is able to measure this center of pressure and it can be used to monitor sensitive change in the balance. Hence coupling the game based rehabilitation with the WBB results in a useful rehabilitation tool for recovering standing balance. Given that the WBB is portable, widely available, and a low cost, it can provide the average clinician with a standing balance game based rehabilitation tool suitable for the clinical setting once software is provided.

Full Text PDF

, , , , , , ,

Leave a comment

[THESIS] Advanced Techniques for Robotic Assessment of Neurological Impairments In Stroke Patients – Full Text PDF

Abstract

Stroke is an acute injury of the central nervous system and is caused by the disruption of blood flow or by the rupture of blood vessels. A stroke can impact many body functions, often causing motor, speech, memory, vision and other sensory impairments. It is highly prevalent and often requires long hospitalizations and post-stroke rehabilitation. The key to successful rehabilitation after stroke is an accurate assessment of the impairment.

Current clinical assessments of stroke-related impairments involve physical assessment and visual observation by physicians. Existing clinical scores of upper limb function often use observer-based ordinal scales that are subjective and commonly have floor and ceiling effects. Therefore, these methods are not adequate to reliably discriminate different levels of performance.

Robotics and integrated virtual reality systems have a tremendous potential to be used in computational systems that analyze, visualize and aid clinicians to identify and assess sensory-motor impairments. This thesis presents a framework for analysis and extraction of reliable and valid features from robotic data that can be used to accurately and objectively assess neurological impairments. The framework was applied on the Object Hit task that assesses the ability of participants to select and engage motor actions with both hands.

In addition, the Object Hit Task was compared to the Object Hit and Avoid task, which is a slight modification of the original task. The comparison was done using a developed feature and task analysis framework. This framework encompasses similarities and differences between tasks in a given experiment in terms of feature information.

The results showed that for the data used in the analysis, Object Hit task is able to identify impairments more effectively than the Object Hit and Avoid task. The overall results demonstrate that the Object Hit task provides an objective and easy approach to quantify upper limb motor function and visuospatial skills after stroke. The developed assessment tool can also be applied for diagnosis and prognosis of other neurological deficits, beyond stroke assessment.

Full Text PDF

, , , ,

Leave a comment

[THESIS] Advanced Techniques for Robotic Assessment of Neurological Impairments In Stroke Patients – Full Text PDF

Abstract

Stroke is an acute injury of the central nervous system and is caused by the disruption of blood flow or by the rupture of blood vessels. A stroke can impact many body functions, often causing motor, speech, memory, vision and other sensory impairments.

It is highly prevalent and often requires long hospitalizations and post-stroke rehabilitation. The key to successful rehabilitation after stroke is an accurate assessment of the impairment. Current clinical assessments of stroke-related impairments involve physical assessment and visual observation by physicians. Existing clinical scores of upper limb function often use observer-based ordinal scales that are subjective and commonly have floor and ceiling effects. Therefore, these methods are not adequate to reliably discriminate different levels of performance. Robotics and integrated virtual reality systems have a tremendous potential to be used in computational systems that analyze, visualize and aid clinicians to identify and assess sensory-motor impairments.

This thesis presents a framework for analysis and extraction of reliable and valid features from robotic data that can be used to accurately and objectively assess neurological impairments. The framework was applied on the Object Hit task that assesses the ability of participants to select and engage motor actions with both hands.

In addition, the Object Hit Task was compared to the Object Hit and Avoid itask, which is a slight modification of the original task. The comparison was done using a developed feature and task analysis framework. This framework encompasses similarities and differences between tasks in a given experiment in terms of feature information. The results showed that for the data used in the analysis, Object Hit task is able to identify impairments more effectively than the Object Hit and Avoid task.

The overall results demonstrate that the Object Hit task provides an objective and easy approach to quantify upper limb motor function and visuospatial skills after stroke. The developed assessment tool can also be applied for diagnosis and prognosis of other neurological deficits, beyond stroke assessment.

Full Text PDF

, , , , ,

Leave a comment

%d bloggers like this: