Posts Tagged Neurological rehabilitation

[ARTICLE] Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study – Full Text

Abstract

Background

Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby people with stroke use the impaired index finger to trace waveform-shaped lines on a monitor. Our aims were to assess the feasibility and safety of a telerehabilitation program consisting of tDCS and finger tracking training through questionnaires on ease of use, adverse symptoms, and quantitative assessments of motor function and cognition. We believe this telerehabilitation program will be safe and feasible, and may reduce patient and clinic costs.

Methods

Six participants with hemiplegia post-stroke [mean (SD) age was 61 (10) years; 3 women; mean (SD) time post-stroke was 5.5 (6.5) years] received five 20-min tDCS sessions and finger tracking training provided through telecommunication. Safety measurements included the Digit Span Forward Test for memory, a survey of symptoms, and the Box and Block test for motor function. We assessed feasibility by adherence to treatment and by a questionnaire on ease of equipment use. We reported descriptive statistics on all outcome measures.

Results

Participants completed all treatment sessions with no adverse events. Also, 83.33% of participants found the set-up easy, and all were comfortable with the devices. There was 100% adherence to the sessions and all recommended telerehabilitation.

Conclusions

tDCS with finger tracking training delivered through telerehabilitation was safe, feasible, and has the potential to be a cost-effective home-based therapy for post-stroke motor rehabilitation.

Background

Post-stroke motor function deficits stem not only from neurons killed by the stroke, but also from down-regulated excitability in surviving neurons remote from the infarct [1]. This down-regulation results from deafferentation [2], exaggerated interhemispheric inhibition [3], and learned non-use [4]. Current evidence suggests that post-stroke motor rehabilitation therapies should encourage upregulating neurons and should target neuroplasticity through intensive repetitive motor practice [56]. Previously, our group has examined the feasibility and efficacy of a custom finger tracking training program as a way of providing people with stroke with an engaging repetitive motor practice [789]. In this program, the impaired index finger is attached to an electro-goniometer, and participants repeatedly move the finger up and down to follow a target line that is drawn on the display screen. In successive runs, the shape, frequency and amplitude of target line is varied, which forces the participant to focus on the tracking task. In one study, we demonstrated a 23% improvement in hand function (as measured by the Box and Block test; minimal detectable change is 18% [10]) after participants with stroke completed the tracking training program [9]. While our study did not evaluate changes in activity in daily life (ADL) or quality of life (because efficacy of the treatment was not the study objective), the Box and Block test is moderately correlated (r = 0.52) to activities in daily life and quality of life (r = 0.59) [11]. In addition, using fMRI, we showed that training resulted in an activation transition from ipsilateral to contralateral cortical activation in the supplementary motor area, primary motor and sensory areas, and the premotor cortex [9].

Recently, others have shown that anodal transcranial direct current stimulation (tDCS) can boost the beneficial effects of motor rehabilitation, with the boost lasting for at least 3 months post-training [12]. Also, bihemispheric tDCS stimulation (anodal stimulation to excite the ipsilateral side and cathodal stimulation to downregulate the contralateral side) in combination with physical or occupational therapy has been shown to provide a significant improvement in motor function (as measured by Fugl-Meyer and Wolf Motor Function) compared to a sham group [13]. Further, a recent meta-analysis of randomized-controlled trials comparing different forms of tDCS shows that cathodal tDCS is a promising treatment option to improve ADL capacity in people with stroke [14]. Compared to transcutaneous magnetic stimulation (TMS), tDCS devices are inexpensive and easier to operate. Improvement in upper limb motor function can appear after only five tDCS sessions [15], and there are no reports of serious adverse events when tDCS has been used in human trials for periods of less than 40 min at amplitudes of less than 4 mA [16].

Moreover, tDCS stimulation task also seems beneficial for other impairments commonly seen in people post-stroke. Stimulation with tDCS applied for 20 sessions of 30 min over a 4-week period has been shown to decrease depression and improve quality of life in people after a stroke [1718]. Four tDCS sessions for 10 min applied over the primary and sensory cortex in eight patients with sensory impairments more than 10 months post-stroke enhanced tactile discriminative performance [19]. Breathing exercises with tDCS stimulation seems to be more effective than without stimulation in patient with chronic stroke [20], and tDCS has shown promise in treating central post-stroke pain [21]. Finally, preliminary research on the effect of tDCS combined with training on resting-state functional connectivity shows promise to better understand the mechanisms behind inter-subject variability regarding tDCS stimulation [22].

Motor functional outcomes in stroke have declined at discharge from inpatient rehabilitation facilities [2324], likely a result of the pressures to reduce the length of stay at inpatient rehabilitation facilities as part of a changing and increasingly complex health care climate [2526]. Researchers, clinicians, and administrators continue to search for solutions to facilitate and post-stroke rehabilitation after discharge. Specifically, there has been considerable interest in low-cost stroke therapies than can be administered in the home with only a modest level of supervision by clinical professionals.

Home telerehabilitation is a strategy in which rehabilitation in the patient’s home is guided remotely by the therapist using telecommunication technology. If patients can safely apply tDCS to themselves at home, combining telerehabilitation with tDCS would be an easy way to boost therapy without costly therapeutic face-to-face supervision. For people with multiple sclerosis, the study of Charvet et al. (2017) provided tDCS combined with cognitive training, delivered through home telerehabilitation, and demonstrated greater improvement on cognitive measures compared to those who received just the cognitive training [27]. The authors demonstrated the feasibility of remotely supervised, at-home tDCS and established a protocol for safe and reliable delivery of tDCS for clinical studies [28]. Some evidence shows that telerehabilitation approaches are comparable to conventional rehabilitation in improving activities of daily living and motor function for stroke survivors [2930], and that telemedicine for stroke is cost-effective [3132]. A study in 99 people with stroke receiving training using telerehabilitation (either with home exercise program or robot assisted therapy with home program) demonstrated significant improvements in quality of life and depression [33].

A recent search of the literature suggests that to date, no studies combine tDCS with repetitive tracking training in a home telerehabilitation setting to determine whether the combination leads to improved motor rehabilitation in people with stroke. Therefore, the aim of this pilot project was to explore the safety, usability and feasibility of the combined system. For the tDCS treatment, we used a bihemispheric montage with cathodal tDCS stimulation to suppress the unaffected hemisphere in order to promote stroke recovery [34353637]. For the repetitive tracking training therapy, we used a finger tracking task that targets dexterity because 70% of people post-stroke are unable to use their hand with full effectiveness after stroke [38]. Safety was assessed by noting any decline of 2 points or more in the cognitive testing that persists over more than 3 days. We expect day to day variations of 1 digit. Motor decline is defined by a decline of 6 blocks on the Box and Block test due to muscle weakness. This is based on the minimal detectable change (5.5 blocks/min) [10]. The standard error of measurement is at least 2 blocks for the paretic and stronger side. We expect possible variations in muscle tone that could influence the scoring of the test. Usability was assessed through a questionnaire and by observing whether the participant, under remote supervision, could don the apparatus and complete the therapy sessions. Our intent was to set the stage for a future clinical trial to determine the efficacy of this approach.

Methods

Participants

Participants were recruited from a database of people with chronic stroke who had volunteered for previous post-stroke motor therapy research studies at the University of Minnesota. Inclusion criteria were: at least 6 months post-stroke; at least 10 degrees of active flexion and extension motion at the index finger; awareness of tactile sensation on the scalp; and a score of greater than or equal to 24 (normal cognition) on the Mini-Mental State Examination (MMSE) to be cognitively able to understand instructions to don and use the devices [39]. We excluded those who had a seizure within past 2 years, carried implanted medical devices incompatible with tDCS, were pregnant, had non-dental metal in the head or were not able to understand instructions on how to don and use the devices. The study was approved by the University of Minnesota IRB and all enrolled participants consented to be in the study.

Apparatus

tDCS was applied using the StarStim Home Research Kit (NeuroElectrics, Barcelona, Spain). The StarStim system consists of a Neoprene head cap with marked positions for electrode placement, a wireless cap-mounted stimulator and a laptop control computer. Saline-soaked, 5 cm diameter sponge electrodes were used. For electrode placement, we followed a bihemispheric montage [14] involving cathodal stimulation on the unaffected hemisphere with the anode positioned at C3 and the cathode at C4 for participants with left hemisphere stroke, and vice versa for participants with right hemisphere stroke. Stimulation protocols were set by the investigator on a web-based application that communicated with the tDCS control computer. A remote access application (TeamViewer) was also installed on the control computer, as was a video conferencing application (Skype).

The repetitive finger tracking training system was a copy of what we used in our previous stroke studies [789]. The apparatus included an angle sensor mounted to a lightweight brace and aligned with the metacarpophalangeal (MCP) joint of the index finger, a sensor signal conditioning circuit, and a target tracking application loaded on a table computer. Figure 1 shows a participant using the apparatus during a treatment session.

Fig. 1

Fig. 1 Participant with right hemiparesis receiving transcranial direct current magnetic stimulation (tDCS) in their home simultaneous while performing the finger movement tracking task on the tracking computer (left). The tDCS computer (right) shows the supervising investigator, located off-site, who communicated with the participant through the video conferencing application, controlled the tDCS stimulator through web-based software, and controlled the tracking protocols. (Permission was obtained from the participant for the publication of this picture)

[…]

Continue —> Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , ,

Leave a comment

[Abstract] Effects of robot-(Morning Walk®) assisted gait training for patients after stroke: a randomized controlled trial

To investigate the effects of Morning Walk®–assisted gait training for patients with stroke.

Prospective randomized controlled trial.

Three hospital rehabilitation departments (two tertiary and one secondary).

We enrolled 58 patients with hemiparesis following a first-time stroke within the preceding year and with Functional Ambulation Category scores ⩾2.

The patients were randomly assigned to one of two treatment groups: 30 minutes of training with Morning Walk®, a lower limb rehabilitation robot, plus 1 hour of conventional physiotherapy (Morning Walk® group; n = 28); or 1.5 hour of conventional physiotherapy (control group; n = 30). All received treatment five times per week for three weeks.

The primary outcomes were walking ability, assessed using the Functional Ambulation Category scale, and lower limb function, assessed using the Motricity Index-Lower. Secondary outcomes included the 10 Meter Walk Test, Modified Barthel Index, Rivermead Mobility Index, and Berg Balance Scale scores.

A total of 10 patients were lost to follow-up, leaving a cohort of 48 for the final analyses. After training, all outcome measures significantly improved in both groups. In Motricity Index-Lower of the affected limb, the Morning Walk® group (∆mean ± SD; 19.68 ± 14.06) showed greater improvement (p = .034) than the control group (∆mean ± SD; 11.70 ± 10.65). And Berg Balance Scale scores improved more (p = .047) in the Morning Walk®group (∆mean ± SD; 14.36 ± 9.01) than the control group (∆mean ± SD; 9.65 ± 8.14).

Compared with conventional physiotherapy alone, our results suggest that voluntary strength and balance of stroke patients with hemiparesis might be improved with Morning Walk®–assisted gait training combined with conventional physiotherapy.

 

via Effects of robot-(Morning Walk®) assisted gait training for patients after stroke: a randomized controlled trial – JaYoung Kim, Dae Yul Kim, Min Ho Chun, Seong Woo Kim, Ha Ra Jeon, Chang Ho Hwang, Jong Kyoung Choi, Suhwan Bae, 2018

, , , , , ,

Leave a comment

[ARTICLE] Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study – Full Text

Abstract

Background

Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby people with stroke use the impaired index finger to trace waveform-shaped lines on a monitor. Our aims were to assess the feasibility and safety of a telerehabilitation program consisting of tDCS and finger tracking training through questionnaires on ease of use, adverse symptoms, and quantitative assessments of motor function and cognition. We believe this telerehabilitation program will be safe and feasible, and may reduce patient and clinic costs.

Methods

Six participants with hemiplegia post-stroke [mean (SD) age was 61 (10) years; 3 women; mean (SD) time post-stroke was 5.5 (6.5) years] received five 20-min tDCS sessions and finger tracking training provided through telecommunication. Safety measurements included the Digit Span Forward Test for memory, a survey of symptoms, and the Box and Block test for motor function. We assessed feasibility by adherence to treatment and by a questionnaire on ease of equipment use. We reported descriptive statistics on all outcome measures.

Results

Participants completed all treatment sessions with no adverse events. Also, 83.33% of participants found the set-up easy, and all were comfortable with the devices. There was 100% adherence to the sessions and all recommended telerehabilitation.

Conclusions

tDCS with finger tracking training delivered through telerehabilitation was safe, feasible, and has the potential to be a cost-effective home-based therapy for post-stroke motor rehabilitation.

Background

Post-stroke motor function deficits stem not only from neurons killed by the stroke, but also from down-regulated excitability in surviving neurons remote from the infarct [1]. This down-regulation results from deafferentation [2], exaggerated interhemispheric inhibition [3], and learned non-use [4]. Current evidence suggests that post-stroke motor rehabilitation therapies should encourage upregulating neurons and should target neuroplasticity through intensive repetitive motor practice [56]. Previously, our group has examined the feasibility and efficacy of a custom finger tracking training program as a way of providing people with stroke with an engaging repetitive motor practice [789]. In this program, the impaired index finger is attached to an electro-goniometer, and participants repeatedly move the finger up and down to follow a target line that is drawn on the display screen. In successive runs, the shape, frequency and amplitude of target line is varied, which forces the participant to focus on the tracking task. In one study, we demonstrated a 23% improvement in hand function (as measured by the Box and Block test; minimal detectable change is 18% [10]) after participants with stroke completed the tracking training program [9]. While our study did not evaluate changes in activity in daily life (ADL) or quality of life (because efficacy of the treatment was not the study objective), the Box and Block test is moderately correlated (r = 0.52) to activities in daily life and quality of life (r = 0.59) [11]. In addition, using fMRI, we showed that training resulted in an activation transition from ipsilateral to contralateral cortical activation in the supplementary motor area, primary motor and sensory areas, and the premotor cortex [9].

Recently, others have shown that anodal transcranial direct current stimulation (tDCS) can boost the beneficial effects of motor rehabilitation, with the boost lasting for at least 3 months post-training [12]. Also, bihemispheric tDCS stimulation (anodal stimulation to excite the ipsilateral side and cathodal stimulation to downregulate the contralateral side) in combination with physical or occupational therapy has been shown to provide a significant improvement in motor function (as measured by Fugl-Meyer and Wolf Motor Function) compared to a sham group [13]. Further, a recent meta-analysis of randomized-controlled trials comparing different forms of tDCS shows that cathodal tDCS is a promising treatment option to improve ADL capacity in people with stroke [14]. Compared to transcutaneous magnetic stimulation (TMS), tDCS devices are inexpensive and easier to operate. Improvement in upper limb motor function can appear after only five tDCS sessions [15], and there are no reports of serious adverse events when tDCS has been used in human trials for periods of less than 40 min at amplitudes of less than 4 mA [16].

Moreover, tDCS stimulation task also seems beneficial for other impairments commonly seen in people post-stroke. Stimulation with tDCS applied for 20 sessions of 30 min over a 4-week period has been shown to decrease depression and improve quality of life in people after a stroke [1718]. Four tDCS sessions for 10 min applied over the primary and sensory cortex in eight patients with sensory impairments more than 10 months post-stroke enhanced tactile discriminative performance [19]. Breathing exercises with tDCS stimulation seems to be more effective than without stimulation in patient with chronic stroke [20], and tDCS has shown promise in treating central post-stroke pain [21]. Finally, preliminary research on the effect of tDCS combined with training on resting-state functional connectivity shows promise to better understand the mechanisms behind inter-subject variability regarding tDCS stimulation [22].

Motor functional outcomes in stroke have declined at discharge from inpatient rehabilitation facilities [2324], likely a result of the pressures to reduce the length of stay at inpatient rehabilitation facilities as part of a changing and increasingly complex health care climate [2526]. Researchers, clinicians, and administrators continue to search for solutions to facilitate and post-stroke rehabilitation after discharge. Specifically, there has been considerable interest in low-cost stroke therapies than can be administered in the home with only a modest level of supervision by clinical professionals.

Home telerehabilitation is a strategy in which rehabilitation in the patient’s home is guided remotely by the therapist using telecommunication technology. If patients can safely apply tDCS to themselves at home, combining telerehabilitation with tDCS would be an easy way to boost therapy without costly therapeutic face-to-face supervision. For people with multiple sclerosis, the study of Charvet et al. (2017) provided tDCS combined with cognitive training, delivered through home telerehabilitation, and demonstrated greater improvement on cognitive measures compared to those who received just the cognitive training [27]. The authors demonstrated the feasibility of remotely supervised, at-home tDCS and established a protocol for safe and reliable delivery of tDCS for clinical studies [28]. Some evidence shows that telerehabilitation approaches are comparable to conventional rehabilitation in improving activities of daily living and motor function for stroke survivors [2930], and that telemedicine for stroke is cost-effective [3132]. A study in 99 people with stroke receiving training using telerehabilitation (either with home exercise program or robot assisted therapy with home program) demonstrated significant improvements in quality of life and depression [33].

A recent search of the literature suggests that to date, no studies combine tDCS with repetitive tracking training in a home telerehabilitation setting to determine whether the combination leads to improved motor rehabilitation in people with stroke. Therefore, the aim of this pilot project was to explore the safety, usability and feasibility of the combined system. For the tDCS treatment, we used a bihemispheric montage with cathodal tDCS stimulation to suppress the unaffected hemisphere in order to promote stroke recovery [34353637]. For the repetitive tracking training therapy, we used a finger tracking task that targets dexterity because 70% of people post-stroke are unable to use their hand with full effectiveness after stroke [38]. Safety was assessed by noting any decline of 2 points or more in the cognitive testing that persists over more than 3 days. We expect day to day variations of 1 digit. Motor decline is defined by a decline of 6 blocks on the Box and Block test due to muscle weakness. This is based on the minimal detectable change (5.5 blocks/min) [10]. The standard error of measurement is at least 2 blocks for the paretic and stronger side. We expect possible variations in muscle tone that could influence the scoring of the test. Usability was assessed through a questionnaire and by observing whether the participant, under remote supervision, could don the apparatus and complete the therapy sessions. Our intent was to set the stage for a future clinical trial to determine the efficacy of this approach.

Methods

Participants

Participants were recruited from a database of people with chronic stroke who had volunteered for previous post-stroke motor therapy research studies at the University of Minnesota. Inclusion criteria were: at least 6 months post-stroke; at least 10 degrees of active flexion and extension motion at the index finger; awareness of tactile sensation on the scalp; and a score of greater than or equal to 24 (normal cognition) on the Mini-Mental State Examination (MMSE) to be cognitively able to understand instructions to don and use the devices [39]. We excluded those who had a seizure within past 2 years, carried implanted medical devices incompatible with tDCS, were pregnant, had non-dental metal in the head or were not able to understand instructions on how to don and use the devices. The study was approved by the University of Minnesota IRB and all enrolled participants consented to be in the study.

Apparatus

tDCS was applied using the StarStim Home Research Kit (NeuroElectrics, Barcelona, Spain). The StarStim system consists of a Neoprene head cap with marked positions for electrode placement, a wireless cap-mounted stimulator and a laptop control computer. Saline-soaked, 5 cm diameter sponge electrodes were used. For electrode placement, we followed a bihemispheric montage [14] involving cathodal stimulation on the unaffected hemisphere with the anode positioned at C3 and the cathode at C4 for participants with left hemisphere stroke, and vice versa for participants with right hemisphere stroke. Stimulation protocols were set by the investigator on a web-based application that communicated with the tDCS control computer. A remote access application (TeamViewer) was also installed on the control computer, as was a video conferencing application (Skype).

The repetitive finger tracking training system was a copy of what we used in our previous stroke studies [789]. The apparatus included an angle sensor mounted to a lightweight brace and aligned with the metacarpophalangeal (MCP) joint of the index finger, a sensor signal conditioning circuit, and a target tracking application loaded on a table computer. Figure 1 shows a participant using the apparatus during a treatment session.

Fig. 1

Fig. 1Participant with right hemiparesis receiving transcranial direct current magnetic stimulation (tDCS) in their home simultaneous while performing the finger movement tracking task on the tracking computer (left). The tDCS computer (right) shows the supervising investigator, located off-site, who communicated with the participant through the video conferencing application, controlled the tDCS stimulator through web-based software, and controlled the tracking protocols. (Permission was obtained from the participant for the publication of this picture)

[…]

 

Continue —>  Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , ,

Leave a comment

[Abstract] Eye Movements Interfere With Limb Motor Control in Stroke Survivors

Background. Humans use voluntary eye movements to actively gather visual information during many activities of daily living, such as driving, walking, and preparing meals. Most stroke survivors have difficulties performing these functional motor tasks, and we recently demonstrated that stroke survivors who require many saccades (rapid eye movements) to plan reaching movements exhibit poor motor performance. However, the nature of this relationship remains unclear.

Objective. Here we investigate if saccades interfere with speed and smoothness of reaching movements in stroke survivors, and if excessive saccades are associated with difficulties performing functional tasks.

Methods. We used a robotic device and eye tracking to examine reaching and saccades in stroke survivors and age-matched controls who performed the Trail Making Test, a visuomotor task that uses organized patterns of saccades to plan reaching movements. We also used the Stroke Impact Scale to examine difficulties performing functional tasks.

Results. Compared with controls, stroke survivors made many saccades during ongoing reaching movements, and most of these saccades closely preceded transient decreases in reaching speed. We also found that the number of saccades that stroke survivors made during ongoing reaching movements was strongly associated with slower reaching speed, decreased reaching smoothness, and greater difficulty performing functional tasks.

Conclusions. Our findings indicate that poststroke interference between eye and limb movements may contribute to difficulties performing functional tasks. This suggests that interventions aimed at treating impaired organization of eye movements may improve functional recovery after stroke.

  

via Eye Movements Interfere With Limb Motor Control in Stroke Survivors – Tarkeshwar Singh, Christopher M. Perry, Stacy L. Fritz, Julius Fridriksson, Troy M. Herter, 2018

, , , , , ,

Leave a comment

[Abstract] Eye Movements Interfere With Limb Motor Control in Stroke Survivors

Background. Humans use voluntary eye movements to actively gather visual information during many activities of daily living, such as driving, walking, and preparing meals. Most stroke survivors have difficulties performing these functional motor tasks, and we recently demonstrated that stroke survivors who require many saccades (rapid eye movements) to plan reaching movements exhibit poor motor performance. However, the nature of this relationship remains unclear.

Objective. Here we investigate if saccades interfere with speed and smoothness of reaching movements in stroke survivors, and if excessive saccades are associated with difficulties performing functional tasks.

Methods. We used a robotic device and eye tracking to examine reaching and saccades in stroke survivors and age-matched controls who performed the Trail Making Test, a visuomotor task that uses organized patterns of saccades to plan reaching movements. We also used the Stroke Impact Scale to examine difficulties performing functional tasks.

Results. Compared with controls, stroke survivors made many saccades during ongoing reaching movements, and most of these saccades closely preceded transient decreases in reaching speed. We also found that the number of saccades that stroke survivors made during ongoing reaching movements was strongly associated with slower reaching speed, decreased reaching smoothness, and greater difficulty performing functional tasks.

Conclusions. Our findings indicate that poststroke interference between eye and limb movements may contribute to difficulties performing functional tasks. This suggests that interventions aimed at treating impaired organization of eye movements may improve functional recovery after stroke.

via Eye Movements Interfere With Limb Motor Control in Stroke Survivors – Tarkeshwar Singh, Christopher M. Perry, Stacy L. Fritz, Julius Fridriksson, Troy M. Herter, 2018

, , , , , , , ,

Leave a comment

[Abstract] Midfemoral Bone Volume of Walking Subjects with Chronic Hemiparesis Post Stroke

Background and Purpose

Muscle and bone form a functional unit. Residual physical poststroke impairments such as muscle weakness, spasticity, and decrease in function can promote metabolic bone changes. Moreover, muscle strength can influence this process. Thus, the purpose of the present study was to investigate bone volume and mobility performance in subjects with chronic hemiparesis post stroke.

Methods

cross-sectional study was performed on 14 subjects post stroke who were paired with healthy controls. Bone volume, isometric muscle performance, and mobility levels were measured. Midfemoral bone volumes were determined using magnetic resonance imaging, and muscular performance was measured by dynamometry. Mobility was measured using the Timed Up and Go Test and the 10-Meter Walk Test.

Results

Regarding bone volume total, there was no difference in the medullary and cortical groups (P ≥ .05). During torque peak isometric flexion, the paretic group was significantly different compared with the other groups (P = .001). However, the control presented no difference compared with the nonparetic limb (P = .40). With regard to the extension isometric torque peak, the paretic limb was significantly different compared with the nonparetic (P = .033) and the control (P = .001) limbs, and the control was different from the nonparetic limb (P = .045). Bone volume variables correlated with the isometric torque peak.

Conclusions

Chronic hemiparetic subjects maintain bone geometry compared with healthy volunteers matched by age, body mass index, and gender. The correlation between bone volume midfemoral structures and knee isometric torque was possible.

 

via Midfemoral Bone Volume of Walking Subjects with Chronic Hemiparesis Post Stroke – ScienceDirect

, , , , , ,

Leave a comment

[Abstract+References] The Use of Image Processing Methods to Improve the Detection of User’s Hand in Vision Based Games Used in Neurological Rehabilitation

Abstract

Vision based games is a type of software that can become a promising, modern neurorehabilitation tool. This paper presents the possibilities offered for the implementation of this kind of software by the open source vision library. The methods and functions related to the aspect of image processing and analysis are presented in terms of their usefulness in creating programs based on the analysis of the images acquired from the camera. On the basis of the issues contained in the paper, the functionality of the library is presented in terms of the possibilities related primarily to the processing of video sequences, detection, tracking and analysis of the movement of objects.

As part of the work, the software that meets the requirements for modern neurorehablitation games has been implemented. Its main part is responsible for the identification of the current position of the user’s hand and is based on the image captured from the webcam. Whereas the tasks set for the user used among others supporting visual-motor coordination.

The main subject of the research was the analysis of the impact of the applied methods of initial image processing on the correctness of the chosen tracking algorithm. It was proposed and experimentally examined the impact of operations such as morphological transformations or apply an additional mask on a functioning of the CamShift algorithm.  And hence on the functioning of the whole game which analyzing the user’s hand movement.

References

Allen G. J., Richard Xu Y. D., Jin J. S. (2004). Object Tracking Using CAMShift Algorithm and Multiple Quantized Feature Spaces, Proceedings of the Pan-Sydney area workshop on Visual information processing , Sydney, 3-7.

Bradski G., Kaehler A. (2008). Learning OpenCV. Computer Vision with the OpenCV Library, Sebastopol, CA: O’Reilly Media.

Buczyński P. (2005). Optymalna reprezentacja kolorów w analizie i przetwarzaniu obrazów komputerowych, Praca doktorska. Warszawa: Politechnika Warszawska.

Burke J. W., Morrow P.J., et al. (2008). Vision Based Games for Upper-Limb Stroke Rehabilitation, Machine Vision and Image Processing Conference, 159 – 164.

Burke J. W. McNeill M. D. J., et al. (2010). Designing engaging, playable games for rehabilitation”, International Conference Series On Disability, Virtual Reality and Associated Technologies (ICDVRAT), 195-202.

Cameirão M.S. , et al. (2010). Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation, Journal of NeuroEngineering and Rehabilitation, 7, 48.

Comaniciu D., Ramesh V., Meer P. (2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Transactions 2003, p. 564-577.

Derpanis K. G. (2005). Mean Shift Clustering, http://www.cse.yorku.ca/~kosta/ Comp-Vis_Notes/mean_shift.pdf

Di Loreto I., Gouaich A., Hocine N., (2011). Mixed reality serious games for post-stroke rehabilitation, Pervasive Computing Technologies for Healthcare , 5th International Conference on, 530-537.

Garcia-Marin J., Felix-Navarro K., Law-rence E. (2011). Serious games to Improve the Physical Health of the Elderly: A Categorization Scheme, Fourth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services (CENTRIC 2011), 64-71.

Jog A., Halbe S. (2013). Multiple Objects Tracking Using CAMShift Algorithm and Implementation of Trip Wire, International Journal of Image, Graphics and Signal Processing, 43-48.

Joshi S., Gujarathi S., Mirgemoving A. (2014). Moving object tracking method using improved camshift with surf algorithm. International Journal of Advances in Science Engineering and Technology, 2(2), 14-19.

Laganière R. (2011). “OpenCV 2 Computer Vision Application Programming Cookbook”, Packt Publishing, 2011.

Lange B., Flynn S.M., Rizzo A. A., (2009). Game-based telerehabilitation, European Journal of Physical and Rehabilitation Medicine, 45(1), 143-151.

Rafajłowicz E, Rafajłowicz W. (2010). Wstęp do przetwarzania obrazów przemysłowych, Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.

Rayavel P., Appasami G., Nakeeran R. (2011). Noise removal for object tracking based on HSV color space parameter using CAMSHIFT. International Journal of Computational Intelligence & Telecommunication Systems, 2(1), 39–45.

Yilmaz A., Javed O., Shah M. (2006). Object tracking: A survey, ACM Computing Surveys, 38(4), Article 13, 1-45.

 

via The Use of Image Processing Methods to Improve the Detection of User’s Hand in Vision Based Games Used in Neurological Rehabilitation | Gospodarek | IMAGE PROCESSING & COMMUNICATIONS

, , , , , , ,

Leave a comment

[EDITORIAL] ADVANCING GAMING TECHNOLOGY IN NEUROLOGICAL REHABILITATION – Pakistan Journal of Neurological Sciences (PJNS)

Samreen Sadiq, Lahore College of Physical therapy, samreen.sadiq19@yahoo.com

Iqra khan, University Institute of Physical Therapy, University of Lahore

 

The consumption of gaming technology has recently gain unexpected significance in medical health care for neurological rehabilitation. With increasing interest in exergames study, numerous definitions and terminology have been introduced to describe this term. Researchers from health-related background acknowledged the fact that engaging in video gaming was not always sedentary and might act as a means to ensure more physical work. Simplifying the terminology exergames are those types of gaming technology or multimedia communications that necessitate the player to perform physical activity during play.

However, health related researchers were hesitant to use the terminology of exergaming, their descriptions shared a mutual purpose of enhancing physical activity level. Two similar terms were defined to explain that concept known as activity promotion and active video gaming. For instance, videogames that promote physical activity were described as those video games that have capability to enhance physical movements during screen period whereas active video gaming may give new opportunities to transform the conventional sedentary attitude into physical active behavior. The chief impression of using such terminology is to discriminate engaging in video gaming that encourage active attitude from those resulting in inactive behavior.’

The growing utilization of exergaming and the expansion of diverse software’s by ground breaking minds in gaming industry have inadvertently opened new ways to address goals of neurological rehabilitation. The common aims of rehabilitation include improvement in balance, enhancing functional movements as well as to promote flexibility. The chief reason for integrating video gaming in neurological rehabilitation is to enhance patient motivation, strict adherence to treatment procedure and to ignore boring training.

An important question which rises in mind is could those clients who are involved in neurological rehabilitation through gaming technology capitalize on its entertainment value? Motivating a person’s interest is probably a key to strict exercise adherence. The utilization of gaming technology is limitless. A research was done to evaluate efficacy of Wii Ninetedo in Parkinson’s disease patients and the impact of integrating exergaming for the management of childhood obesity. Case reports utilizing exergaming have been described for improving balance and gait parameters in patients suffering from neurological condition known as stroke. The practice of exergames were found to be effective in improving exercise tolerance and adherence in Multiple Sclerosis patients. A study on efficacy of Wii Fit was also conducted to evaluate the balance problems among Cerebral palsy children and the results suggested that Nintendo Wii provides entertaining, safe and effective means in conjunction with traditional management to improve balance of cerebral palsy children.

The safety of these emergent devices as medical equipment is questionable and whether there is need to give approval to these devices by governing authorities before using them. The concerned issue should be emphasized keeping in consideration the risks, dangers and adverse effects associated with the use of this exergames technology. Several case reports of injuries have been identified with utilization of this gaming technology for example shoulder joint dislocation, pulmonary disorder, tendon and ligamentous tear. Another case was reported about primary spontaneous pneumothorax in an old man with initial presentation following prolonged period of playing Nintendo Wii. Commonly reported injuries include overuse strain injuries, joint injuries and has been named as Wiiitis by authors. Terminology mostly used to describe such injuries associated to to Wii-habilitation include Wii Shoulder, Wii Knee and Nintendinitis.

Worldwide utilization of this novel technology has been implemented and various international scholars showed strong interest in integrating the use of exergaming for neurological rehabilitation. Global attention has been focused to this technology and paper based work has been presented in World Confederation for Physical Therapy. A lot of document based work displayed in Amsterdam was also put together on this specific topic, some were initial researches but they depict a worldwide interest in this emergent technology. Previous literature have focused the remarkable and extraordinary effects of exergaming on upper extremity function, daily living activities and posture control. This novel technology can efficiently provide opportunity to neuro patients to accomplish maximal repetition of movement and tasks and provide a better possibility in comparison to traditional techniques. In Pakistan, a similar paper highlighted the application of exergaming as an effective and innovative tool for stroke rehabilitation. It was suggested that this tool offers a collaborative activity and the cost of video games is less as well as ensure easier implementation. So, it is the chief responsibility of concerned professionals to deliver a complete rehabilitation protocol so that optimal functioning level can be achieved. It enables the person to perform activities of daily living independently. This novel technology lessens the full time help of physical therapist and home-based management can also be manageable in future. Therefore, it is correct time to use this technological advancement for assistance in neurological rehabilitation to attain best outcome in small period.

The debate on emergent technologies is relatively noteworthy in rehabilitation and physical therapy practice. This forward technology shift and use of other analogous devices offer countless choices for rehabilitation extending from heart rate measuring and respiratory rate monitoring tools, to diagnostic and education applications. It now seems possible to foresee the effect and impact of this emergent technology in rehabilitation fields. It is pretty clear that technology has substantially improved the delivery of rehabilitation services and exer-gaming is likely to positively influence neurological rehabilitation in the future.

Full Text PDF

, , ,

Leave a comment

[BLOG POST] Tyromotion Introduces Virtual Reality to Robotic Therapy to Facilitate Stroke Recovery

Rehabilitation technology leader Tyromotion has developed a rehabilitation device that combines virtual reality with robotic therapy to make stroke rehabilitation faster and more efficient.

Tyromotion has created a rehabilitation device that uses a bilateral 3D arm robot and virtual reality glasses to fully immerse stroke patients in virtual worlds where both the visual and physical environments can be shaped. The device is designed to help patients with limited arm function perform daily tasks by challenging and encouraging them to increase their range of motion and the number of repetitions during their therapy sessions. Both these elements are vital to motor learning.

The introduction of virtual reality into therapy delivers a 3D training environment that can be adapted to each individual patient’s abilities. The virtual setting has a gaming element to it, which helps motivate patients to keep repeating their exercises.

Tyromotion’s device is currently being tested by leading rehabilitation facilities in Europe and the United States. The initial reports from therapists and doctors have been very positive, indicating that the new approach to therapy has a strong potential to transform it by increasing patient motivation and making therapy programs more cost effective across the board.

Diego, the robot-assisted arm rehabilitation device used to deliver VR therapy, is the world’s most versatile arm-shoulder rehabilitation device, one that combines robotics with intelligent gravity compensation (IGC) and virtual reality to help patients regain lost arm function. The device offers passive, active and assistive, uni- and bilateral applications that are easily adapted to meet the needs of each patient.

The gravity compensation feature makes heavy arms lighter, allowing physiological movement of the arms in every phase of rehabilitation. The device gives patients more room and more freedom to move and is particularly well suited for task-oriented training with real objects.

Diego offers a versatile range of therapy options with interactive therapy modules that provide haptic and audiovisual feedback, immersing patients in motion in the virtual environment. The therapy modules have different levels of difficulty, which motivates patients to keep making progress. Their progress is then recorded to make their achievements visible.

Diego is suitable for patients of all ages and can be used in all phases of arm rehabilitation. Watch the video below to learn more about its features and benefits.

Related news:

Tyrostation Offers Versatile Range of Therapy Options

Source: Tyromotion Introduces Virtual Reality to Robotic Therapy to Facilitate Stroke Recovery | Fitness Gaming

, , , , ,

Leave a comment

[Research Poster] Management of Visual Deficits with Neurological Etiology – Implications for Practice Patterns and Inter-professional Collaboration

To investigate and describe:

  1. occupational therapy practice patterns as it relates to low vision and visual dysfunction,
  2. what occupational therapy practitioners perceive as their level of competence in addressing vision and how competence is achieved,

  3. the importance of inter-professional management to provide comprehensive care and best practice for visual deficits,

  4. potential practice guidelines for the management of visual deficits resulting from neurological etiology.

Source: Management of Visual Deficits with Neurological Etiology – Implications for Practice Patterns and Inter-professional Collaboration – Archives of Physical Medicine and Rehabilitation

, , , ,

Leave a comment

%d bloggers like this: