Posts Tagged neurolysis

[ARTICLE] Selective peripheral neurolysis using high frequency ultrasound imaging: a novel approach in the treatment of spasticity – Full Text PDF

 

BACKGROUND: Chemoneurolysis is used to treat focal spasticity in patients with upper motor neuron syndrome.
CASE REPORT: Neurolytic substances (phenol/alcohol) injected nearby/in the main trunk of peripheral nerves can cause not only motor but also cutaneous nerves destruction. The latter is thought to be responsible for considerable side effects such as dysesthesia and paresthesia. During injections, targeting the primary motor branches originating from the main trunk while sparing cutaneous nerves will result in decrease/elimination of these side effects and better clinical improvement.
CLINICAL REHABILITATION IMPACT: We suggest that high frequency ultrasound enabling the physician to scan peripheral nerves and their primary branches can be useful to perform this selective peripheral neurolysis in the treatment of spasticity.

via Selective peripheral neurolysis using high frequency ultrasound imaging: a novel approach in the treatment of spasticity – European Journal of Physical and Rehabilitation Medicine 2018 Jun 11 – Minerva Medica – Journals

, , , ,

Leave a comment

[ARTICLE] Practice patterns for spasticity management with phenol neurolysis – Full Text HTML

Abstract

Objective: To present practice patterns for phenol neurolysis procedures conducted for spasticity management.

Design: A retrospective review of 185 persons with spasticity who underwent phenol neurolysis procedures (n = 293) at an academic rehabilitation hospital and clinic. Patient demographics, concomitant spasticity treatments, and procedure relevant information were collected.

Results: The cohort included 71.9% males and 61.6% inpatient procedures. Neurological diagnoses included stroke (41.0%), traumatic brain injury (28.6%) and spinal cord injury (24.3%). Musculoskeletal diagnoses included spastic hemiplegia or paresis (51.3%), tetraplegia (38.4) and paraplegia (9.2%). At the time of phenol neurolysis, most patients (77.5%) received concomitant pharmacological treatments for spasticity. Injection guidance modalities included electrical stimulation and ultrasound (69.3%) or ultrasound only (27.3%). A mean of 3.48 ml of phenol were injected per nerve and 10.95 ml of phenol were used per procedure. Most commonly injected nerves included the obturator nerve (35.8%) and sciatic branches to the hamstrings and adductor magnus (27.0%). Post-phenol neurolysis assessment was recorded in 54.9% of encounters, in which 84.5% reported subjective benefit. Post-procedure adverse events included pain (4.0%), swelling and inflammation (2.7%), dysaesthesia (0.7%) and hypotension (0.7%).

Conclusion: Phenol neurolysis is currently used to reduce spasticity for various functional goals, including preventing contractures and improving gait. Depending on the pattern of spasticity displayed, numerous peripheral nerves in the upper and lower extremities can be targeted for treatment with phenol neurolysis. Further research into its role in spasticity management, including studies exploring its cost-effectiveness and pharmacological and side-effects compared with other treatment options are needed.

Introduction

Characterized by hyperexcitable stretch reflexes that increase muscle tonicity and exaggerate tendon jerks, spasticity is a common motor disorder that follows a variety of central nervous system insults (1). Implicated neurological insults most often include stroke, traumatic brain injury (TBI) or spinal cord injury (SCI). Spasticity is often associated with various complications including joint contractures, muscle shortening and postural deformities (1) that lead to multiple impairments. Early goal-directed spasticity management is instrumental in helping increase the likelihood of good outcomes and limiting complications (1, 2). Unfortunately, a lack of universally standardized management and an abundance of therapeutic options make spasticity management a challenging task.

Currently, spasticity is frequently managed through a combination of therapeutic modalities, pharmaceutical options and surgical procedures (3). Pharmaceutical options include medications delivered orally, via local injections, or through intrathecal pumps. Oral medications, including baclofen and tizanidine, help decrease spasticity (3). However, systemic side-effects, such as generalized muscle weakness, sedation, confusion, and hypotension, preclude the use of higher dosages that might be warranted for control of moderate-to-severe spasticity (3, 4). Intrathecal baclofen pump (ITB) is often indicated in treating severe and/or diffuse spasticity as a means to deliver high-dosage baclofen with less concern for systemic side-effects (4). Although ITB treatment is very effective, numerous complications and the requirement for commitment to maintenance associated with this treatment makes it favourable only for some patients with severe spasticity (4, 5).

Chemoneurolysis via localized injections can help provide focal spasticity relief (1, 3, 6). In addition, the use of single-event multi-level chemoneurolysis helps treat several areas of muscle spasticity, each with varying severities (7). Medications used in chemo-neurolysis procedures include botulinum neurotoxin (BoNT), phenol, and alcohol neurolysis (3–7). Compared with phenol and the understudied alcohol neurolysis, BoNT usage in treating spasticity is documented extensively in the literature with regards to pharmacodynamics, adverse effects and clinical benefits (7–9). However, the response to chemodenervation with BoNT often requires 3–5 days to generate spasticity benefit, which generally lasts approximately 3 months. Although clinical standards permit repeating chemodenervation every 3 months, the majority of patients with spasticity prefer an increased frequency for maintaining clinical benefit (10–12). BoNT injections are associated with significant costs, and repeated injections are often further restricted by financial feasibility. In the USA, depending on the insurance being used, the approved dosage of BoNT is only 400–600 units of every 3 months. These limitations prevent the sole utility of chemodenervation for a multi-pattern treatment, e.g. elbow flexion, clenched fist, stiff knee gait, and equinovarus of the foot. Consequently, phenol neurolysis (PN) and BoNT are used in complement, with PN frequently reserved for proximal nerves and BoNT used for distal musculature.

In contrast, PN produces an almost-immediate effect that manifests within minutes of injection, which may last as long as 6 months depending on the dosage used (1, 13). In addition, PN is significantly less expensive. PN may also be re-injected before 3 months, unlike BoNT. However, the safety and efficacy of PN is less-commonly documented in the literature than BoNT chemodenervation. PN also requires a higher level of expertise to administer, and has a worse side-effect profile, which includes hypotension, prolonged pain, dysaesthesias, site inflammation, and joint fibrosis (1, 13, 14). These disadvantages for phenol usage are associated with safety concerns relative to neurotoxins, thus making BoNT a vastly more popular option for chemoneurolysis. Phenol is therefore being used increasingly less in the USA and is poorly documented in the spasticity literature. Given its advantages, PN may be superior to chemodenervation with BoNT in certain clinical scenarios. Thus, the primary purpose of the current study is to describe the utilization pattern of PN at a single site.

 

Continue —> Journal of Rehabilitation Medicine – Practice patterns for spasticity management with phenol neurolysis – HTML

, , ,

Leave a comment

[ARTICLE] Practice patterns for spasticity management with phenol neurolysis – HTML

Abstract

Objective: To present practice patterns for phenol neurolysis procedures conducted for spasticity management.

Design: A retrospective review of 185 persons with spasticity who underwent phenol neurolysis procedures (n = 293) at an academic rehabilitation hospital and clinic. Patient demographics, concomitant spasticity treatments, and procedure relevant information were collected.

Results: The cohort included 71.9% males and 61.6% inpatient procedures. Neurological diagnoses included stroke (41.0%), traumatic brain injury (28.6%) and spinal cord injury (24.3%). Musculoskeletal diagnoses included spastic hemiplegia or paresis (51.3%), tetraplegia (38.4) and paraplegia (9.2%). At the time of phenol neurolysis, most patients (77.5%) received concomitant pharmacological treatments for spasticity. Injection guidance modalities included electrical stimulation and ultrasound (69.3%) or ultrasound only (27.3%). A mean of 3.48 ml of phenol were injected per nerve and 10.95 ml of phenol were used per procedure. Most commonly injected nerves included the obturator nerve (35.8%) and sciatic branches to the hamstrings and adductor magnus (27.0%). Post-phenol neurolysis assessment was recorded in 54.9% of encounters, in which 84.5% reported subjective benefit. Post-procedure adverse events included pain (4.0%), swelling and inflammation (2.7%), dysaesthesia (0.7%) and hypotension (0.7%).

Conclusion: Phenol neurolysis is currently used to reduce spasticity for various functional goals, including preventing contractures and improving gait. Depending on the pattern of spasticity displayed, numerous peripheral nerves in the upper and lower extremities can be targeted for treatment with phenol neurolysis. Further research into its role in spasticity management, including studies exploring its cost-effectiveness and pharmacological and side-effects compared with other treatment options are needed.

Introduction

Characterized by hyperexcitable stretch reflexes that increase muscle tonicity and exaggerate tendon jerks, spasticity is a common motor disorder that follows a variety of central nervous system insults (1). Implicated neurological insults most often include stroke, traumatic brain injury (TBI) or spinal cord injury (SCI). Spasticity is often associated with various complications including joint contractures, muscle shortening and postural deformities (1) that lead to multiple impairments. Early goal-directed spasticity management is instrumental in helping increase the likelihood of good outcomes and limiting complications (1, 2). Unfortunately, a lack of universally standardized management and an abundance of therapeutic options make spasticity management a challenging task.

Currently, spasticity is frequently managed through a combination of therapeutic modalities, pharmaceutical options and surgical procedures (3). Pharmaceutical options include medications delivered orally, via local injections, or through intrathecal pumps. Oral medications, including baclofen and tizanidine, help decrease spasticity (3). However, systemic side-effects, such as generalized muscle weakness, sedation, confusion, and hypotension, preclude the use of higher dosages that might be warranted for control of moderate-to-severe spasticity (3, 4). Intrathecal baclofen pump (ITB) is often indicated in treating severe and/or diffuse spasticity as a means to deliver high-dosage baclofen with less concern for systemic side-effects (4). Although ITB treatment is very effective, numerous complications and the requirement for commitment to maintenance associated with this treatment makes it favourable only for some patients with severe spasticity (4, 5).

Chemoneurolysis via localized injections can help provide focal spasticity relief (1, 3, 6). In addition, the use of single-event multi-level chemoneurolysis helps treat several areas of muscle spasticity, each with varying severities (7). Medications used in chemo-neurolysis procedures include botulinum neurotoxin (BoNT), phenol, and alcohol neurolysis (3–7). Compared with phenol and the understudied alcohol neurolysis, BoNT usage in treating spasticity is documented extensively in the literature with regards to pharmacodynamics, adverse effects and clinical benefits (7–9). However, the response to chemodenervation with BoNT often requires 3–5 days to generate spasticity benefit, which generally lasts approximately 3 months. Although clinical standards permit repeating chemodenervation every 3 months, the majority of patients with spasticity prefer an increased frequency for maintaining clinical benefit (10–12). BoNT injections are associated with significant costs, and repeated injections are often further restricted by financial feasibility. In the USA, depending on the insurance being used, the approved dosage of BoNT is only 400–600 units of every 3 months. These limitations prevent the sole utility of chemodenervation for a multi-pattern treatment, e.g. elbow flexion, clenched fist, stiff knee gait, and equinovarus of the foot. Consequently, phenol neurolysis (PN) and BoNT are used in complement, with PN frequently reserved for proximal nerves and BoNT used for distal musculature.

In contrast, PN produces an almost-immediate effect that manifests within minutes of injection, which may last as long as 6 months depending on the dosage used (1, 13). In addition, PN is significantly less expensive. PN may also be re-injected before 3 months, unlike BoNT. However, the safety and efficacy of PN is less-commonly documented in the literature than BoNT chemodenervation. PN also requires a higher level of expertise to administer, and has a worse side-effect profile, which includes hypotension, prolonged pain, dysaesthesias, site inflammation, and joint fibrosis (1, 13, 14). These disadvantages for phenol usage are associated with safety concerns relative to neurotoxins, thus making BoNT a vastly more popular option for chemoneurolysis. Phenol is therefore being used increasingly less in the USA and is poorly documented in the spasticity literature. Given its advantages, PN may be superior to chemodenervation with BoNT in certain clinical scenarios. Thus, the primary purpose of the current study is to describe the utilization pattern of PN at a single site. […]

Continue —> Journal of Rehabilitation Medicine – Practice patterns for spasticity management with phenol neurolysis – HTML

, ,

Leave a comment

[Abstract] How could robotic training and botolinum toxin be combined in chronic post stroke upper limb spasticity? A pilot study. – Europe PMC

Spasticity has a role of primary importance in functional motor recovery of upper limb after a stroke. The widespread intervention is the botulinum toxin neurolysis, however robotic training could have a role as useful addition to this conventional therapy.
The aim of this study was to verify how the combination of a short robotic training and chemical neurolysis reduces spasticity and improves function in chronic post-stroke patients.
Prospective single blind randomized controlled clinical trial.Post-stroke outpatients.Fifteen chronic post-stroke outpatients with severe upper limb spastic paresis.Two experimental groups underwent ten sessions of robotic training, alone (Group A) or with Botulinum toxin neurolysis (Group B). Evaluation of motor function with Fugl Meyer Upper Limb Assessment Scale (FMA) and Box & Block Test (B&B), disability with Functional Indipendence Measure (FIM), spasticity with Modified Ashworth Scale (MAS), and the Quality of Life (Euro-Qol) and muscular recruitment pattern with dynamic surface electromyography were carried out before and after the interventions.
Both groups showed improvement in FMA (Group A 8.25 and Group B 5.29). Higher improvement in B&B was detected in the group A (2.62 versus 0,14 in Group B). MAS was improved more in the Group B (-0,86 versus -0,14 in Group A). In both groups, sEMG showed a reduction of co-contractions and an increase of agonist muscles recruitment during the reaching movement and the robotic exercises.
The demonstrated improvement in motor function and in muscular activation pattern suggests how a short robotic training could be effective in chronic post-stroke spasticity of upper limb and in less severe spasticity the only robotic treatment could be effective.With the limits of small sample, the results showed some equivalence between these two approaches with respect to motor recovery and spasticity reduction suggesting that the cost effectiveness of each treatment may have an important role in this choice.

Source: How could robotic training and botolinum toxin be combined in chronic post stroke upper limb… – Abstract – Europe PMC

, , , , , , , ,

Leave a comment

%d bloggers like this: