Posts Tagged neuromodulation

[Abstract] Vagus Nerve Stimulation for the Treatment of Epilepsy

First page of article

Vagus nerve stimulation (VNS) was the first neuromodulation device approved for treatment of epilepsy. In more than 20 years of study, VNS has consistently demonstrated efficacy in treating epilepsy. After 2 years, approximately 50% of patients experience at least 50% reduced seizure frequency. Adverse events with VNS treatment are rare and include surgical adverse events (including infection, vocal cord paresis, and so forth) and stimulation side effects (hoarseness, voice change, and cough). Future developments in VNS, including closed-loop and noninvasive stimulation, may reduce side effects or increase efficacy of VNS.

via Vagus Nerve Stimulation for the Treatment of Epilepsy – Neurosurgery Clinics

, , , ,

Leave a comment

[ARTICLE] Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study – Full Text

Abstract

Background

Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby people with stroke use the impaired index finger to trace waveform-shaped lines on a monitor. Our aims were to assess the feasibility and safety of a telerehabilitation program consisting of tDCS and finger tracking training through questionnaires on ease of use, adverse symptoms, and quantitative assessments of motor function and cognition. We believe this telerehabilitation program will be safe and feasible, and may reduce patient and clinic costs.

Methods

Six participants with hemiplegia post-stroke [mean (SD) age was 61 (10) years; 3 women; mean (SD) time post-stroke was 5.5 (6.5) years] received five 20-min tDCS sessions and finger tracking training provided through telecommunication. Safety measurements included the Digit Span Forward Test for memory, a survey of symptoms, and the Box and Block test for motor function. We assessed feasibility by adherence to treatment and by a questionnaire on ease of equipment use. We reported descriptive statistics on all outcome measures.

Results

Participants completed all treatment sessions with no adverse events. Also, 83.33% of participants found the set-up easy, and all were comfortable with the devices. There was 100% adherence to the sessions and all recommended telerehabilitation.

Conclusions

tDCS with finger tracking training delivered through telerehabilitation was safe, feasible, and has the potential to be a cost-effective home-based therapy for post-stroke motor rehabilitation.

Background

Post-stroke motor function deficits stem not only from neurons killed by the stroke, but also from down-regulated excitability in surviving neurons remote from the infarct [1]. This down-regulation results from deafferentation [2], exaggerated interhemispheric inhibition [3], and learned non-use [4]. Current evidence suggests that post-stroke motor rehabilitation therapies should encourage upregulating neurons and should target neuroplasticity through intensive repetitive motor practice [56]. Previously, our group has examined the feasibility and efficacy of a custom finger tracking training program as a way of providing people with stroke with an engaging repetitive motor practice [789]. In this program, the impaired index finger is attached to an electro-goniometer, and participants repeatedly move the finger up and down to follow a target line that is drawn on the display screen. In successive runs, the shape, frequency and amplitude of target line is varied, which forces the participant to focus on the tracking task. In one study, we demonstrated a 23% improvement in hand function (as measured by the Box and Block test; minimal detectable change is 18% [10]) after participants with stroke completed the tracking training program [9]. While our study did not evaluate changes in activity in daily life (ADL) or quality of life (because efficacy of the treatment was not the study objective), the Box and Block test is moderately correlated (r = 0.52) to activities in daily life and quality of life (r = 0.59) [11]. In addition, using fMRI, we showed that training resulted in an activation transition from ipsilateral to contralateral cortical activation in the supplementary motor area, primary motor and sensory areas, and the premotor cortex [9].

Recently, others have shown that anodal transcranial direct current stimulation (tDCS) can boost the beneficial effects of motor rehabilitation, with the boost lasting for at least 3 months post-training [12]. Also, bihemispheric tDCS stimulation (anodal stimulation to excite the ipsilateral side and cathodal stimulation to downregulate the contralateral side) in combination with physical or occupational therapy has been shown to provide a significant improvement in motor function (as measured by Fugl-Meyer and Wolf Motor Function) compared to a sham group [13]. Further, a recent meta-analysis of randomized-controlled trials comparing different forms of tDCS shows that cathodal tDCS is a promising treatment option to improve ADL capacity in people with stroke [14]. Compared to transcutaneous magnetic stimulation (TMS), tDCS devices are inexpensive and easier to operate. Improvement in upper limb motor function can appear after only five tDCS sessions [15], and there are no reports of serious adverse events when tDCS has been used in human trials for periods of less than 40 min at amplitudes of less than 4 mA [16].

Moreover, tDCS stimulation task also seems beneficial for other impairments commonly seen in people post-stroke. Stimulation with tDCS applied for 20 sessions of 30 min over a 4-week period has been shown to decrease depression and improve quality of life in people after a stroke [1718]. Four tDCS sessions for 10 min applied over the primary and sensory cortex in eight patients with sensory impairments more than 10 months post-stroke enhanced tactile discriminative performance [19]. Breathing exercises with tDCS stimulation seems to be more effective than without stimulation in patient with chronic stroke [20], and tDCS has shown promise in treating central post-stroke pain [21]. Finally, preliminary research on the effect of tDCS combined with training on resting-state functional connectivity shows promise to better understand the mechanisms behind inter-subject variability regarding tDCS stimulation [22].

Motor functional outcomes in stroke have declined at discharge from inpatient rehabilitation facilities [2324], likely a result of the pressures to reduce the length of stay at inpatient rehabilitation facilities as part of a changing and increasingly complex health care climate [2526]. Researchers, clinicians, and administrators continue to search for solutions to facilitate and post-stroke rehabilitation after discharge. Specifically, there has been considerable interest in low-cost stroke therapies than can be administered in the home with only a modest level of supervision by clinical professionals.

Home telerehabilitation is a strategy in which rehabilitation in the patient’s home is guided remotely by the therapist using telecommunication technology. If patients can safely apply tDCS to themselves at home, combining telerehabilitation with tDCS would be an easy way to boost therapy without costly therapeutic face-to-face supervision. For people with multiple sclerosis, the study of Charvet et al. (2017) provided tDCS combined with cognitive training, delivered through home telerehabilitation, and demonstrated greater improvement on cognitive measures compared to those who received just the cognitive training [27]. The authors demonstrated the feasibility of remotely supervised, at-home tDCS and established a protocol for safe and reliable delivery of tDCS for clinical studies [28]. Some evidence shows that telerehabilitation approaches are comparable to conventional rehabilitation in improving activities of daily living and motor function for stroke survivors [2930], and that telemedicine for stroke is cost-effective [3132]. A study in 99 people with stroke receiving training using telerehabilitation (either with home exercise program or robot assisted therapy with home program) demonstrated significant improvements in quality of life and depression [33].

A recent search of the literature suggests that to date, no studies combine tDCS with repetitive tracking training in a home telerehabilitation setting to determine whether the combination leads to improved motor rehabilitation in people with stroke. Therefore, the aim of this pilot project was to explore the safety, usability and feasibility of the combined system. For the tDCS treatment, we used a bihemispheric montage with cathodal tDCS stimulation to suppress the unaffected hemisphere in order to promote stroke recovery [34353637]. For the repetitive tracking training therapy, we used a finger tracking task that targets dexterity because 70% of people post-stroke are unable to use their hand with full effectiveness after stroke [38]. Safety was assessed by noting any decline of 2 points or more in the cognitive testing that persists over more than 3 days. We expect day to day variations of 1 digit. Motor decline is defined by a decline of 6 blocks on the Box and Block test due to muscle weakness. This is based on the minimal detectable change (5.5 blocks/min) [10]. The standard error of measurement is at least 2 blocks for the paretic and stronger side. We expect possible variations in muscle tone that could influence the scoring of the test. Usability was assessed through a questionnaire and by observing whether the participant, under remote supervision, could don the apparatus and complete the therapy sessions. Our intent was to set the stage for a future clinical trial to determine the efficacy of this approach.

Methods

Participants

Participants were recruited from a database of people with chronic stroke who had volunteered for previous post-stroke motor therapy research studies at the University of Minnesota. Inclusion criteria were: at least 6 months post-stroke; at least 10 degrees of active flexion and extension motion at the index finger; awareness of tactile sensation on the scalp; and a score of greater than or equal to 24 (normal cognition) on the Mini-Mental State Examination (MMSE) to be cognitively able to understand instructions to don and use the devices [39]. We excluded those who had a seizure within past 2 years, carried implanted medical devices incompatible with tDCS, were pregnant, had non-dental metal in the head or were not able to understand instructions on how to don and use the devices. The study was approved by the University of Minnesota IRB and all enrolled participants consented to be in the study.

Apparatus

tDCS was applied using the StarStim Home Research Kit (NeuroElectrics, Barcelona, Spain). The StarStim system consists of a Neoprene head cap with marked positions for electrode placement, a wireless cap-mounted stimulator and a laptop control computer. Saline-soaked, 5 cm diameter sponge electrodes were used. For electrode placement, we followed a bihemispheric montage [14] involving cathodal stimulation on the unaffected hemisphere with the anode positioned at C3 and the cathode at C4 for participants with left hemisphere stroke, and vice versa for participants with right hemisphere stroke. Stimulation protocols were set by the investigator on a web-based application that communicated with the tDCS control computer. A remote access application (TeamViewer) was also installed on the control computer, as was a video conferencing application (Skype).

The repetitive finger tracking training system was a copy of what we used in our previous stroke studies [789]. The apparatus included an angle sensor mounted to a lightweight brace and aligned with the metacarpophalangeal (MCP) joint of the index finger, a sensor signal conditioning circuit, and a target tracking application loaded on a table computer. Figure 1 shows a participant using the apparatus during a treatment session.

Fig. 1

Fig. 1 Participant with right hemiparesis receiving transcranial direct current magnetic stimulation (tDCS) in their home simultaneous while performing the finger movement tracking task on the tracking computer (left). The tDCS computer (right) shows the supervising investigator, located off-site, who communicated with the participant through the video conferencing application, controlled the tDCS stimulator through web-based software, and controlled the tracking protocols. (Permission was obtained from the participant for the publication of this picture)

[…]

Continue —> Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , ,

Leave a comment

[ARTICLE] Vagus Nerve Stimulation Paired With Upper Limb Rehabilitation After Chronic Stroke – Full Text PDF

A Blinded Randomized Pilot Study

Background and Purpose

We assessed safety, feasibility, and potential effects of vagus nerve stimulation (VNS) paired with rehabilitation for improving arm function after chronic stroke.

Methods

We performed a randomized, multisite, double-blinded, sham-controlled pilot study. All participants were implanted with a VNS device and received 6-week in-clinic rehabilitation followed by a home exercise program. Randomization was to active VNS (n=8) or control VNS (n=9) paired with rehabilitation. Outcomes were assessed at days 1, 30, and 90 post-completion of in-clinic therapy.

Results

All participants completed the course of therapy. There were 3 serious adverse events related to surgery. Average FMA-UE scores increased 7.6 with active VNS and 5.3 points with control at day 1 post–in-clinic therapy (difference, 2.3 points; CI, −1.8 to 6.4; P=0.20). At day 90, mean scores increased 9.5 points from baseline with active VNS, and the control scores improved by 3.8 (difference, 5.7 points; CI, −1.4 to 11.5; P=0.055). The clinically meaningful response rate of FMA-UE at day 90 was 88% with active VNS and 33% with control VNS (P<0.05).

Conclusions

VNS paired with rehabilitation was acceptably safe and feasible in participants with upper limb motor deficit after chronic ischemic stroke. A pivotal study of this therapy is justified.

 

Full Text PDF

via Vagus Nerve Stimulation Paired With Upper Limb Rehabilitation After Chronic Stroke | Stroke

, , , , , , , , , ,

Leave a comment

[VIDEO] Relearning and Retraining in Brain Injury Rehabilitation Does VR help? – YouTube

Δημοσιεύτηκε στις 20 Ιουν 2018

Dr. Sharan Srinivasan | Stereotactic and Functional Neurosurgeon, CMD-NewRo- the neuro rehab experts presents on “Relearning and Retraining in Brain Injury Rehabilitation Does VR help?” at the vamrr Summit on Virtual Reality in Health | 21 March | Bengaluru

 

via Relearning and Retraining in Brain Injury Rehabilitation Does VR help? – YouTube

, , , , , , , ,

1 Comment

[Abstract] Effects of Electrical Stimulation in Tinnitus Patients: Conventional Versus High-Definition tDCS

Abstract

Background. Contradictory results have been reported for transcranial direct current stimulation (tDCS) as treatment for tinnitus. The recently developed high-definition tDCS (HD tDCS) uses smaller electrodes to limit the excitation to the desired brain areas.

Objective. The current study consisted of a retrospective part and a prospective part, aiming to compare 2 tDCS electrode placements and to explore effects of HD tDCS by matched pairs analyses.

Methods. Two groups of 39 patients received tDCS of the dorsolateral prefrontal cortex (DLPFC) or tDCS of the right supraorbital–left temporal area (RSO-LTA). Therapeutic effects were assessed with the tinnitus functional index (TFI), a visual analogue scale (VAS) for tinnitus loudness, and the hyperacusis questionnaire (HQ) filled out at 3 visits: pretherapy, posttherapy, and follow-up. With a new group of patients and in a similar way, the effects of HD tDCS of the right DLPFC were assessed, with the tinnitus questionnaire (TQ) and the hospital anxiety and depression scale (HADS) added.

Results. TFI total scores improved significantly after both tDCS and HD tDCS (DLPFC: P < .01; RSO-LTA: P < .01; HD tDCS: P = .05). In 32% of the patients, we observed a clinically significant improvement in TFI. The 2 tDCS groups and the HD tDCS group showed no differences on the evolution of outcomes over time (TFI: P = .16; HQ: P = .85; VAS: P = .20).

Conclusions. TDCS and HD tDCS resulted in a clinically significant improvement in TFI in 32% of the patients, with the 3 stimulation positions having similar results. Future research should focus on long-term effects of electrical stimulation.

via Effects of Electrical Stimulation in Tinnitus Patients: Conventional Versus High-Definition tDCS – Laure Jacquemin, Giriraj Singh Shekhawat, Paul Van de Heyning, Griet Mertens, Erik Fransen, Vincent Van Rompaey, Vedat Topsakal, Julie Moyaert, Jolien Beyers, Annick Gilles, 2018

, , , , , ,

Leave a comment

[ARTICLE] Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond – Full Text

Neurological diseases causing motor/cognitive impairments are among the most common causes of adult-onset disability. More than one billion of people are affected worldwide, and this number is expected to increase in upcoming years, because of the rapidly aging population. The frequent lack of complete recovery makes it desirable to develop novel neurorehabilitative treatments, suited to the patients, and better targeting the specific disability. To date, rehabilitation therapy can be aided by the technological support of robotic-based therapy, non-invasive brain stimulation, and neural interfaces. In this perspective, we will review the above methods by referring to the most recent advances in each field. Then, we propose and discuss current and future approaches based on the combination of the above. As pointed out in the recent literature, by combining traditional rehabilitation techniques with neuromodulation, biofeedback recordings and/or novel robotic and wearable assistive devices, several studies have proven it is possible to sensibly improve the amount of recovery with respect to traditional treatments. We will then discuss the possible applied research directions to maximize the outcome of a neurorehabilitation therapy, which should include the personalization of the therapy based on patient and clinician needs and preferences.

Introduction

According to the World Health Organization (WHO), neurological disorders and injuries account for the 6.3% of the global burden of disease (GBD) (12). With more than 6% of DALY (disability-adjusted life years) in the world, neurological disorders represent one of the most widespread clinical condition. Among neurological disorders, more than half of the burden in DALYs is constituted by cerebral-vascular disease (55%), such as stroke. Stroke, together with spinal cord injury (SCI), accounts for 52% of the adult-onset disability and, over a billion people (i.e., about a 15% of the population worldwide) suffer from some form of disability (3). These numbers are likely to increase in the coming years due to the aging of the population (4), since disorders affecting people aged 60 years and older contribute to 23% of the total GBD (5).

Standard physical rehabilitation favors the functional recovery after stroke, as compared to no treatment (6). However, the functional recovery is not always satisfactory as only 20% of patients fully resume their social life and job activities (7). Hence, the need of more effective and patient-tailored rehabilitative approaches to maximize the functional outcome of neurological injuries as well as patients’ quality of life (8). Modern technological methodologies represent one of the most recent advances in neurorehabilitation, and an increasing body of evidence supports their role in the recovery from brain and/or medullary insults. This manuscript provides a perspective on how technologies and methodologies could be combined in order to maximize the outcome of neurorehabilitation.

Current Systems and Therapeutic Approaches for Neurorehabilitation

The great progress made in interdisciplinary fields, such as neural engineering (910), has allowed to investigate many neural mechanisms, by detecting and processing the neural signals at high spatio-temporal resolution, and by interfacing the nervous system with external devices, thus restoring neurological functions lost due to disease/injury. The progress continues in parallel to technological advancements. The last two decades there has seen a large proliferation of technological approaches for human rehabilitation, such as robots, wearable systems, brain stimulation, and virtual environments. In the next sections, we will focus on: robotic therapy, non-invasive brain stimulation (NIBS), and neural interfaces.

Robotic Devices

Robots for neurorehabilitation are designed to support the administration of physical exercises to the upper or lower extremities, with the purpose of promoting neuro-motor recovery. This technology has a relatively long history, dating back to the early 1990s (11). Robot devices for rehabilitation differ widely in terms of mechanical design, number of degrees of freedom, and control architectures. As regards the mechanical design, robots may have either a single point of interaction (i.e., end effector) with the user body (endpoint robots or manipulanda) or multiple points of interaction (exoskeletons and wearable robots) (12).

Endpoint robots for the upper extremity, include Inmotion2 (IMT, USA) (13), KINARM End-Point (BKIN, Canada), and Braccio di Ferro (14) (Figure 1A1, left). Only some of these devices have been tested in randomized clinical trials (15), confirming an improvement of upper limb motor function after stroke (16). However, convincing evidence in favor of significant changes in activities of daily living (ADL) indicators is lacking (17), possibly because performance in ADL is highly affected by hand functionality. A good example of lower limb endpoint robot is represented by gait trainer GT1 (Reha-Stim, Germany). Its efficacy was tested by Picelli et al. (18), who demonstrated an improvement in multiple clinical measures in subjects with Parkinson’s disease following robotic-assisted rehabilitation when compared to physical rehabilitation alone (18). Endpoint robots are also available for postural rehabilitation. For instance, Hunova (Movendo Technology, Italy, launched in 2017) is equipped with a seat and a platform that induce multidirectional movements to improve postural stability (Figure 1A1, right).

 

Figure 1. Neurorehabilitation therapies. (A1) Endpoint robots: on the left the “Braccio di Ferro” manipulandum, on the right the postural robot Hunova. Braccio di ferro (14) is a planar manipulandum with 2-DOF, developed at the University of Genoa (Italy). It is equipped with direct-drive brushless motors and is specially designed to minimize endpoint inertia. It uses the H3DAPI programming environment, which allows to share exercise protocol with other devices. Written informed consent was obtained from the subject depicted in the panel. Movendo Technology’s Hunova is a robotic device that permits full-body rehabilitation. It has two 2-DOF actuated and sensorized platforms located under the seat and on the floor level that allow it to rehabilitate several body districts, including lower limb (thanks to the floor-level platform), the core, and the back, using the platform located underneath the seat. Different patient categories (orthopedic, neurological, and geriatric) can be treated, and interact with the machine through a GUI based on serious games. (A2) Wearable device: the recent exoskeleton Twin. Twin is a fully modular device developed at IIT and co-funded by INAIL (the Italian National Institute for Insurance against Accidents at Work). The device can be easily assembled/disassembled by the patient/therapist. It provides total assistance to patients in the 5–95th percentile range with a weight up to 110 kg. Its modularity is implemented by eight quick release connectors, each located at both mechanical ends of each motor, that allow mechanical and electrical connection with the rest of the structure. It can implement three different walking patterns that can be fully customized according to the patient’s needs viaa GUI on mobile device, thus enabling personalization of the therapy. Steps can be triggered via an IMU-based machine state controller. (B1) Repetitive transcranial magnetic stimulation (rTMS) representation. rTMS refers to the application of magnetic pulses in a repetitive mode. Conventional rTMS applied at low frequency (0.2–1 Hz) results in plastic inhibition of cortical excitability, whereas when it is applied at high frequency (≥5Hz), it leads to excitation (19). rTMS can also be applied in a “patterned mode.” Theta burst stimulation involves applying bursts of high frequency magnetic stimulation (three pulses at 50 Hz) repeated at intervals of 200 ms (20). Intermittent TBS increases cortical excitability for a period of 20–30 min, whereas continuous TBS leads to a suppression of cortical activity for approximately the same amount of time (20). (B2) Transcranial current stimulation (tCS) representation. tCS uses ultra-low intensity current, to manipulate the membrane potential of neurons and modulate spontaneous firing rates, but is insufficient on its own to discharge resting neurons or axons (21). tCS is an umbrella term for a number of brain modulating paradigms, such as transcranial direct current stimulation (22), transcranial alternating current stimulation (23), and transcranial random noise stimulation (24). (C) A typical BCI system. Five stages are represented: brain-signal acquisition, preprocessing, feature extraction/selection, classification, and application interface. In the first stage, brain-signal acquisition, suitable signals are acquired using an appropriate modality. Since the acquired signals are normally weak and contain noise (physiological and instrumental) and artifacts, preprocessing is needed, which is the second stage. In the third stage, some useful data or so-called “features” are extracted. These features, in the fourth stage, are classified using a suitable classifier. Finally, in the fifth stage, the classified signals are transmitted to a computer or other external devices for generating the desired control commands to the devices. In neurofeedback applications, the application interface is a real-time display of brain activity, which enables self-regulation of brain functions (25).

Continue —> Frontiers | Technological Approaches for Neurorehabilitation: From Robotic Devices to Brain Stimulation and Beyond | Neurology

, , , , , , ,

Leave a comment

[BOOK] Emerging Therapies in Neurorehabilitation II – Βιβλία Google

Εξώφυλλο
José L. PonsRafael RayaJosé González
Springer30 Οκτ 2015 – 318 σελίδες

This book reports on the latest technological and clinical advances in the field of neurorehabilitation. It is, however, much more than a conventional survey of the state-of-the-art in neurorehabilitation technologies and therapies. It was written on the basis of a week of lively discussions between PhD students and leading research experts during the Summer School on Neurorehabilitation (SSNR2014), held September 15-19 in Baiona, Spain. Its unconventional format makes it a perfect guide for all PhD students, researchers and professionals interested in gaining a multidisciplinary perspective on current and future neurorehabilitation scenarios. The book addresses various aspects of neurorehabilitation research and practice, including a selection of common impairments affecting CNS function, such as stroke and spinal cord injury, as well as cutting-edge rehabilitation and diagnostics technologies, including robotics, neuroprosthetics, brain-machine interfaces and neuromodulation.

via Emerging Therapies in Neurorehabilitation II – Βιβλία Google

, , , , , , ,

Leave a comment

[Abstract] Cranial nerve non-invasive neuromodulation improves gait and balance in stroke survivors: A pilot randomised controlled trial

First page of article

Cranial nerve non-invasive neuromodulation (CN-NINM) is delivered using a Portable Neuromodulation Stimulation (PoNS™) device that stimulates two cranial nerve nuclei (trigeminal and facial nerve nuclei) using electrodes embedded in a mouthpiece that rests on the tongue. Danilov and colleagues reported that prolonged and repetitive (20 minutes or more) tongue stimulation coupled with specific training of balance and gait can initiate long-lasting neuronal reorganization that can be measured in participants’ behaviour [1].

via Cranial nerve non-invasive neuromodulation improves gait and balance in stroke survivors: A pilot randomised controlled trial – Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation

, , , ,

Leave a comment

[ARTICLE] Impact of Transcranial Magnetic Stimulation on Functional Movement Disorders: Cortical Modulation or a Behavioral Effect? – Full Text

Introduction: Recent studies suggest that repeated transcranial magnetic stimulation (TMS) improves functional movement disorders (FMDs), but the underlying mechanisms are unclear. The objective was to determine whether the beneficial action of TMS in patients with FMDs is due to cortical neuromodulation or rather to a cognitive-behavioral effect.

Method: Consecutive patients with FMDs underwent repeated low-frequency (0.25 Hz) magnetic stimulation over the cortex contralateral to the symptoms or over the spinal roots [root magnetic stimulation (RMS)] homolateral to the symptoms. The patients were randomized into two groups: group 1 received RMS on day 1 and TMS on day 2, while group 2 received the same treatments in reverse order. We blindly assessed the severity of movement disorders before and after each stimulation session.

Results: We studied 33 patients with FMDs (dystonia, tremor, myoclonus, Parkinsonism, or stereotypies). The median symptom duration was 2.9 years. The magnetic stimulation sessions led to a significant improvement (>50%) in 22 patients (66%). We found no difference between TMS and RMS.

Conclusion: We suggest that the therapeutic benefit of TMS in patients with FMDs is due more to a cognitive-behavioral effect than to cortical neuromodulation.

Introduction

Individuals with functional movement disorders (FMDs) account for 3–20% of all patients seen in movement-disorder clinics (13). There is no consensus treatment for FMDs (46). These movement disorders are not due to irreversible brain damage but their outcome is nonetheless poor: symptoms are persistent or worse after 1.5–7 years of follow-up in between 44 and 90% of patients (6, 7). FMDs generate major healthcare costs, as well as indirect costs due to unemployment and disability (8).

Recent studies suggest a beneficial effect of repeated supraliminal low-frequency transcranial magnetic stimulation (TMS) (i.e., TMS ≤ 1 Hz) on functional motor symptoms (914) [Ref. (15) for a review]. Among these studies, only one included a blinded assessment (11), and only one included a control group (sham treatment) (9). Focusing on FMDs more specifically, two studies showed a beneficial effect of supraliminal low-frequency TMS, with a mean improvement rate of 67% (11) and 97% (13). It is unclear whether the therapeutic benefit is due to cortical neuromodulation, i.e., to changes in cortical excitability and in connectivity between brain areas (15, 16). The alternative hypothesis is a cognitive-behavioral effect, a therapeutic effect that is linked to suggestion and/or motor relearning.

To address this issue, we blindly compared the therapeutic effect of repeated TMS and repeated root magnetic stimulation (RMS) in patients with FMDs. RMS was chosen as the control treatment to mimic TMS-induced movement without directly stimulating the cortex.

Continue —>  Frontiers | Impact of Transcranial Magnetic Stimulation on Functional Movement Disorders: Cortical Modulation or a Behavioral Effect? | Neurology

, , , , , , , ,

Leave a comment

%d bloggers like this: