Posts Tagged Occupational therapy

[BLOG POST] A Stylish Weighted Blanket – The Gravity Blanket

 

A study conducted by the Occupational Therapy in Mental Health journal revealed that 63% of subjects using a wieghted blanket reported lower anxiety and 78% preferred the weighted blanket as a calming modality than other options provided.

Weighted blankets have been found to provide comfort for many people, including people with anxiety, autism, ADHD, sensory processing disorder, PTSD, and insomnia. The comfort comes from the power of “deep touch pressure stimulation” that has been shown to increase serotonin and melatonin. These hormones are responsible for the feelings associated with relaxation, while decreasing cortisol, the hormone responsible for stress.

What’s special about The Gravity Blanket?

Although there are many weighted blanket options out there, Gravity makes a point to go beyond functionality and put additional focus on the look and feel of the blanket. Their products look more like luxury lifestyle pieces than therapy items. Their website offers a small selection of items; each with the simple and sleek design that they have come to be known for.

Gravity also has a partnership with the sleep and meditation app, Calm. The two wellness brands teamed up for a limited availability offer known as The Dream Package. The package combines a Calm-branded Gravity Blanket and a year’s subscription to the Calm app.

To learn more about The Gravity Blanket, look at the other products they offer, or compare to the Harkla Blanket that we’ve previously blogged about, you can find their website at gravityblankets.com.

via A Stylish Weighted Blanket – The Gravity Blanket – Assistive Technology Blog

, , ,

Leave a comment

[ARTICLE] Barriers, Facilitators and Interventions to Support Virtual Reality Implementation in Rehabilitation: A Scoping Review – Full Text

Abstract

Virtual reality and active video games (VR/AVGs) are promising rehabilitation tools because of their potential to facilitate abundant, motivating, and feedback-rich practice. However, clinical adoption remains low despite a growing evidence base and the recent development of clinically accessible and rehabilitation-specific VR/AVG systems. Given clinicians’ eagerness for resources to support VR/AVG use, a critical need exists for knowledge translation (KT) interventions to facilitate VR/AVG integration into clinical practice. KT interventions have the potential to support adoption by targeting known barriers to, and facilitators of, change. This scoping review of the VR/AVG literature uses the Theoretical Domains Framework (TDF) to (1) structure an overview of known barriers and facilitators to clinical uptake of VR/AVGs for rehabilitation; (2) identify KT strategies to target these factors to facilitate adoption; and (3) report the results of these strategies. Barriers/facilitators and evaluated or proposed KT interventions spanned all but 1 and 2 TDF domains, respectively. Most frequently cited barriers/facilitators were found in the TDF domains of Knowledge, Skills, Beliefs About Capabilities, Beliefs About Consequences, Intentions, Goals, Environmental Context and Resources, and Social Influences. Few studies empirically evaluated KT interventions to support adoption; measured change in VR/AVG use did not accompany improvements in self-reported skills, attitudes, and knowledge. Recommendations to target frequently identified barriers include technology development to meet end-user needs more effectively, competency development for end-users, and facilitated VR/AVG implementation in clinical settings. Subsequent research can address knowledge gaps in both clinical and VR/AVG implementation research, including on KT intervention effectiveness and unexamined TDF domain barriers.

Introduction

Virtual reality and active video games (VR/AVG) are promising rehabilitation tools because of their potential to facilitate abundant, motivating, and feedback-rich practice [,]. A steady increase in the number of peer-reviewed articles evaluating the effects of VR/AVG interventions in many rehabilitation populations has been observed over the past 20 years. This increase reflects a growing interest in VR/AVG from the rehabilitation research and development sectors. Ideally, newly developed and empirically evaluated products and interventions that are found to be safe and effective would be quickly integrated into clinical practice. Yet what we are observing in patient care follows a more typical pattern for the adoption of evidence-based treatment techniques or tools: one of slow and variable progress [].

Collaboration between engineers and product end-users can inform the development of useful VR/AVG technologies that meet the needs of clients and therapists. Moving VR/AVG technology into the hands of therapists allows clients to benefit from its therapeutic potential. Systematically examining the factors that impact VR/AVG adoption in rehabilitation, and the effect of knowledge translation (KT) strategies on behaviors related to their use, is critical for guiding the successful implementation of these technologies. A clear understanding of how VR/AVG is being used by clinicians, the limitations clinicians face in integrating the technologies into their daily treatment routines, and the most effective strategies for supporting clinicians in technology adoption are paramount to informing these implementation approaches.

Recent surveys of occupational and physical therapists in Canada [], the United States (Levac et al., in preparation), and Scotland [] on their use of VR/AVG and their learning needs related to future use of these technologies provides a foundational knowledge base about current clinical use. Nearly half of the 1071 respondents in Canada [] and 76% of the 491 U.S. respondents (Levac et al., in preparation) had used VR/AVG clinically. However, only 12% of respondents in Canada [], 31% in the United States (Levac et al., in preparation), and 18% of the 112 respondents in Scotland [] reported current use. This discrepancy indicates the need for additional efforts to identify and to address existing barriers to VR/AVG use. Commercially available AVG systems were the most common systems in use in all 3 countries [,] (Levac et al., in preparation); the use of rehabilitation-specific VR systems by Canadian [] and U.S. therapists (Levac et al., in preparation) was much lower (<3% of respondents for any given system).

Despite low reported daily use, VR/AVG systems were perceived by therapists to be widely relevant to rehabilitation for a number of different client populations, functional recovery goals and practice settings []. Sixty-one percent of respondents in Scotland reported that they would use gaming if it were available to them []. The majority of respondents in both Canada [] (76.3%) and the United States (69.9%) (Levac et al., in preparation) reported low self-efficacy in using VR/AVG clinically, but were interested in learning more. Commonly reported learning needs included knowledge and skills in selecting appropriate systems and games for individual clients, grading activities, evaluating outcomes, and integrating theoretical approaches to treatment [,,]. These findings suggest a strong need for educational resources and knowledge translation (KT) supports to facilitate evidence-based technology adoption [,]. KT is the process of moving evidence into practice []. KT interventions have the potential to support adoption by targeting known barriers to change, including a lack of knowledge and skills [].

Strong insights into the factors influencing therapists’ adoption of VR/AVG have emerged only in the past 5 years. A decomposed Theory of Planned Behavior, which integrates constructs from the Technology Adoption Model and the Diffusion of Innovation theory forms the theoretical basis for the majority of this research [,]. The Theoretical Domains Framework (TDF) is another approach that can be used to conceptualize the evaluation of barriers and facilitators of change, including technology adoption []. The TDF is an implementation framework that integrates 128 theoretical constructs drawn from 33 behavior change theories into 14 barrier/facilitator domains []. Although the framework has not been applied yet to this body of literature, it offers a more comprehensive approach to the identification and classification of barriers and facilitators of change than a single theory or framework alone. Drawn from the KT literature, the framework can be used to structure the assessment of barriers and facilitators of change across a range of contexts, as well as the selection of interventions to target these barriers and facilitators [].

The purpose of this scoping review was to apply the TDF to examine the extent, range, and nature of studies assessing VR/AVG barriers and facilitators and/or recommending or evaluating KT interventions to promote VR/AVG adoption in rehabilitation since 2005. Our objectives were to

  1. present an overview of factors known to limit or support VR/AVG adoption for rehabilitation;

  2. describe the KT strategies that have been recommended or evaluated to address these factors and to report on their effectiveness, where possible; and

  3. provide recommendations for technology development, research, and clinical implementation based on these findings.

[…]

Continue —>  Barriers, Facilitators and Interventions to Support Virtual Reality Implementation in Rehabilitation: A Scoping Review

, , , , , , , ,

Leave a comment

[BLOG POST] 5 Smartphone Games That Encourage Wrist Rehabilitation

Tired of using dumbbells for rehabilitation following distal radius fractures? Looking for new interventions to increase client engagement? Look no further than your patient’s smartphone! Incorporate it into exercise routines to help your patients regain wrist balance and to provide proprioceptive input.

Evidence Supports Proprioceptive Activities

Emerging evidence supports the use of proprioceptive activities for distal radius fracture rehabilitation.1 A cross-sectional study involving females treated operatively and non-operatively for a distal radius fracture found that participants had significantly less joint position sense in comparison to study controls.2 The proprioceptive limitations correlated highly with functional impairment on the Patient Rated Wrist Evaluation.3

By addressing proprioceptive deficits while encouraging functional wrist range of motion, smartphone applications complement a traditional hand therapy program for individuals requiring skilled therapy following a distal radius fracture.

Some games to consider:

  • Chopper Lite – Action packed side-scrolling helicopter game where a tilt of the screen flies the chopper.
  • Labyrinth – Classic labyrinth game in which you must guide a ball through a labyrinth by moving your device.
  • Tilt Maze Lite – Maze game where a tilt of your device helps a marble through a maze toward the exit. Use different mazes to test wrist balance and timing. The game stores the player’s best time for each maze so patients can track their performance as their wrist heals.
  • Water Slide Extreme – Unique water slide game featuring tight corners and huge loops that you must navigate by twisting or leaning your device.
  • Snail Mail – Kart-style racing game in which the player controls a racing snail on a mission to collect packages and deliver them to the farthest reaches of the universe while dodging obstacles such as laser towers, slugs, asteroids, and salt.

The clinician should consider using smartphones as an intervention following distal radius fractures. Skilled hand therapists can assist with appropriate postural mechanics and provide guidelines for the amount of time a patient should devote to gaming.

Rehabilitation at Your Fingertips

Certain smartphone applications can be used to address client-specific deficits, decrease functional concerns, and achieve client-centered goals. Incorporating smartphone gaming in hand therapy may provide motivation and convenience to your clients.

 

References

  1. Algar, L., & Valdes, K. (2014). Using smartphone applications as hand therapy interventions. Journal of Hand Therapy27(3), 254–257. doi:10.1016/j.jht.2013.12.009
  2. Karagiannopoulos, C., Sitler, M., Michlovitz, S., & Tierney, R. (2014a). A Descriptive Study on Wrist and Hand Sensori-Motor Impairment and Function Following Distal Radius Fracture Intervention. Journal of Hand Therapy27(3), e2–e3. doi:10.1016/j.jht.2013.08.006
  3. Karangiannopoulos, et al. (2014)

via 5 Smartphone Games That Encourage Wrist Rehabilitation | MedBridge Blog

, , , , , ,

Leave a comment

[Abstract] Soymilk ingestion immediately after therapeutic exercise enhances rehabilitation outcomes in chronic stroke patients: A randomized controlled trial. – NeuroRehabilitation

Abstract

Study investigated the effects of an 8-week rehabilitation exercise program combined with soymilk ingestion immediately after exercise on functional outcomes in chronic stroke patients.

Twenty-two stroke patients were randomly allocated to either the soymilk or the placebo (PLA) group and received identical 8-weeks rehabilitation intervention (3 sessions per week for 120 minutes each session) with corresponding treatment beverages. The physical and functional outcomes were evaluated before, during, and after the intervention. The 8-week rehabilitation program enhanced functional outcomes of participants.

The immediate soymilk ingestion after exercise additionally improved hand grip strength, walking speed over 8 feet, walking performance per unit lean mass, and 6-Minute Walk Test performance compared with PLA after the intervention. However, the improvements in the total score for Short Physical Performance Battery and lean mass did not differ between groups.

This study demonstrated that, compared with rehabilitation alone, the 8-week rehabilitation program combined with immediate soymilk ingestion further improved walking speed, exercise endurance, grip strength, and muscle functionality in chronic stroke patients.
 

via Articles, Books, Reports, & Multimedia: Search REHABDATA | National Rehabilitation Information Center

, , , , , , , , ,

Leave a comment

[BLOG POST] Occupational Therapy Month: The Role of OT – NARIC

April is Occupational Therapy Month.  Occupational therapy (OT) is a client-centered health profession that helps people across the lifespan to do the things they want and need to do through therapeutic use of daily activities (occupations).  Occupational therapists use a holistic approach that focuses on the individual and work together with their clients to enhance their ability to engage in the occupations they want, need, or are expected to do. Occupational therapists enable people of all ages to live life to its fullest by helping them promote health, and prevent—or live better with—injury, illness, or disability.

Occupational therapy helps people function in all of their environments (e.g., home, work, school, community) and addresses the physical, psychological, and cognitive aspects of their well-being through engagement in occupation.  Occupational therapists may be employed in a number of roles, including but not limited to, practitioner, academic, manager, advocate, consultant, and researcher.  OT services typically include:

  • An individualized evaluation, during which the client/family and occupational therapist determine the person’s goals,
  • customized intervention to improve the person’s ability to perform daily activities and reach the goals, and
  • an outcomes evaluation to ensure that the goals are being met and/or make changes to the intervention plan.

Additionally, OT services may include comprehensive evaluations of the client’s home and other environments (e.g., workplace, school), recommendations for modifications to these environments or for adaptive equipment and training in its use, and guidance and education for family members and caregivers.  The American Occupational Therapy Association (AOTA) website offers a wide variety of resources on OT for children and youthadults, and caregivers as well as professionals. AOTA offers fact sheets on a variety of conditions related to rehabilitation and disability including the role of occupational therapists in reintegration into the community, chronic disease management, and community mobility and driving, among other topics.

Occupational therapists undergo extensive undergraduate, graduate, and/or doctorial accredited educational programs; as well as entry-level mentored practice.  After completion of a qualified accredited program an individual may sit for the national certification exam administered by the National Board for Certification in Occupational Therapy.  More information on job and career resources including qualifications for becoming an occupational therapist is available on the AOTA website.

 

via Occupational Therapy Month:  The Role of OT | Collection Spotlight from the National Rehabilitation Information Center

, , ,

Leave a comment

[Abstract + References] Effectiveness and Superiority of Rehabilitative Treatments in Enhancing Motor Recovery Within 6 Months Poststroke: A Systemic Review

Abstract

Objective

To investigate the effects of various rehabilitative interventions aimed at enhancing poststroke motor recovery by assessing their effectiveness when compared with no treatment or placebo and their superiority when compared with conventional training program (CTP).

Data Source

A literature search was based on 19 Cochrane reviews and 26 other reviews. We also updated the searches in PubMed up to September 30, 2017.

Study Selection

Randomized controlled trials associated with 18 experimented training programs (ETP) were included if they evaluated the effects of the programs on either upper extremity (UE) or lower extremity (LE) motor recovery among adults within 6 months poststroke; included ≥10 participants in each arm; and had an intervention duration of ≥10 consecutive weekdays.

Data Extraction

Four reviewers evaluated the eligibility and quality of literature. Methodological quality was assessed using the PEDro scale.

Data Synthesis

Among the 178 included studies, 129 including 7450 participants were analyzed in this meta-analysis. Six ETPs were significantly effective in enhancing UE motor recovery, with the standard mean differences (SMDs) and 95% confidence intervals outlined as follow: constraint-induced movement therapy (0.82, 0.45-1.19), electrostimulation (ES)-motor (0.42, 0.22-0.63), mirror therapy (0.71, 0.22-1.20), mixed approach (0.21, 0.01-0.41), robot-assisted training (0.51, 0.22-0.80), and task-oriented training (0.57, 0.16-0.99). Six ETPs were significantly effective in enhancing LE motor recovery: body-weight-supported treadmill training (0.27, 0.01-0.52), caregiver-mediated training (0.64, 0.20-1.08), ES-motor (0.55, 0.27-0.83), mixed approach (0.35, 0.15-0.54), mirror therapy (0.56, 0.13-1.00), and virtual reality (0.60, 0.15-1.05). However, compared with CTPs, almost none of the ETPs exhibited significant SMDs for superiority.

Conclusions

Certain experimented interventions were effective in enhancing poststroke motor recovery, but little evidence supported the superiority of experimented interventions over conventional rehabilitation.

References

  1. Langhorne, P., Bernhardt, J., Kwakkel, G. Stroke rehabilitation. Lancet2011;377:1693–1702
  2. Langhorne, P., Coupar, F., Pollock, A. Motor recovery after stroke: a systematic review. Lancet Neurol2009;8:741–754
  3. Veerbeek, J.M., van Wegen, E., van Peppen, R. et al, What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One2014;9e87987
  4. Pollock, A., Farmer, S.E., Brady, M.C. et al, Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev2014;:Cd010820
  5. Lohse, K.R., Lang, C.E., Boyd, L.A. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke2014;45:2053–2058
  6. Cooke, E.V., Mares, K., Clark, A., Tallis, R.C., Pomeroy, V.M. The effects of increased dose of exercise-based therapies to enhance motor recovery after stroke: a systematic review and meta-analysis. BMC Med2010;8:60
  7. Schneider, E.J., Lannin, N.A., Ada, L., Schmidt, J. Increasing the amount of usual rehabilitation improves activity after stroke: a systematic review. J Physiother2016;62:182–187
  8. Chang, K.H., Chen, H.C., Lin, Y., Chen, S.C., Chiou, H.Y., Liou, T.H. Developing an ICF core set for post-stroke disability assessment and verification in Taiwan: a preliminary study. Disabil Rehabil2012;34:1254–1261
  9. Kwakkel, G., Kollen, B., Twisk, J. Impact of time on improvement of outcome after stroke. Stroke2006;37:2348–2353
  10. Coupar, F., Pollock, A., van Wijck, F., Morris, J., Langhorne, P. Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst Rev2010;:Cd006432
  11. Mehrholz, J., Thomas, S., Elsner, B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev2017;8:Cd002840
  12. Vloothuis, J.D., Mulder, M., Veerbeek, J.M. et al, Caregiver-mediated exercises for improving outcomes after stroke. Cochrane Database Syst Rev2016;12:Cd011058
  13. Coupar, F., Pollock, A., Legg, L.A., Sackley, C., van Vliet, P. Home-based therapy programmes for upper limb functional recovery following stroke. Cochrane Database Syst Rev2012;:Cd006755
  14. Corbetta, D., Sirtori, V., Castellini, G., Moja, L., Gatti, R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev2015;:Cd004433
  15. Woodford, H., Price, C. EMG biofeedback for the recovery of motor function after stroke. Cochrane Database Syst Rev2007;:Cd004585
  16. Pomeroy, V.M., King, L., Pollock, A., Baily-Hallam, A., Langhorne, P. Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst Rev2006;:Cd003241
  17. Barclay-Goddard, R., Stevenson, T., Poluha, W., Moffatt, M.E., Taback, S.P. Force platform feedback for standing balance training after stroke. Cochrane Database Syst Rev2004;:Cd004129
  18. Barclay-Goddard, R.E., Stevenson, T.J., Poluha, W., Thalman, L. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev2011;:Cd005950
  19. Thieme, H., Mehrholz, J., Pohl, M., Behrens, J., Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev2012;:Cd008449
  20. Pollock, A., Baer, G., Campbell, P. et al, Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev2014;:Cd001920
  21. Legg, L.A., Drummond, A.E., Langhorne, P. Occupational therapy for patients with problems in activities of daily living after stroke. Cochrane Database Syst Rev2006;:Cd003585
  22. Pollock, A., Gray, C., Culham, E., Durward, B.R., Langhorne, P. Interventions for improving sit-to-stand ability following stroke. Cochrane Database Syst Rev2014;:Cd007232
  23. Magee, W.L., Clark, I., Tamplin, J., Bradt, J. Music interventions for acquired brain injury. Cochrane Database Syst Rev2017;1:Cd006787
  24. Mehrholz, J., Pohl, M., Platz, T., Kugler, J., Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke.Cochrane Database Syst Rev2015;:Cd006876
  25. Mehrholz, J., Thomas, S., Werner, C., Kugler, J., Pohl, M., Elsner, B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev2017;5:Cd006185
  26. French, B., Thomas, L.H., Coupe, J. et al, Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev2016;11:Cd006073
  27. Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G., Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev2017;11:Cd008349
  28. Kwakkel, G., Veerbeek, J.M., van Wegen, E.E., Wolf, S.L. Constraint-induced movement therapy after stroke. Lancet Neurol2015;14:224–234
  29. Etoom, M., Hawamdeh, M., Hawamdeh, Z. et al, Constraint-induced movement therapy as a rehabilitation intervention for upper extremity in stroke patients: systematic review and meta-analysis. Int J Rehabil Res2016;39:197–210
  30. Plummer, P., Eskes, G., Wallace, S. et al, Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch Phys Med Rehabil2013;94:2565–2574.e6
  31. Wang, X.Q., Pi, Y.L., Chen, B.L. et al, Cognitive motor interference for gait and balance in stroke: a systematic review and meta-analysis. Eur J Neurol2015;22:555–e37
  32. Ghai, S., Ghai, I., Effenberg, A.O. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis. Clin Interv Aging2017;12:557–577
  33. Stanton, R., Ada, L., Dean, C.M., Preston, E. Biofeedback improves performance in lower limb activities more than usual therapy in people following stroke: a systematic review. J Physiother2017;63:11–16
  34. Howlett, O.A., Lannin, N.A., Ada, L., McKinstry, C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil2015;96:934–943
  35. Laufer, Y., Elboim-Gabyzon, M. Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair2011;25:799–809
  36. Kho, A.Y., Liu, K.P., Chung, R.C. Meta-analysis on the effect of mental imagery on motor recovery of the hemiplegic upper extremity function. Aust Occup Ther J2014;61:38–48
  37. Li, R.Q., Li, Z.M., Tan, J.Y., Chen, G.L., Lin, W.Y. Effects of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials. Complement Ther Clin Pract2017;28:75–84
  38. Tong, Y., Pendy, J.T. Jr., Li, W.A. et al, Motor imagery-based rehabilitation: potential neural correlates and clinical application for functional recovery of motor deficits after stroke. Aging Dis2017;8:364–371
  39. Perez-Cruzado, D., Merchan-Baeza, J.A., Gonzalez-Sanchez, M., Cuesta-Vargas, A.I. Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Aust Occup Ther J2017;64:91–112
  40. Deconinck, F.J., Smorenburg, A.R., Benham, A., Ledebt, A., Feltham, M.G., Savelsbergh, G.J.Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabil Neural Repair2015;29:349–361
  41. Resquin, F., Cuesta Gomez, A., Gonzalez-Vargas, J. et al, Hybrid robotic systems for upper limb rehabilitation after stroke: a review. Med Eng Phys2016;38:1279–1288
  42. Veerbeek, J.M., Langbroek-Amersfoort, A.C., van Wegen, E.E., Meskers, C.G., Kwakkel, G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair2017;31:107–121
  43. Bertani, R., Melegari, C., De Cola, M.C., Bramanti, A., Bramanti, P., Calabro, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci2017;38:1561–1569
  44. Zhang, X., Yue, Z. Robotics in Lower-Limb Rehabilitation after Stroke. Behav Neurol2017;2017:3731802
  45. Ada, L., Dorsch, S., Canning, C.G. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother2006;52:241–248
  46. Harris, J.E., Eng, J.J. Strength training improves upper-limb function in individuals with stroke: a meta-analysis. Stroke2010;41:136–140
  47. Yang, X., Wang, P., Liu, C., He, C., Reinhardt, J.D. The effect of whole body vibration on balance, gait performance and mobility in people with stroke: a systematic review and meta-analysis. Clin Rehabil2015;29:627–638
  48. van Delden, A.E., Peper, C.E., Beek, P.J., Kwakkel, G. Unilateral versus bilateral upper limb exercise therapy after stroke: a systematic review. J Rehabil Med2012;44:106–117
  49. Wattchow, K.A., McDonnell, M.N., Hillier, S.L. Rehabilitation interventions for upper limb function in the first four weeks following stroke: a systematic review and meta-analysis of the evidence. Arch Phys Med Rehabil2018;99:367–382
  50. de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother2009;55:129–133
  51. Lang, C.E., Lohse, K.R., Birkenmeier, R.L. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol2015;28:549–555
  52. Marquez-Chin, C., Bagher, S., Zivanovic, V., Popovic, M.R. Functional electrical stimulation therapy for severe hemiplegia: randomized control trial revisited. Can J Occup Ther2017;84:87–97
  53. Kwakkel, G., Winters, C., van Wegen, E.E. et al, Effects of unilateral upper limb training in two distinct prognostic groups early after stroke: the EXPLICIT-stroke randomized clinical trial.Neurorehabil Neural Repair2016;30:804–816
  54. Morris, J.H., van Wijck, F., Joice, S., Ogston, S.A., Cole, I., MacWalter, R.S. A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: a randomized controlled trial. Arch Phys Med Rehabil2008;89:1237–1245
  55. van Delden, A.L., Peper, C.L., Nienhuys, K.N., Zijp, N.I., Beek, P.J., Kwakkel, G. Unilateral versus bilateral upper limb training after stroke. the Upper Limb Training After Stroke clinical trial. Stroke2013;44:2613–2616
  56. Brunner, I.C., Skouen, J.S., Strand, L.I. Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute phase post stroke? A randomized controlled trial. Clin Rehabil2012;26:1078–1086
  57. Ozdemir, F., Birtane, M., Tabatabaei, R., Kokino, S., Ekuklu, G. Comparing stroke rehabilitation outcomes between acute in-patient and non-intense home settings. Arch Phys Med Rehabil2001;82:1375–1379
  58. Ploughman, M., Corbett, D. Can forced-use therapy be clinically applied after stroke? An exploratory randomized controlled trial. Arch Phys Med Rehabil2004;85:1414–1423
  59. Hammer, A.M., Lindmark, B. Effects of forced use on arm function in the subacute phase after stroke: a randomized, clinical pilot study. Phys Ther2009;89:526–539
  60. Boake, C., Noser, E.A., Ro, T. et al, Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabil Neural Repair2007;21:14–24
  61. Dromerick, A.W., Edwards, D.F., Hahn, M., Dromerick, A.W., Edwards, D.F., Hahn, M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?. Stroke2000;31:2984–2988
  62. Dromerick, A.W., Lang, C.E., Birkenmeier, R.L. et al, Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology2009;73:195–201
  63. Liu, K.P., Balderi, K., Leung, T.L. et al, A randomized controlled trial of self-regulated modified constraint-induced movement therapy in sub-acute stroke patients. Eur J Neurol2016;23:1351–1360
  64. Myint, J.M., Yuen, G.F., Yu, T.K. et al, A study of constraint-induced movement therapy in subacute stroke patients in Hong Kong. Clin Rehabil2008;22:112–124
  65. Singh, P., Pradhan, B. Study to assess the effectiveness of modified constraint-induced movement therapy in stroke subjects: a randomized controlled trial. Ann Indian Acad Neurol2013;16:180–184
  66. Stock, R., Thrane, G., Anke, A., Gjone, R., Askim, T. Early versus late-applied constraint-induced movement therapy: a multisite, randomized controlled trial with a 12-month follow-up. Physiother Res Int2018;23
  67. Yu, C., Wang, W., Zhang, Y. et al, The effects of modified constraint-induced movement therapy in acute subcortical cerebral infarction. Front Hum Neurosci2017;11:265
  68. El-Helow, M.R., Zamzam, M.L., Fathalla, M.M. et al, Efficacy of modified constraint-induced movement therapy in acute stroke. Eur J Phys Rehabil Med2015;51:371–379
  69. Thrane, G., Askim, T., Stock, R. et al, Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial. Neurorehabil Neural Repair2015;29:517–525
  70. Seok, H., Lee, S.Y., Kim, J., Yeo, J., Kang, H. Can short-term constraint-induced movement therapy combined with visual biofeedback training improve hemiplegic upper limb function of subacute stroke patients?. Ann Rehabil Med2016;40:998–1009
  71. Armagan, O., Tascioglu, F., Oner, C. Electromyographic biofeedback in the treatment of the hemiplegic hand: a placebo-controlled study. Am J Phys Med Rehabil2003;82:856–861
  72. Crow, J.L., Lincoln, N.B., Nouri, F.M., de Weerdt, W. The effectiveness of EMG biofeedback in the treatment of arm function after stroke. Int Disabil Stud1989;11:155–160
  73. Hemmen, B., Seelen, H.A. Effects of movement imagery and electromyography-triggered feedback on arm hand function in stroke patients in the subacute phase. Clin Rehabil2007;21:587–594
  74. Chae, J., Bethoux, F., Bohinc, T., Dobos, L., Davis, T., Friedl, A. Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke1998;29:975–979
  75. Dorsch, S., Ada, L., Canning, C.G. EMG-triggered electrical stimulation is a feasible intervention to apply to multiple arm muscles in people early after stroke, but does not improve strength and activity more than usual therapy: a randomized feasibility trial. Clin Rehabil2014;28:482–490
  76. Heckmann, J., Mokrusch, T., Krockel, A., Warnke, S., von Stockert, W.T., Neundorfer, B. EMG-triggered electrical muscle stimulation in the treatment of central hemiparesis after a stroke. Eur J Phys Rehabil Med1997;7:138–141
  77. Hsu, S.S., Hu, M.H., Wang, Y.H., Yip, P.K., Chiu, J.W., Hsieh, C.L. Dose-response relation between neuromuscular electrical stimulation and upper-extremity function in patients with stroke. Stroke2010;41:821–824
  78. Lin, Z., Yan, T. Long-term effectiveness of neuromuscular electrical stimulation for promoting motor recovery of the upper extremity after stroke. J Rehabil Med2011;43:506–510
  79. Powell, J.P.A., Granat, M., Cameron, M., Stott, D.J. Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke1999;30:1384–1389
  80. Rosewilliam, S., Malhotra, S., Roffe, C., Jones, P., Pandyan, A.D. Can surface neuromuscular electrical stimulation of the wrist and hand combined with routine therapy facilitate recovery of arm function in patients with stroke?. Arch Phys Med Rehabil2012;93:1715–1721 (.e1)
  81. Shindo, K., Fujiwara, T., Hara, J. et al, Effectiveness of hybrid assistive neuromuscular dynamic stimulation therapy in patients with subacute stroke: a randomized controlled pilot trial. Neurorehabil Neural Repair2011;25:830–837
  82. Wilson, R.D., Page, S.J., Delahanty, M. et al, Upper-limb recovery after stroke: a randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation. Neurorehabil Neural Repair2016;30:978–987
  83. Yozbatiran, N., Donmez, B., Kayak, N., Bozan, O. Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia. Clin Rehabil2006;20:4–11
  84. Conforto, A.B., Ferreiro, K.N., Tomasi, C. et al, Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil Neural Repair2010;24:263–272
  85. Miyasaka, H., Orand, A., Ohnishi, H., Tanino, G., Takeda, K., Sonoda, S. Ability of electrical stimulation therapy to improve the effectiveness of robotic training for paretic upper limbs in patients with stroke. Med Eng Phys2016;38:1172–1175
  86. Ietswaart, M., Johnston, M., Dijkerman, H.C. et al, Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain2011;134:1373–1386
  87. Riccio, I., Iolascon, G., Barillari, M.R., Gimigliano, R., Gimigliano, F. Mental practice is effective in upper limb recovery after stroke: a randomized single-blind cross-over study. Eur J Phys Rehabil Med2010;46:19–25
  88. Liu, H., Song, L.P., Zhang, T. Mental practice combined with physical practice to enhance hand recovery in stroke patients. Behav Neurol2014;2014:876416
  89. Braun, S.M., Beurskens, A.J., Kleynen, M., Oudelaar, B., Schols, J.M., Wade, D.T. A multicenter randomized controlled trial to compare subacute ‘treatment as usual’ with and without mental practice among persons with stroke in Dutch nursing homes. J Am Med Dir Assoc2012;13:85.e1–85.e7
  90. Liu, K.P. Use of mental imagery to improve task generalisation after a stroke. Hong Kong Med J2009;15:37–41
  91. Invernizzi, M., Negrini, S., Carda, S., Lanzotti, L., Cisari, C., Baricich, A. The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: a randomized controlled trial. Eur J Phys Rehabil Med2013;49:311–317
  92. Lee, M.M., Cho, H.Y., Song, C.H. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients. Am J Phys Med Rehabil2012;91:689–696
  93. Gurbuz, N., Afsar, S.I., Ayas, S., Cosar, S.N. Effect of mirror therapy on upper extremity motor function in stroke patients: a randomized controlled trial. J Phys Ther Sci2016;28:2501–2506
  94. Radajewska, A., Opara, J., Bilinski, G. et al, Effectiveness of mirror therapy for subacute stroke in relation to chosen factors. Rehabil Nurs2017;42:223–229
  95. Samuelkamaleshkumar, S., Reethajanetsureka, S., Pauljebaraj, P., Benshamir, B., Padankatti, S.M., David, J.A. Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial. Arch Phys Med Rehabil2014;95:2000–2005
  96. Tyson, S., Wilkinson, J., Thomas, N. et al, Phase II pragmatic randomized controlled trial of patient-led therapies (mirror therapy and lower-limb exercises) during inpatient stroke rehabilitation.Neurorehabil Neural Repair2015;29:818–826
  97. Thieme, H., Bayn, M., Wurg, M., Zange, C., Pohl, M., Behrens, J. Mirror therapy for patients with severe arm paresis after stroke – a randomized controlled trial. Clin Rehabil2013;27:314–324
  98. Dohle, C., Pullen, J., Nakaten, A., Kust, J., Rietz, C., Karbe, H. Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair2009;23:209–217
  99. Kim, H., Lee, G., Song, C. Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients. J Stroke Cerebrovasc Dis2014;23:655–661
  100. Schick, T., Schlake, H.P., Kallusky, J. et al, Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis. Restor Neurol Neurosci2017;
  101. Lim, K.B., Lee, H.J., Yoo, J., Yun, H.J., Hwang, H.J. Efficacy of mirror therapy containing functional tasks in poststroke patients. Ann Rehabil Med2016;40:629–636
  102. Donaldson, C., Tallis, R., Miller, S., Sunderland, A., Lemon, R., Pomeroy, V. Effects of conventional physical therapy and functional strength training on upper limb motor recovery after stroke: a randomized phase II study. Neurorehabil Neural Repair2009;23:389–397
  103. Han, C., Wang, Q., Meng, P.P., Qi, M.Z. Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clin Rehabil2013;27:75–81
  104. Harris, J.E., Eng, J.J., Miller, W.C., Dawson, A.S. A self-administered Graded Repetitive Arm Supplementary Program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial. Stroke2009;40:2123–2128
  105. Kong, K.H., Loh, Y.J., Thia, E. et al, Efficacy of a virtual reality commercial gaming device in upper limb recovery after stroke: a randomized, controlled study. Top Stroke Rehabil2016;23:333–340
  106. Kwakkel, G., Wagenaar, R.C., Twisk, J.W., Lankhorst, G.J., Koetsier, J.C. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet1999;354:191–196
  107. Glasgow Augmented Physiotherapy Study (GAPS) Group. Can augmented physiotherapy input enhance recovery of mobility after stroke? A randomized controlled trial. Clin Rehabil2004;18:529–537
  108. Yelnik, A.P., Quintaine, V., Andriantsifanetra, C. et al, AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial. Stroke2017;48:400–405
  109. Platz, T., van Kaick, S., Mehrholz, J., Leidner, O., Eickhof, C., Pohl, M. Best conventional therapy versus modular impairment-oriented training for arm paresis after stroke: a single-blind, multicenter randomized controlled trial. Neurorehabil Neural Repair2009;23:706–716
  110. Schneider, S., Schonle, P.W., Altenmuller, E., Munte, T.F. Using musical instruments to improve motor skill recovery following a stroke. J Neurol2007;254:1339–1346
  111. Schneider, S., Münte, T., Rodriguez-Fornells, A., Sailer, M., Altenmuller, E. Music-supported training is more efficient than functional motor training for recovery of fine motor skills in stroke patients.Music Perception2010;27:271–280
  112. Jun, E.M., Roh, Y.H., Kim, M.J. The effect of music-movement therapy on physical and psychological states of stroke patients. J Clin Nurs2013;22:22–31
  113. Masiero, S., Celia, A., Rosati, G., Armani, M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil2007;88:142–149
  114. Fasoli, S.E., Krebs, H.I., Ferraro, M., Hogan, N., Volpe, B.T. Does shorter rehabilitation limit potential recovery poststroke?. Neurorehabil Neural Repair2004;18:88–94
  115. Masiero, S., Celia, A., Armani, M., Rosati, G. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging Clin Exp Res2006;18:531–535
  116. Aisen, M.L., Krebs, H.I., Hogan, N., McDowell, F., Volpe, B.T. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol1997;54:443–446
  117. Volpe, B., Krebs, H., Hogan, N., Edelstein, L., Diels, C., Aisen, M. A novel approach to stroke rehabilitation robot-aided sensorimotor stimulation. Neurology2000;54:1938–1944
  118. Burgar, C.G., Lum, P.S., Scremin, A.M. et al, Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J Rehabil Res Dev2011;48:445–458
  119. Hesse, S., Heß, A., Werner, C.C., Kabbert, N., Buschfort, R. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: a randomized controlled trial. Clin Rehabil2014;28:637–647
  120. Hsieh, Y.W., Wu, C.Y., Wang, W.E. et al, Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: a pilot randomized controlled trial. Clin Rehabil2017;31:225–233
  121. Lee, K.W., Kim, S.B., Lee, J.H., Lee, S.J., Yoo, S.W. Effect of upper extremity robot-assisted exercise on spasticity in stroke patients. Ann Rehabil Med2016;40:961–971
  122. Masiero, S., Armani, M., Rosati, G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabil Res Dev2011;48:355–366
  123. Rabadi, M., Galgano, M., Lynch, D., Akerman, M., Lesser, M., Volpe, B. A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial. Clin Rehabil2008;22:1071–1082
  124. Sale, P., Franceschini, M., Mazzoleni, S., Palma, E., Agosti, M., Posteraro, F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J Neuroeng Rehabil2014;11:104
  125. Takahashi, K., Domen, K., Sakamoto, T. et al, Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia: an exploratory randomized trial. Stroke2016;47:1385–1388
  126. Wolf, S.L., Sahu, K., Bay, R.C. et al, The HAAPI (Home Arm Assistance Progression Initiative) Trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair2015;29:958–968
  127. Qian, Q., Hu, X., Lai, Q., Ng, S.C., Zheng, Y., Poon, W. Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Front Neurol2017;8:447
  128. Winstein, C.J., Rose, D.K., Tan, S.M., Lewthwaite, R., Chui, H.C., Azen, S.P. A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Arch Phys Med Rehabil2004;85:620–628
  129. Blennerhassett, J., Dite, W. Additional task-related practice improves mobility and upper limb function early after stroke: a randomised controlled trial. Aust J Physiother2004;50:219–224
  130. Hubbard, I.J., Carey, L.M., Budd, T.W. et al, A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation. Neurorehabil Neural Repair2015;29:703–713
  131. Arya, K., Verma, R., Garg, R., Sharma, V., Agarwal, M., Aggarwal, G. Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial. Top Stroke Rehabil2012;19:193–211
  132. Desrosiers, J., Bourbonnais, D., Corriveau, H., Gosselin, S., Bravo, G. Effectiveness of unilateral and symmetrical bilateral task training for arm during the subacute phase after stroke: a randomized controlled trial. Clin Rehabil2005;19:581–593
  133. Gelber, D.A., Josefczyk, P.B., Herrman, D., Good, D.C., Verhulst, S.J. Comparison of two therapy approaches in the rehabilitation of the pure motor hemiparetic stroke patient. Neurorehabil Neural Repair1995;9:191–196
  134. Langhammer, B., Stanghelle, J.K. Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study. Clin Rehabil2000;14:361–369
  135. van Vliet, P.M., Lincoln, N.B., Foxall, A. Comparison of Bobath based and movement science based treatment for stroke: a randomised controlled trial. J Neurol Neurosurg Psychiatry2005;76:503–508
  136. Winstein, C.J., Wolf, S.L., Dromerick, A.W. et al, Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA2016;315:571–581
  137. Kwon, J.-S., Park, M.-J., Yoon, I.-J., Park, S.-H. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial.NeuroRehabilitation2012;31:379–385
  138. Bower, K.J., Clark, R.A., McGinley, J.L., Martin, C.L., Miller, K.J. Clinical feasibility of the Nintendo Wii for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clin Rehabil2014;28:912–923
  139. Choi, J.H., Han, E.Y., Kim, B.R. et al, Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Ann Rehabil Med2014;38:485–493
  140. Adie, K., Schofield, C., Berrow, M. et al, Does the use of Nintendo Wii Sports(TM) improve arm function? Trial of Wii(TM) in Stroke: a randomized controlled trial and economics analysis. Clin Rehabil2017;31:173–185
  141. Saposnik, G., Cohen, L.G., Mamdani, M. et al, Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.Lancet Neurol2016;15:1019–1027
  142. Saposnik, G., Teasell, R., Mamdani, M. et al, Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke2010;41:1477–1484
  143. Prange, G.B., Kottink, A.I., Buurke, J.H. et al, The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial.Neurorehabil Neural Repair2015;29:174–182
  144. Duncan, P.W., Sullivan, K.J., Behrman, A.L. et al, Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med2011;364:2026–2036
  145. Mackay-Lyons, M., McDonald, A., Matheson, J., Eskes, G., Klus, M.A. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair2013;27:644–653
  146. Mao, Y.R., Lo, W.L., Lin, Q. et al, The effect of body weight support treadmill training on gait recovery, proximal lower limb motor pattern, and balance in patients with subacute stroke. Biomed Res Int2015;2015:175719
  147. Nilsson, L., Carlsson, J., Danielsson, A. et al, Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil2001;15:515–527
  148. Galvin, R., Cusack, T., O’Grady, E., Murphy, T.B., Stokes, E. Family-mediated exercise intervention (FAME): evaluation of a novel form of exercise delivery after stroke. Stroke2011;42:681–686
  149. van den Berg, M., Crotty, M.P., Liu, E., Killington, M., Kwakkel, G.P., van Wegen, E. Early supported discharge by caregiver-mediated exercises and e-health support after stroke: a proof-of-concept trial. Stroke2016;47:1885–1892
  150. Choi, J.H., Kim, B.R., Han, E.Y., Kim, S.M. The effect of dual-task training on balance and cognition in patients with subacute post-stroke. Ann Rehabil Med2015;39:81–90
  151. Wang, Y.H., Meng, F., Zhang, Y., Xu, M.Y., Yue, S.W. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study. Clin Rehabil2016;30:577–586
  152. Winchester, P., Montgomery, J., Bowman, B., Hislop, H. Effects of feedback stimulation training and cyclical electrical stimulation on knee extension in hemiparetic patients. Phys Ther1983;63:1096–1103
  153. Yan, T., Hui-Chan, C.W., Li, L.S. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke2005;36:80–85
  154. Ambrosini, E., Ferrante, S., Pedrocchi, A., Ferrigno, G., Molteni, F. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial. Stroke2011;42:1068–1073
  155. Ferrante, S., Pedrocchi, A., Ferrigno, G., Molteni, F. Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner. Eur J Phys Rehabil Med2008;44:159–167
  156. Yavuzer, G., Geler-Kulcu, D., Sonel-Tur, B., Kutlay, S., Ergin, S., Stam, H.J. Neuromuscular electric stimulation effect on lower-extremity motor recovery and gait kinematics of patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil2006;87:536–540
  157. Lee, H.J., Cho, K.H., Lee, W.H. The effects of body weight support treadmill training with power-assisted functional electrical stimulation on functional movement and gait in stroke patients. Am J Phys Med Rehabil2013;92:1051–1059
  158. Bauer, P., Krewer, C., Golaszewski, S., Koenig, E., Muller, F. Functional electrical stimulation-assisted active cycling–therapeutic effects in patients with hemiparesis from 7 days to 6 months after stroke: a randomized controlled pilot study. Arch Phys Med Rehabil2015;96:188–196
  159. Macdonell, R.A., Triggs, W.J., Leikauskas, J. et al, Functional electrical stimulation to the affected lower limb and recovery after cerebral infarction. J Stroke Cerebrovasc Dis1994;4:155–160
  160. Morone, G., Fusco, A., Di Capua, P., Coiro, P., Pratesi, L. Walking training with foot drop stimulator controlled by a tilt sensor to improve walking outcomes: a randomized controlled pilot study in patients with stroke in subacute phase. Stroke Res Treat2012;2012:523564
  161. Ng, M.F., Tong, R.K., Li, L.S. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation. Stroke2008;39:154–160
  162. Xu, Q., Guo, F., Salem, H.M.A., Chen, H., Huang, X. Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study. Clin Rehabil2017;31:1583–1591
  163. Yan, T., Hui-Chan, C.W. Transcutaneous electrical stimulation on acupuncture points improves muscle function in subjects after acute stroke: a randomized controlled trial. J Rehabil Med2009;41:312–316
  164. Yavuzer, G., Oken, O., Atay, M.B., Stam, H.J. Effect of sensory-amplitude electric stimulation on motor recovery and gait kinematics after stroke: a randomized controlled study. Arch Phys Med Rehabil2007;88:710–714
  165. Cooke, E.V., Tallis, R.C., Clark, A., Pomeroy, V.M. Efficacy of functional strength training on restoration of lower-limb motor function early after stroke: phase I randomized controlled trial.Neurorehabil Neural Repair2010;24:88–96
  166. Kerr, A., Clark, A., Cooke, E.V., Rowe, P., Pomeroy, V.M. Functional strength training and movement performance therapy produce analogous improvement in sit-to-stand early after stroke: early-phase randomised controlled trial. Physiotherapy2017;103:259–265
  167. Wang, R., Chen, H., Chen, C., Yang, Y. Efficacy of Bobath versus orthopaedic approach on impairment and function at different motor recovery stages after stroke: a randomized controlled study. Clin Rehabil2005;19:155–164
  168. Mohan, U., Babu, S.K., Kumar, K.V., Suresh, B.V., Misri, Z.K., Chakrapani, M. Effectiveness of mirror therapy on lower extremity motor recovery, balance and mobility in patients with acute stroke: a randomized sham-controlled pilot trial. Ann Indian Acad Neurol2013;16:634–639
  169. Sutbeyaz, S., Yavuzer, G., Sezer, N., Koseoglu, B.F. Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial. Arch Phys Med Rehabil2007;88:555–559
  170. Forrester, L.W., Roy, A., Krywonis, A., Kehs, G., Krebs, H.I., Macko, R.F. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study. Neurorehabil Neural Repair2014;28:678–687
  171. Chang, W.H., Kim, M.S., Huh, J.P., Lee, P.K., Kim, Y.-H. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: a randomized controlled study. Neurorehabil Neural Repair2012;26:318–324
  172. Han, E.Y., Im, S.H., Kim, B.R., Seo, M.J., Kim, M.O. Robot-assisted gait training improves brachial–ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: randomized controlled trial. Medicine2016;95
  173. Morone, G., Bragoni, M., Iosa, M. et al, Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair2011;25:636–644
  174. Pohl, M., Werner, C., Holzgraefe, M. et al, Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil2007;21:17–27
  175. van Nunen, M.P., Gerrits, K.H., Konijnenbelt, M., Janssen, T.W., de Haan, A. Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol2015;10:141–148
  176. Watanabe, H., Tanaka, N., Inuta, T., Saitou, H., Yanagi, H. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil2014;95:2006–2012
  177. Kim, C.Y., Lee, J.S., Kim, H.D., Kim, J., Lee, I.H. Lower extremity muscle activation and function in progressive task-oriented training on the supplementary tilt table during stepping-like movements in patients with acute stroke hemiparesis. J Electromyogr Kinesiol2015;25:522–530
  178. McEwen, D., Taillon-Hobson, A., Bilodeau, M., Sveistrup, H., Finestone, H. Virtual reality exercise improves mobility after stroke an inpatient randomized controlled trial. Stroke2014;45:1853–1855
  179. Guo, C., Mi, X., Liu, S. et al, Whole body vibration training improves walking performance of stroke patients with knee hyperextension: a randomized controlled pilot study. CNS Neurol Disord Drug Targets2015;14:1110–1115
  180. van Nes, I.J., Latour, H., Schils, F., Meijer, R., van Kuijk, A., Geurts, A.C. Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: a randomized, controlled trial. Stroke2006;37:2331–2335

via Effectiveness and Superiority of Rehabilitative Treatments in Enhancing Motor Recovery Within 6 Months Poststroke: A Systemic Review – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[ARTICLE] Effect of Specific Over Nonspecific VR-Based Rehabilitation on Poststroke Motor Recovery: A Systematic Meta-analysis – Full Text

Background. Despite the rise of virtual reality (VR)-based interventions in stroke rehabilitation over the past decade, no consensus has been reached on its efficacy. This ostensibly puzzling outcome might not be that surprising given that VR is intrinsically neutral to its use—that is, an intervention is effective because of its ability to mobilize recovery mechanisms, not its technology. As VR systems specifically built for rehabilitation might capitalize better on the advantages of technology to implement neuroscientifically grounded protocols, they might be more effective than those designed for recreational gaming.

Objective. We evaluate the efficacy of specific VR (SVR) and nonspecific VR (NSVR) systems for rehabilitating upper-limb function and activity after stroke. Methods. We conducted a systematic search for randomized controlled trials with adult stroke patients to analyze the effect of SVR or NSVR systems versus conventional therapy (CT).

Results. We identified 30 studies including 1473 patients. SVR showed a significant impact on body function (standardized mean difference [SMD] = 0.23; 95% CI = 0.10 to 0.36; P = .0007) versus CT, whereas NSVR did not (SMD = 0.16; 95% CI = −0.14 to 0.47; P = .30). This result was replicated in activity measures.

Conclusions. Our results suggest that SVR systems are more beneficial than CT for upper-limb recovery, whereas NSVR systems are not. Additionally, we identified 6 principles of neurorehabilitation that are shared across SVR systems and are possibly responsible for their positive effect. These findings may disambiguate the contradictory results found in the current literature.

Better medical treatments in the acute phase after stroke have increased survival and with that the number of patients needing rehabilitation with an associated increased burden on the health care system.1 Novel technologies have sought to meet this increased rehabilitation demand and to potentially allow patients to continue rehabilitation at home after they leave the hospital.2 Also, technology has the potential to gather massive and detailed data (eg, kinematic and performance data) that might be useful in understanding recovery after stroke better, improving the quality of diagnostic tools and developing more successful treatment approaches.3 Given these promises, several studies and meta-analyses have evaluated the effectiveness of technologies that use virtual reality (VR) in stroke rehabilitation. In a first review, Crosbie et al4 analyzed 6 studies that used VR to provide upper-limb rehabilitation. Although they found a positive effect, they concluded that the evidence was only weak to moderate given the low quality of the research. A later meta-analysis analyzing 5 randomized controlled trials (RCTs) and 7 observational studies suggested a positive effect on a patient’s upper-limb function after training.5 Another meta-analysis of 26 studies by Lohse et al,6 which compared specific VR (SVR) systems with commercial VR games, found a significant benefit for SVR systems as compared with conventional therapy (CT) in both body function and activity but not between the 2 types of systems. This study, however, included a variety of systems that would treat upper-limb, lower-limb, and cognitive deficits. Saywell et al7 analyzed 30 “play-based” interventions, such as VR systems including commercial gaming consoles, rehabilitation tools, and robot-assisted systems. They found a significant effect of play-based versus control interventions in dose-matched studies in the Fugl-Meyer Assessment of the Upper Extremity (FM-UE).7 In contrast, a more recent large-scale analysis of a study with Nintendo Wii–based video games, including 121 patients concluded that recreational activities are as effective as VR.8A later review evaluated 22 randomized and quasi–randomized controlled studies and concluded that there is no evidence that the use of VR and interactive video gaming is more beneficial in improving arm function than CT.9 In all, 31% of the included studies tested nonspecific VR (NSVR) systems (Nintendo Wii, Microsoft Xbox Kinect, Sony PlayStation EyeToy). Hence, although VR-based interventions have been in use for almost 2 decades, their benefit for functional recovery, especially for the upper limb, remains unknown. Possibly, these contradictory results indicate that, at present, studies are too few or too small and/or the recruited participants too variable to be conclusive.10 However, alternative conclusions can be drawn. First, VR is an umbrella term. Studies comparing its impact often include heterogeneous systems or technologies, customized or noncustomized for stroke treatment, addressing a broad range of disabilities. However, effectiveness can only be investigated if similar systems that rehabilitate the same impairment are contrasted. This has been achieved by meta-analyses that investigated VR-based interventions for the lower limb, concluding that VR systems are more effective in improving balance or gait than CT.11Second, a clear understanding of the “active ingredients”3 that should make VR interventions effective in promoting recovery is missing. Therapeutic advantages of VR identified in current meta-analyses are that it might apply principles relevant to neuroplasticity,5,9 such as providing goal-oriented tasks,5,9 increasing repetition and dosage,5,9 providing therapists and patients with additional feedback,5,6,9 and allowing to adjust task difficulty.6 In addition, it has been suggested that the use of VR increases patient motivation,6 enjoyment,8,9 and engagement7; makes intensive task-relevant training more interesting4,7; and offers enriched environments.9 Although motivational aspects are important in the rehabilitation process because they possibly increase adherence,3 their contribution to recovery is difficult to quantify because it relies on patients’ subjective evaluation.7,1215 Rehabilitation methods, whether VR or not, however, need to be objectively beneficial in increasing the patient’s functional ability. Hence, an enormous effort has been expended to identify principles of neurorehabilitation that enhance motor learning and recovery.1624 Consequently, an effective VR system should besides be motivating, also augment CT by applying these principles in the design.23 Following this argument, we advance the hypothesis that custom-made VR rehabilitation systems might have incorporated these principles, unlike off-the-shelf VR tools, because they were created for recreational purposes. Combining the effects of both approaches in one analysis might, thus, mask their real impact on recovery. Again, in the rehabilitation of the lower limb, this effect has been observed. Two meta-analyses investigating the effect of using commercial VR systems for gait and balance training did not find a superior effect, which contradicts the conclusions of the other systematic reviews.11 In upper-limb rehabilitation, this question has not been properly addressed until the most recent review by Aminov et al.25 However, there are several flaws in the method applied that could invalidate the results they found. Specifically, studies were included regardless of their quality, and it is not clear which outcome measurements were taken for the analysis according to the World Health Organization’s International Classification of Function, Disability, and Health (ICF-WHO).26 In addition, a specifically designed rehabilitation system (Interactive Rehabilitation Exercise [IREX])27 was misclassified as an off-the-shelf VR tool. Because their search concluded in June 2017, the more recent evidence is missing. We decided to address these issues by conducting a well-controlled meta-analysis that focuses only on RCTs that use VR technologies for the recovery of the upper limb after stroke. We analyze the effect of VR systems specifically built for rehabilitation (ie, SVR systems) and off-the-shelf systems (ie, NSVR commercial systems) against CT according to the ICF-WHO categories. Also, we extracted 11 principles of motor learning and recovery from established literature that could act as “active ingredients” in the protocols of effective VR systems. Through a content analysis, we identified which principles are present in the included studies and compared their presence between SVR and NSVR systems. We hypothesized, first, that SVR systems might be more effective than NSVR systems as compared with CT in the recovery of upper-limb movement and, second, that this superior effect might be a result of the specific principles included in SVR systems.

 

This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.28

Identification of RCTs

We define VR as a computer-based technology that provides the user with a sense of presence in a virtual environment,29 which is induced by exposing the user to computer-generated sources of sensory stimulation that satisfy their perceptual predictions and expected sensorimotor contingencies.30 The studies included aimed at training the upper extremity of stroke patients through active participation, without assistive robotic devices (eg, exoskeleton, end-effector devices) or exogenous stimulation. We compared the impact on body function and activity of 2 kinds of VR systems with CT: SVR and NSVR systems. SVR systems were developed exclusively for neurorehabilitation purposes. NSVR systems, on the other hand, are recreational and/or off-the-shelf video games (eg, Nintendo Wii, Microsoft Xbox). As CT, we considered occupational therapy and physical therapy. To identify all RCTs in these 2 categories, we performed a computerized search in the bibliographic databases MEDLINE (OVID), Cochrane Library Plus (including EMBASE), CINAHL, APA PsycNET, DARE, and PEDro for studies that were published in English from inception until August 7, 2018, the day of the conclusion of the search. The search strategy (Supplementary Table 1) included only RCTs that tested the efficacy of SVR or NSVR systems in recovering the upper limbs of stroke patients who were either in the acute (up to 21 days poststroke), subacute (between 3 weeks and 3 months poststroke), or chronic (after 3 months poststroke) stage. We combined the effects of various chronicity bands because the current literature suggests that principles of motor learning interact constantly with the biological processes of recovery,31 and therefore, no differential effect between SVR and NSVR systems resulting from chronicity should be expected. This notion has also been confirmed by the latest meta-analysis.25 In addition, splitting the identified literature into VR type, ICF-WHO category, and chronicity reduces statistical power because of the small number of studies remaining in each band. Two reviewers (BRB and MM) assessed the studies for eligibility. We excluded studies that were not carried out on humans, lacked a control group, included less than 5 participants per experimental condition, did not target upper-extremity rehabilitation, used exoskeletons as interfaces, used exogenous stimulation (such as transcranial stimulation), or did not provide information on standard clinical scales (Figure 1). Exoskeletons and exogenous stimulation protocol where excluded for the passive or active support provided in the rehabilitation process that might lead to different outcomes.

                        figure

Figure 1. Study flow diagram (PRISMA). The selection process of identified randomized controlled trials.

[…]

 

Continue —>  Effect of Specific Over Nonspecific VR-Based Rehabilitation on Poststroke Motor Recovery: A Systematic Meta-analysis – Martina Maier, Belén Rubio Ballester, Armin Duff, Esther Duarte Oller, Paul F. M. J. Verschure, 2019

, , , , , , , , , , ,

Leave a comment

[NEWS] MbientLab Launches its MIOTherapy Physical Therapy Wearable Technology

Unique technology platform uses smart sensors, therapeutic exercises and games to improve rehabilitation and recovery for patients undergoing physical therapy

MIO is a complete, wearable sensor solution that automatically measures, analyzes, and stores a patient's physical therapy data. (Graphic: Business Wire)

MIO is a complete, wearable sensor solution that automatically measures, analyzes, and stores a patient’s physical therapy data. (Graphic: Business Wire)

January 28, 2019 09:00 AM Eastern Standard Time

 

SAN FRANCISCO–(BUSINESS WIRE)–MbientLab, a company building the next generation of sensors and tools for the healthcare industry, has announced the availability of its MIOTherapy (MIO) wearable technology for physical and occupational therapists. MIO is the first wearable technology platform that integrates the effectiveness of traditional physical therapy with smart sensors, therapeutic exercises, games, and 3D visualization technology to personalize and improve outpatient rehabilitation and accelerate recovery.

.@mbientLab announces the launch of its @MioTherapy wearable technology for physical and occupational therapists to improve rehabilitation and recovery for patients undergoing #physicaltherapy.

Research shows that most physical therapy patients do not fully adhere to their plans for care because of factors that include lack of social support, self-doubt and perceived barriers to exercise.1 This results in millions of Americans living with preventable mobility issues and pain that reduce their quality of life. This lack of compliance also increases the cost of healthcare for these patients due to a higher number of urgent care and emergency room visits related to their injuries, and in some cases, inpatient post-acute care stays.

Using a unique combination of technology software and sensors, MIO helps physical and occupational therapists improve the experience and outcomes of therapy for their patients. MIO provides consistently accurate measurements that can be used to monitor and personalize treatment, increase patient compliance, reduce recovery time, and reduce healthcare costs.

“I’ve found the MIO based technology to be an invaluable tool in improving post-operative care for my patients where position is critical. It’s clear to me that MIO will be a great platform for doctors and physical therapists to analyze, adjust and customize patient treatment plans using precise measurements captured in real time,” said Frank Brodie, M.D., clinical faculty, University of California San Francisco. “This technology provides data that enables me to have an accurate understanding of my patients’ ongoing progress and adjust accordingly. I look forward to integrating MIO even more into my practice.”

Patients using MIO attach its sensors to any body part using stickers or flexible straps, so that physical therapists can measure, collect, and record all motion from a specific body area, delivering key insights about a patient’s range of motion and measurable progress through their exercise program. The extremely accurate sensors measure, analyze, and store a patient’s physical therapy data in the cloud for easy access and analysis via the MIO App. MIO also offers real-time 3D visualization, providing an exact picture of what the patient is doing at any moment, and can be used in-office or via a telehealth platform with clinical oversight.

“We are excited to offer physical and occupational therapists a wearable technology platform that improves patient and provider engagement, and ultimately supports better results and a quicker recovery time for patients,” said Laura Kassovic, co-founder and CEO of MbientLab. “Serving as their virtual assistant, MIO will help physical therapists rethink how they provide physical therapy and work to heal their patients so they can get back to doing the things they enjoy.”

MIO has undergone extensive sensor testing with more than a dozen third-party users, including physical therapists, researchers, clinics, and university labs. Since 2013, there have been more than 250 papers published on the use of the MbientLab sensors used in MIO. Physicians at the University of California, San Francisco have demonstrated that the MIO sensors can increase patient compliance by 20 percent to 80 percent in post-operative retinal surgery patients.2 Researchers at Duke University also found an average cost-savings of $2,745 per patient undergoing virtual physical therapy with MIO compared to traditional physical therapy.3

MIO is now commercially available in the United States and internationally and can be purchased by physical and occupational therapists, caregivers and researchers at www.miotherapy.com. MIO is available through monthly subscription plans that include the app, sensors, and access to the cloud, as well as unlimited and free customer support via email, and on-site services.

About MIOTherapy

MIOTherapy is the first wearable technology that integrates the effectiveness of traditional physical therapy with therapeutic exercises, games, and smart sensors to improve outpatient rehabilitation and speed up recovery. Visit www.miotherapy.com or follow @miotherapy on Twitter, @miotherapy on Facebook and @miotherapy on Instagram for more information.

About MbientLab

MbientLab is building the next generation of sensors and tools for the healthcare industry including motion capture and analytics, biometrics, kinematics, industrial control, research and product development. Visit www.mbientlab.com for more information.

Picha KJ, Howell DM. A model to increase rehabilitation adherence to home exercise programmes in patients with varying levels of self-efficacy. Musculoskeletal Care, 2018; 16:233-237.

Brodie et al., Novel positioning with real-time feedback for improved postoperative positioning: pilot study in control subjects; May 2017

Duke Clinical Research Institute, VERITAS research study, 2016

Contacts

for MbientLab
Hannah Boxerman
707-326-0870
hannah@healthandcommerce.com

 

via MbientLab Launches its MIOTherapy Physical Therapy Wearable Technology | Business Wire

, , , , , ,

Leave a comment

[BLOG POST] Incorporating the Wii into Occupational Therapy Treatment

This is guest post written by Grant Mitchell, author of TheOTpreneur.com. Grant currently works in Acute Rehab and completed his Master’s thesis on using the Wii as a rehab intervention. We are happy to have him on the My OT Spot blog!

Considering the rising cost of healthcare, consumer technology can often be an effective treatment modality that can double as a home exercise program. An example of consumer technology could include a Nintendo Wii + Sports which can be usually be purchased for less than $50. Given the lack of budget most every practitioner has to deal with, it’s a great opportunity to take advantage of low cost and high tech consumer products for rehabilitation.

Effective implementation of virtual reality (VR) as a treatment modality needs to be practical, accessible, and affordable to the client. The Nintendo Wii and Xbox Kinect are two examples of systems that demonstrate those traits comparatively to the high-end VR products that can cost upwards of $75,000.

Virtual reality can be used in variety of ways across settings. The Xbox Kinect and Nintendo Wii systems have different ways of engaging participants. While the Xbox Kinect doesn’t involve use of a controller, it is played by body motions alone. The Xbox Kinect is easier with a higher functioning population.

Conversely, the Wii system involves the use of a controller and includes games that can be modified to fit a variety of lower functioning populations both cognitively and physically. This article will address Wii use for the general physical disability population. Cognition is a component in the function of clients in the physical disability setting and so will be addressed.

occupational-therapy-wii-alf

 

Benefits of Using the Wii in Treatment

One valuable aspect of incorporating this type of technology in therapy is that it is often a familiar technology to the general public. Its accessibility extends outside that of the clinical setting. The common household, including those in the low socioeconomic bracket, might have access to a Nintendo Wii.

Even adults that have not used a Wii before, can often recall family or friends who might have one or use one. Let’s not forget, video games can be fun! Adding fun can be an effective way to make activity purposeful and meaningful.

One benefit of engaging in a therapeutic activity such as the games found on Wii Sports, is the objective based movements so that patients are focused on moving the virtual character rather than thinking about left, right, up, and down. In this way, the client receives instant visual feedback of their performance as they guide the virtual character (Sparkes-Griffin, 2013).

Wii Sports Games to Incorporate into Treatment

Wii Sports is the most common game as it comes with most Wii consoles. Wii Sports comes with five games: boxing, bowling, tennis, golf, and baseball. The following is short description of the Wii Sports games and how you can incorporate them in treatment.

 

Boxing: This activity is a great strenuous upper extremity activity. Boxing is a go-to game with the Wii due to the level of endurance it facilitates. This game can be completed with either one upper extremity or can incorporate bilateral upper extremities for a greater coordination demand. This activity is one of the least cognitively demanding, involving a repetitive back and forth (punching) motion with no button pushing.

Bowling: The arm motion of this game is similar to that of the real life sport, however this activity can be done from almost any position. The motion does not stray far from the midline but does involve a two-button press and release component increasing the motor planning demand. This can be hard if hand function is minimal, but good if you want to incorporate fine motor and gross motor planning.

Tennis: This game involves no button pressing during game play, only to start and resume. However, tennis involves the most complex upper extremity arm movements of the 5 Wii sports games. Additionally, with either a computer or an opponent (dual play involves a split-screen and can involve family or friends if available), this game is a higher functioning game requiring the player to motor plan and swing the controller according to the direction of the virtual tennis ball.

Golf & Baseball: These two games are similar in that a minimal swinging motion is the primary physical demand to play. The movement can be accomplished with a good wrist flick, and generally requires a purposeful exaggerated real life swing to get therapeutic benefits. To get significant therapeutic benefit, these activities will often have to be modified to increase the challenge.

occupational-therapy-wii-baseball

Modifying the Games

Core Related: The Wii player is moved by the controller; therefore, the actual position of the client can vary. For impaired balance, the therapist can stand behind the client or have a chair available for when the client is fatigued. All games can be completed either standing or sitting. The common high-low mats in rehabilitation gyms provide a great platform for treatment while engaging in the Wii activity. Additionally, clients can participate while sitting on a balance board for a greater challenge.

Upper Extremity Related: Boxing is the only game in Wii sports that can involve both arms with two controllers. However, boxing does allow the option of playing with only one controller. For an added challenge, weights, such as Velcro wrist weights can be utilized to increase the resistance. It is important to note that due to the design of the game system, clients can “cheat” in terms of movement, meaning using little ROM and compensating arm movements with wrist movements. If you as the therapist want good movement, you may have to cue it as little feedback is provided by the Wii.

More on the Research Behind this Post

As a thesis project to complete the requirements of graduating with a Master’s in Occupational Therapy, my classmate Kyle Nelson and I (Grant Mitchell) collected literature surrounding the Wii and Xbox use in rehabilitation.

Our poster has been accepted for display at this coming year’s 2017 AOTA conference. This information is in the process of being made available as a free resource on an independent website. Until then, the Prezi presentation of the initial poster can be viewed describing this thesis project.

For additional questions, please don’t hesitate to email me at TheOTpreneur@gmail.com.

Resources

Emerging Niche: New Technology for Rehab

http://www.aota.org/Practice/Rehabilitation-Disability/Emerging-Niche/NewTech.aspx

Prezi Presentation: Use of VR in Rehab

https://prezi.com/botxz1nkctid/virtual-reality-an-evidence-based-guide-for-occupational-therapy/

Sparkes-Griffin, C. (2013, February 25). Wii-habilitation: Using the Wii as an Effective Intervention Tool for Seniors. OT Practice, p. 18.

via Incorporating the Wii into Occupational Therapy Treatment | myotspot.com

, , , , , , , , , ,

Leave a comment

[Abstract] Advanced Therapy in Traumatic Brain Injury Inpatient Rehabilitation: Effects on Outcomes During the First Year after Discharge

Abstract

Objective

To use causal inference methods to determine if receipt of a greater proportion inpatient rehabilitation treatment focused on higher level functions, e.g. executive functions, ambulating over uneven surfaces (Advanced Therapy, AdvTx) results in better rehabilitation outcomes.

Design

A cohort study using propensity score methods applied to the TBI-Practice-Based Evidence (TBI-PBE) database, a database consisting of multi-site, prospective, longitudinal observational data.

Setting

Acute inpatient rehabilitation (IRF).

Participants

Patients enrolled in the TBI-PBE study (n=1843), aged 14 years or older, who sustained a severe, moderate, or complicated mild TBI, receiving their first IRF admission to one of 9 sites in the US, and consented to follow-up 3 and 9 months post discharge from inpatient rehabilitation.

Interventions

Not applicable. Main Outcome Measures: Participation Assessment with Recombined Tools-Objective-17, FIMTM Motor and Cognitive scores, Satisfaction with Life Scale, and Patient Health Questionnaire-9.

Results

Controlling for measured potential confounders, increasing the percentage of AdvTx during inpatient TBI rehabilitation was found to be associated with better community participation, functional independence, life satisfaction, and decreased likelihood of depression during the year following discharge from inpatient rehabilitation. Participants who began rehabilitation with greater disability experienced larger gains on some outcomes than those who began rehabilitation with more intact abilities.

Conclusions

Increasing the proportion of treatment targeting higher level functions appears to have no detrimental and a small, beneficial effect on outcome. Caution should be exercised when inferring causality given that a large number of potential confounders could not be completely controlled with propensity score methods. Further, the extent to which unmeasured confounders influenced the findings is not known and could be of particular concern due to the potential for the patient’s recovery trajectory to influence therapists’ decisions to provide a greater amount AdvTx.

via Advanced Therapy in Traumatic Brain Injury Inpatient Rehabilitation: Effects on Outcomes During the First Year after Discharge – Archives of Physical Medicine and Rehabilitation

, , , , , , , , ,

Leave a comment

%d bloggers like this: