Posts Tagged oscillations

[Abstract + References] Perspectives: Hemianopia—Toward Novel Treatment Options Based on Oscillatory Activity?

Stroke has become one of the main causes of visual impairment, with more than 15 million incidences of first-time strokes, per year, worldwide. One-third of stroke survivors exhibit visual impairment, and most of them will not fully recover. Some recovery is possible, but this usually happens in the first few weeks after a stroke.

Most of the rehabilitation options that are offered to patients are compensatory, such as optical aids or eye training. However, these techniques do not seem to provide a sufficient amount of improvement transferable to everyday life.

Based on the relatively recent idea that the visual system can actually recover from a chronic lesion, visual retraining protocols have emerged, sometimes even in combination with noninvasive brain stimulation (NIBS), to further boost plastic changes in the residual visual tracts and network.

The present article reviews the underlying mechanisms supporting visual retraining and describes the first clinical trials that applied NIBS combined with visual retraining. As a further perspective, it gathers the scientific evidence demonstrating the relevance of interregional functional synchronization of brain networks for visual field recovery, especially the causal role of α and γ oscillations in parieto-occipital regions.

Because transcranial alternating current stimulation (tACS) can induce frequency-specific entrainment and modulate spike timing–dependent plasticity, we present a new promising interventional approach, consisting of applying physiologically motivated tACS protocols based on multifocal cross-frequency brain stimulation of the visuoattentional network for visual field recovery.

1. Dagnelie, G. Age-related psychophysical changes and low vision. Invest Opthalmol Vis Sci. 2013;54:ORSF88ORSF93.
Google Scholar | Crossref | Medline


2. Court, H, McLean, G, Guthrie, B, Mercer, SW, Smith, DJ. Visual impairment is associated with physical and mental comorbidities in older adults: a cross-sectional study. BMC Med. 2014;12:181.
Google Scholar | Crossref | Medline | ISI


3. World Health Organization . Action Plan for the Prevention of Avoidable Blindness and Visual Impairment 2009-2013. Geneva, SwitzerlandWorld Health Organization2010.
Google Scholar


4. Allen, CM, Marshell, MJG, Wade, DT. The Management of Acute Stroke. Kent, EnglandCastle House Publications1988.
Google Scholar


5. Zhang, X, Kedar, S, Lynn, MJ, Newman, NJ, Biousse, V. Natural history of homonymous hemianopia. Neurology. 2006;66:901905.
Google Scholar | Crossref | Medline | ISI


6. Naeem, Z. The prevalence of visual problems in stroke patients and the effectiveness of the current screening tool used. Br Ir Orthopt J. 2015;9:5558.
Google Scholar | Crossref


7. Rowe, FJ, Wright, D, Brand, D, et alA prospective profile of visual field loss following stroke: prevalence, type, rehabilitation, and outcome. Biomed Res Int. 2013;2013:719096.
Google Scholar | Crossref | Medline | ISI


8. Liu, GT, Volpe, NJ, Galetta, SL. Retrochiasmal disorders. In: Neuro-Ophthalmology: Diagnosis and Management. Philadelphia, PAWB Saunders2001:296.
Google Scholar


9. Peli, E, Apfelbaum, H, Berson, EL, Goldstein, RB. The risk of pedestrian collisions with peripheral visual field loss. J Vis. 2016;16:5.
Google Scholar | Crossref | Medline


10. Ungewiss, J, Kübler, T, Sippel, K, et al; Simulator/On-Road Study Group . Agreement of driving simulator and on-road driving performance in patients with binocular visual field loss. Graefes Arch Clin Exp Ophthalmol. 2018;256:24292435.
Google Scholar | Crossref | Medline


11. Chen, CS, Lee, AW, Clarke, G, et alVision-related quality of life in patients with complete homonymous hemianopia post stroke. Top Stroke Rehabil. 2009;16:445453.
Google Scholar | Crossref | Medline


12. Papageorgiou, E, Hardiess, G, Schaeffel, F, et alAssessment of vision-related quality of life in patients with homonymous visual field defects. Graefes Arch Clin Exp Ophthalmol. 2007;245:17491758.
Google Scholar | Crossref | Medline | ISI


13. Kaplan, J, Hier, DB. Visuospatial deficits after right hemisphere stroke. Am J Occup Ther. 1982;36:314321.
Google Scholar | Crossref | Medline | ISI


14. Pambakian, AL, Kennard, C. Can visual function be restored in patients with homonymous hemianopia? Br J Ophthalmol. 1997;81:324328.
Google Scholar | Crossref | Medline | ISI


15. Bowers, AR, Keeney, K, Peli, E. Randomized crossover clinical trial of real and sham peripheral prism glasses for hemianopia. JAMA Ophthalmol. 2014;132:214222.
Google Scholar | Crossref | Medline | ISI


16. Rowe, FJ, Conroy, EJ, Bedson, E, et alA pilot randomized controlled trial comparing effectiveness of prism glasses, visual search training and standard care in hemianopia. Acta Neurol Scand. 2017;136:310321.
Google Scholar | Crossref | Medline


17. Gottlieb, DD, Fuhr, A, Hatch, WV, Wright, KD. Neuro-optometric facilitation of vision recovery after acquired brain injury. NeuroRehabilitation. 1998;11:175199.
Google Scholar | Crossref | Medline


18. Lee, AG, Perez, AM. Improving awareness of peripheral visual field using sectorial prism. J Am Optom Assoc. 1999;70:624628.
Google Scholar | Medline


19. Szlyk, JP, Seiple, W, Stelmack, J, McMahon, T. Use of prisms for navigation and driving in hemianopic patients. Ophthalmic Physiol Opt. 2005;25:128135.
Google Scholar | Crossref | Medline


20. Peli, E. Field expansion for homonymous hemianopia by optically induced peripheral exotropia. Optom Vis Sci. 2000;77:453464.
Google Scholar | Crossref | Medline | ISI


21. Hayes, A, Chen, CS, Clarke, G, Thompson, A. Functional improvements following the use of the NVT Vision Rehabilitation program for patients with hemianopia following stroke. NeuroRehabilitation. 2012;31:1930.
Google Scholar | Crossref | Medline


22. Nelles, G, Pscherer, A, de Greiff, A, et alEye-movement training-induced plasticity in patients with post-stroke hemianopia. J Neurol. 2009;256:726733.
Google Scholar | Crossref | Medline | ISI


23. Mannan, SK, Pambakian, ALM, Kennard, C. Compensatory strategies following visual search training in patients with homonymous hemianopia: an eye movement study. J Neurol. 2010;257:18121821.
Google Scholar | Crossref | Medline | ISI


24. Lane, AR, Smith, DT, Ellison, A, Schenk, T. Visual exploration training is no better than attention training for treating hemianopia. Brain. 2010;133(pt 6):17171728.
Google Scholar | Crossref | Medline


25. Spitzyna, GA, Wise, RJS, McDonald, SA, et alOptokinetic therapy improves text reading in patients with hemianopic alexia: a controlled trial. Neurology. 2007;68:19221930.
Google Scholar | Crossref | Medline | ISI


26. Cowey, A, Stoerig, P, Perry, VH. Transneuronal retrograde degeneration of retinal ganglion cells after damage to striate cortex in macaque monkeys: selective loss of P beta cells. Neuroscience. 1989;29:6580.
Google Scholar | Crossref | Medline | ISI


27. Weller, RE, Kaas, JH. Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates. Vis Neurosci. 1989;3:327349.
Google Scholar | Crossref | Medline | ISI


28. Stoerig, P. Blindsight, conscious vision, and the role of primary visual cortex. Prog Brain Res. 2006;155:217234.
Google Scholar | Crossref | Medline | ISI


29. Weiskrantz, L. Is blindsight just degraded normal vision? Exp Brain Res. 2009;192:413416.
Google Scholar | Crossref | Medline


30. Merrill, EG, Wall, PD. Factors forming the edge of a receptive field: the presence of relatively ineffective afferent terminals. J Physiol. 1972;226:825846.
Google Scholar | Crossref | Medline


31. Alloway, KD, Burton, H. Differential effects of GABA and bicuculline on rapidly- and slowly-adapting neurons in primary somatosensory cortex of primates. Exp Brain Res. 1991;85:598610.
Google Scholar | Crossref | Medline


32. Garraghty, PE, LaChica, EA, Kaas, JH. Injury-induced reorganization of somatosensory cortex is accompanied by reductions in GABA staining. Somatosens Mot Res. 1991;8:347354.
Google Scholar | Crossref | Medline | ISI


33. Chen, R, Corwell, B, Yaseen, Z, Hallett, M, Cohen, LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;18:34433450.
Google Scholar | Crossref | Medline | ISI


34. Eysel, UT. Perilesional cortical dysfunction and reorganization. Adv Neurol. 1997;73:195206.
Google Scholar | Medline


35. Poggel, DA, Kasten, E, Müller-Oehring, EM, Sabel, BA, Brandt, SA. Unusual spontaneous and training induced visual field recovery in a patient with a gunshot lesion. J Neurol Neurosurg Psychiatry. 2001;70:236239.
Google Scholar | Crossref | Medline


36. Sabel, BA, Kasten, E, Kreutz, MR. Recovery of vision after partial visual system injury as a model of postlesion neuroplasticity. Adv Neurol. 1997;73:251276.
Google Scholar | Medline


37. Eysel, UT, Schweigart, G, Mittmann, T, et alReorganization in the visual cortex after retinal and cortical damage. Restor Neurol Neurosci. 1999;15:153164.
Google Scholar | Medline


38. Kaas, JH, Krubitzer, LA, Chino, YM, Langston, AL, Polley, EH, Blair, N. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science. 1990;248:229231.
Google Scholar | Crossref | Medline | ISI


39. Heinen, SJ, Skavenski, AA. Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp Brain Res. 1991;83:670674.
Google Scholar | Crossref | Medline | ISI


40. Horton, JC, Hocking, DR. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci. 1998;18:54335455.
Google Scholar | Crossref | Medline


41. Smirnakis, SM, Brewer, AA, Schmid, MC, et alLack of long-term cortical reorganization after macaque retinal lesions. Nature. 2005;435:300307.
Google Scholar | Crossref | Medline | ISI


42. Raninen, A, Vanni, S, Hyvärinen, L, Näsänen, R. Temporal sensitivity in a hemianopic visual field can be improved by long-term training using flicker stimulation. J Neurol Neurosurg Psychiatry. 2007;78:6673.
Google Scholar | Crossref | Medline | ISI


43. Casco, C, Barollo, M, Contemori, G, Battaglini, L. Neural restoration training improves visual functions and expands visual field of patients with homonymous visual field defects. Restor Neurol Neurosci. 2018;36:275291.
Google Scholar | Crossref | Medline


44. Przekoracka-Krawczyk, A, Michalski, A, Wojtczak-KwaÅ›niewska, M. Visual therapy in open space rehabilitation of acquired visual field defect. Neuropsychiatry. 2018;8:15271532.
Google Scholar | Crossref


45. Sahraie, A, Trevethan, CT, MacLeod, MJ, Murray, AD, Olson, JA, Weiskrantz, L. Increased sensitivity after repeated stimulation of residual spatial channels in blindsight. Proc Natl Acad Sci U S A. 2006;103:1497114976.
Google Scholar | Crossref | Medline | ISI


46. Kentridge, RW, Heywood, CA, Weiskrantz, L. Attention without awareness in blindsight. Proc Biol Sci. 1999;266:18051811.
Google Scholar | Crossref | Medline | ISI


47. Chokron, S, Perez, C, Obadia, M, Gaudry, I, Laloum, L, Gout, O. From blindsight to sight: cognitive rehabilitation of visual field defects. Restor Neurol Neurosci. 2008;26:305320.
Google Scholar | Medline | ISI


48. Kasten, E, Wüst, S, Behrens-Baumann, W, Sabel, BA. Computer-based training for the treatment of partial blindness. Nat Med. 1998;4:10831087.
Google Scholar | Crossref | Medline | ISI


49. Marshall, RS, Chmayssani, M, O’Brien, KA, Handy, C, Greenstein, VC. Visual field expansion after visual restoration therapy. Clin Rehabil. 2010;24:10271035.
Google Scholar | SAGE Journals | ISI


50. Horton, JC. Disappointing results from Nova Vision’s visual restoration therapy. Br J Ophthalmol. 2005;89:12.
Google Scholar | Crossref | Medline | ISI


51. Horton, JC. Vision restoration therapy: confounded by eye movements. Br J Ophthalmol. 2005;89:792794.
Google Scholar | Crossref | Medline | ISI


52. Pelak, VS, Dubin, M, Whitney, E. Homonymous hemianopia: a critical analysis of optical devices, compensatory training, and NovaVision. Curr Treat Options Neurol. 2007;9:4147.
Google Scholar | Crossref | Medline


53. McFadzean, RM. NovaVision: vision restoration therapy. Curr Opin Ophthalmol. 2006;17:498503.
Google Scholar | Crossref | Medline


54. Kasten, E, Bunzenthal, U, Sabel, BA. Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study. Behav Brain Res. 2006;175:1826.
Google Scholar | Crossref | Medline


55. Mueller, I, Mast, H, Sabel, BA. Recovery of visual field defects: a large clinical observational study using vision restoration therapy. Restor Neurol Neurosci. 2007;25:563572.
Google Scholar | Medline


56. Huxlin, KR. Perceptual plasticity in damaged adult visual systems. Vision Res. 2008;48:21542166.
Google Scholar | Crossref | Medline


57. Hanna, KL, Hepworth, LR, Rowe, FJ. The treatment methods for post-stroke visual impairment: a systematic review. Brain Behav. 2017;7:e00682.
Google Scholar | Crossref | Medline


58. Lefaucheur, JP, Antal, A, Ayache, SS, et alEvidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128:5692.
Google Scholar | Crossref | Medline | ISI


59. Raffin, E, Hummel, FC. Restoring motor functions after stroke: multiple approaches and opportunities. Neuroscientist. 2018;24:400416http://journals.sagepub.com.gate2.inist.fr/eprint/qtCDdEqIpZjMxiFjkwJi/full. Accessed November 7, 2017.
Google Scholar


60. Wessel, MJ, Zimerman, M, Hummel, FC. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front Hum Neurosci. 2015;9:265.
Google Scholar | Crossref | Medline | ISI


61. Hummel, FC, Cohen, LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006;5:708712.
Google Scholar | Crossref | Medline | ISI


62. Di Pino, G, Pellegrino, G, Assenza, G, et alModulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10:597608.
Google Scholar | Crossref | Medline | ISI


63. Spiegel, DP, Byblow, WD, Hess, RF, Thompson, B. Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia. Neurorehabil Neural Repair. 2013;27:760769.
Google Scholar | SAGE Journals | ISI


64. Ding, Z, Li, J, Spiegel, DP, et alThe effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Sci Rep. 2016;6:19280.
Google Scholar | Crossref | Medline


65. Bocci, T, Nasini, F, Caleo, M, et alUnilateral application of cathodal tDCS reduces transcallosal inhibition and improves visual acuity in amblyopic patients. Front Behav Neurosci. 2018;12:109.
Google Scholar | Crossref | Medline


66. Clavagnier, S, Thompson, B, Hess, RF. Long lasting effects of daily theta burst rTMS sessions in the human amblyopic cortex. Brain Stimul. 2013;6:860867.
Google Scholar | Crossref | Medline


67. Camilleri, R, Pavan, A, Campana, G. The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia. Neuropsychologia. 2016;89:225231.
Google Scholar | Crossref | Medline


68. Camilleri, R, Pavan, A, Ghin, F, Battaglini, L, Campana, G. Improvement of uncorrected visual acuity and contrast sensitivity with perceptual learning and transcranial random noise stimulation in individuals with mild myopia. Front Psychol. 2014;5:1234.
Google Scholar | Crossref


69. Plow, EB, Obretenova, SN, Halko, MA, et alCombining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: a comparative case study. PM R. 2011;3:825835.
Google Scholar | Crossref | Medline


70. Matteo, BM, Viganò, B, Cerri, CG, Meroni, R, Cornaggia, CM, Perin, C. Transcranial direct current stimulation (tDCS) combined with blindsight rehabilitation for the treatment of homonymous hemianopia: a report of two-cases. J Phys Ther Sci. 2017;29:17001705.
Google Scholar | Crossref | Medline


71. Alber, R, Moser, H, Gall, C, Sabel, BA. Combined transcranial direct current stimulation and vision restoration training in subacute stroke rehabilitation: a pilot study. PM R. 2017;9:787794.
Google Scholar | Crossref | Medline


72. Antal, A, Alekseichuk, I, Bikson, M, et alLow intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128:17741809.
Google Scholar | Crossref | Medline


73. Halko, M, Datta, A, Plow, EB, Scaturro, J, Bikson, M, Merabet, LB. Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage. 2011;57:885891.
Google Scholar | Crossref | Medline | ISI


74. Antal, A, Kincses, TZ, Nitsche, MA, Bartfai, O, Paulus, W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci. 2004;45:702707.
Google Scholar | Crossref | Medline | ISI


75. Lang, N, Siebner, HR, Chadaide, Z, et alBidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study. Invest Ophthalmol Vis Sci. 2007;48:57825787.
Google Scholar | Crossref | Medline


76. Accornero, N, Li Voti, P, La Riccia, M, Gregori, B. Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res. 2007;178:261266.
Google Scholar | Crossref | Medline | ISI


77. Olma, MC, Dargie, RA, Behrens, JR, et alLong-term effects of serial anodal tDCS on motion perception in subjects with occipital stroke measured in the unaffected visual hemifield. Front Hum Neurosci. 2013;7:314https://www.frontiersin.org/articles/10.3389/fnhum.2013.00314/full#B14. Accessed September 11, 2018.
Google Scholar


78. Antal, A, Nitsche, MA, Paulus, W. External modulation of visual perception in humans. Neuroreport. 2001;12:35533555.
Google Scholar | Crossref | Medline | ISI


79. Behrens, JR, Kraft, A, Irlbacher, K, Gerhardt, H, Olma, MC, Brandt, SA. Long-lasting enhancement of visual perception with repetitive noninvasive transcranial direct current stimulation. Front Cell Neurosci. 2017;11:238.
Google Scholar | Crossref | Medline


80. Kraft, A, Roehmel, J, Olma, MC, Schmidt, S, Irlbacher, K, Brandt, SA. Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res. 2010;207:283290.
Google Scholar | Crossref | Medline | ISI


81. Liebetanz, D, Nitsche, MA, Tergau, F, Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation–induced after-effects of human motor cortex excitability. Brain. 2002;125:22382247.
Google Scholar | Crossref | Medline | ISI


82. Stagg, CJ, Nitsche, MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17:3753.
Google Scholar | SAGE Journals | ISI


83. Bindman, LJ, Lippold, OCJ, Redfearn, JWT. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature. 1962;196:584585.
Google Scholar | Crossref | Medline | ISI


84. Creutzfeldt, OD, Fromm, GH, Kapp, H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436452.
Google Scholar | Crossref | Medline | ISI


85. Hummel, FC, Celnik, P, Pascual-Leone, A, et alControversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul. 2008;1:370382.
Google Scholar | Crossref | Medline | ISI


86. Morishita, T, Hummel, FC. Non-invasive brain stimulation (NIBS) in motor recovery after stroke: concepts to increase efficacy. Curr Behav Neurosci Rep. 2017;4:280289.
Google Scholar | Crossref


87. Plow, EB, Obretenova, SN, Jackson, ML, Merabet, LB. Temporal profile of functional visual rehabilitative outcomes modulated by transcranial direct current stimulation. Neuromodulation. 2012;15:367373.
Google Scholar | Crossref | Medline | ISI


88. Larcombe, SJ, Kulyomina, Y, Antonova, N, et alVisual training in hemianopia alters neural activity in the absence of behavioural improvement: a pilot study. Ophthalmic Physiol Opt. 2018;38:538549.
Google Scholar | Crossref | Medline


89. Plow, EB, Obretenova, SN, Fregni, F, Pascual-Leone, A, Merabet, LB. Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation. Neurorehabil Neural Repair. 2012;26:616626.
Google Scholar | SAGE Journals | ISI


90. Goebel, R, Muckli, L, Zanella, FE, Singer, W, Stoerig, P. Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res. 2001;41:14591474.
Google Scholar | Crossref | Medline | ISI


91. Herpich, F, Melnick, MD, Agosta, S, Huxlin, KR, Tadin, D, Battelli, L. Boosting learning efficacy with non-invasive brain stimulation in intact and brain-damaged humans. J Neurosci. 2019;39:55515561.
Google Scholar | Crossref | Medline


92. Moret, B, Camilleri, R, Pavan, A, et alDifferential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia. Neuropsychologia. 2018;114:125133.
Google Scholar | Crossref | Medline


93. Gall, C, Sgorzaly, S, Schmidt, S, Brandt, S, Fedorov, A, Sabel, B. Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy. Brain Stimul. 2011;4:175188.
Google Scholar | Crossref | Medline | ISI


94. Gall, C, Schmidt, S, Schittkowski, MP, et alAlternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial. PLoS One. 2016;11:e0156134.
Google Scholar | Crossref | Medline


95. Fedorov, A, Chibisova, Y, Szymaszek, A, Alexandrov, M, Gall, C, Sabel, BA. Non-invasive alternating current stimulation induces recovery from stroke. Restor Neurol Neurosci. 2010;28:825833.
Google Scholar | Medline


96. Sabel, BA, Fedorov, AB, Naue, N, Borrmann, A, Herrmann, C, Gall, C. Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor Neurol Neurosci. 2011;29:493505.
Google Scholar | Medline


97. Schmidt, S, Mante, A, Rönnefarth, M, Fleischmann, R, Gall, C, Brandt, SA. Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study. Brain Stimul. 2013;6:8793.
Google Scholar | Crossref | Medline


98. Bola, M, Gall, C, Moewes, C, Fedorov, A, Hinrichs, H, Sabel, BA. Brain functional connectivity network breakdown and restoration in blindness. Neurology. 2014;83:542551.
Google Scholar | Crossref | Medline | ISI


99. Sabel, BA, Hamid, AIA, Borrmann, C, Speck, O, Antal, A. Transorbital alternating current stimulation modifies BOLD activity in healthy subjects and in a stroke patient with hemianopia: a 7 Tesla fMRI feasibility study [published online April 9, 2019]. Int J Psychophysiol. doi:10.1016/j.ijpsycho.2019.04.0022019http://www.sciencedirect.com/science/article/pii/S0167876018310559. Accessed October 10, 2019.
Google Scholar


100. Miyake, K, Yoshida, M, Inoue, Y, Hata, Y. Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Invest Ophthalmol Vis Sci. 2007;48:23562361.
Google Scholar | Crossref | Medline


101. Sergeeva, EG, Bola, M, Wagner, S, et alRepetitive transcorneal alternating current stimulation reduces brain idling state after long-term vision loss. Brain Stimul. 2015;8:10651073.
Google Scholar | Crossref | Medline


102. Sergeeva, EG, Fedorov, AB, Henrich-Noack, P, Sabel, BA. Transcorneal alternating current stimulation induces EEG “aftereffects” only in rats with an intact visual system but not after severe optic nerve damage. J Neurophysiol. 2012;108:24942500.
Google Scholar | Crossref | Medline


103. Lewis, PM, Ackland, HM, Lowery, AJ, Rosenfeld, JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:5173.
Google Scholar | Crossref | Medline | ISI


104. Rahmatnejad, K, Ahmed, OM, Waisbourd, M, Katz, LJ. Non-invasive electrical stimulation for vision restoration: dream or reality? Expert Rev Ophthalmol. 2016;11:325327.
Google Scholar | Crossref


105. Buzsáki, G. Rhythms of the Brain. Oxford, EnglandOxford University Press2006.
Google Scholar | Crossref


106. Klimesch, W, Fellinger, R, Freunberger, R. Alpha oscillations and early stages of visual encoding. Front Psychol. 2011;2:118http://journal.frontiersin.org.gate2.inist.fr/article/10.3389/fpsyg.2011.00118/full. Accessed September 25, 2017.
Google Scholar


107. Jensen, O, Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2010;4:186.
Google Scholar | Crossref | Medline | ISI


108. Cooper, NR, Croft, RJ, Dominey, SJJ, Burgess, AP, Gruzelier, JH. Paradox lost? Exploring the role of alpha oscillations during externally vs internally directed attention and the implications for idling and inhibition hypotheses. Int J Psychophysiol. 2003;47:6574.
Google Scholar | Crossref | Medline | ISI


109. Worden, MS, Foxe, JJ, Wang, N, Simpson, GV. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci. 2000;20:RC63.
Google Scholar | Crossref | Medline | ISI


110. Sauseng, P, Klimesch, W, Stadler, W, et alA shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci. 2005;22:29172926.
Google Scholar | Crossref | Medline


111. Rajagovindan, R, Ding, M. From prestimulus alpha oscillation to visual-evoked response: an inverted-U function and its attentional modulation. J Cogn Neurosci. 2011;23:13791394.
Google Scholar | Crossref | Medline


112. van Ede, F, de Lange, F, Jensen, O, Maris, E. Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha- and beta-band oscillations. J Neurosci. 2011;31:20162024.
Google Scholar | Crossref | Medline


113. Klimesch, W. α-Band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012;16:606617.
Google Scholar | Crossref | Medline | ISI


114. Magazzini, L, Singh, KD. Spatial attention modulates visual gamma oscillations across the human ventral stream. Neuroimage. 2018;166:219229.
Google Scholar | Crossref | Medline


115. Fries, P, Reynolds, JH, Rorie, AE, Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science. 2001;291:15601563.
Google Scholar | Crossref | Medline | ISI


116. Cabral-Calderin, Y, Wilke, M. Probing the link between perception and oscillations: lessons from transcranial alternating current stimulation [published online February 7, 2019]. Neuroscientist. doi:10.1177/1073858419828646
Google Scholar | SAGE Journals


117. Akam, T, Kullmann, DM. Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci. 2014;15:111122.
Google Scholar | Crossref | Medline


118. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron. 1999;24:4965, 111-125.
Google Scholar | Crossref | Medline | ISI


119. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9:474480.
Google Scholar | Crossref | Medline | ISI


120. Fries, P. Rhythms for cognition: communication through coherence. Neuron. 2015;88:220235.
Google Scholar | Crossref | Medline


121. Jensen, O, Bonnefond, M, VanRullen, R. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn Sci. 2012;16:200206.
Google Scholar | Crossref | Medline | ISI


122. Foxe, JJ, Snyder, AC. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol. 2011;2:154.
Google Scholar | Crossref | Medline


123. Bonnefond, M, Kastner, S, Jensen, O. Communication between brain areas based on nested oscillations. eNeuro. 2017;4:ENEURO.0153-16.2017.
Google Scholar | Crossref | Medline


124. von Stein, A, Chiang, C, König, P. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A. 2000;97:1474814753.
Google Scholar | Crossref | Medline | ISI


125. van Kerkoerle, T, Self, MW, Dagnino, B, et alAlpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci U S A. 2014;111:1433214341.
Google Scholar | Crossref | Medline


126. Bastos, AM, Vezoli, J, Bosman, CA, et alVisual areas exert feedforward and feedback influences through distinct frequency channels. Neuron. 2015;85:390401.
Google Scholar | Crossref | Medline


127. Jensen, O, Bonnefond, M, Marshall, TR, Tiesinga, P. Oscillatory mechanisms of feedforward and feedback visual processing. Trends Neurosci. 2015;38:192194.
Google Scholar | Crossref | Medline


128. Michalareas, G, Vezoli, J, van Pelt, S, Schoffelen, J-M, Kennedy, H, Fries, P. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron. 2016;89:384397.
Google Scholar | Crossref | Medline


129. Richter, CG, Coppola, R, Bressler, SL. Top-down beta oscillatory signaling conveys behavioral context in early visual cortex. Sci Rep. 2018;8:6991.
Google Scholar | Crossref | Medline


130. Antal, A, Paulus, W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:317.
Google Scholar | Crossref | Medline | ISI


131. Herrmann, CS, Rach, S, Neuling, T, Strüber, D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013;7:279.
Google Scholar | Crossref | Medline | ISI


132. Zaehle, T, Rach, S, Herrmann, CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5:e13766.
Google Scholar | Crossref | Medline | ISI


133. Bola, M, Gall, C, Sabel, BA. Disturbed temporal dynamics of brain synchronization in vision loss. Cortex. 2015;67:134146.
Google Scholar | Crossref | Medline


134. Wang, L, Guo, X, Sun, J, Jin, Z, Tong, S. Cortical networks of hemianopia stroke patients: a graph theoretical analysis of EEG signals at resting state. Conf Proc IEEE Eng Med Biol Sci. 2012;2012:4952.
Google Scholar | Medline


135. Guggisberg, AG, Koch, PJ, Hummel, FC, Buetefisch, CM. Brain networks and their relevance for stroke rehabilitation. Clin Neurophysiol. 2019;130:10981124.
Google Scholar | Crossref | Medline


136. Aldrich, MS, Alessi, AG, Beck, RW, Gilman, S. Cortical blindness: etiology, diagnosis, and prognosis. Ann Neurol. 1987;21:149158.
Google Scholar | Crossref | Medline


137. Schurger, A, Cowey, A, Tallon-Baudry, C. Induced gamma-band oscillations correlate with awareness in hemianopic patient GY. Neuropsychologia. 2006;44:17961803.
Google Scholar | Crossref | Medline


138. Richter, CG, Thompson, WH, Bosman, CA, Fries, P. Top-down beta enhances bottom-up gamma. J Neurosci. 2017;37:66986711.
Google Scholar | Crossref | Medline


139. Quentin, R, Chanes, L, Vernet, M, Valero-Cabré, A. Fronto-parietal anatomical connections influence the modulation of conscious visual perception by high-beta frontal oscillatory activity. Cereb Cortex. 2015;25:20952101.
Google Scholar | Crossref | Medline


140. Saturnino, GB, Madsen, KH, Siebner, HR, Thielscher, A. How to target inter-regional phase synchronization with dual-site transcranial alternating current stimulation. Neuroimage. 2017;163:6880.
Google Scholar | Crossref | Medline


141. Kohli, S, Casson, AJ. Towards close-loop tES: workload monitoring during tACS stimulation. Brain Stimul. 2017;10:e28e29.
Google Scholar | Crossref | Medline


142. Thut, G, Bergmann, TO, Fröhlich, F, et alGuiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol. 2017;128:843857.
Google Scholar | Crossref | Medline


143. Bergmann, TO, Mölle, M, Schmidt, MA, et alEEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci. 2012;32:243253.
Google Scholar | Crossref | Medline


144. Karabanov, A, Thielscher, A, Siebner, HR. Transcranial brain stimulation: closing the loop between brain and stimulation. Curr Opin Neurol. 2016;29:397404.
Google Scholar | Crossref | Medline


145. Bestmann, S. Computational neurostimulation in basic and translational research. Prog Brain Res. 2015;222:xv-xx.
Google Scholar


146. Noury, N, Siegel, M. Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings. Neuroimage. 2017;158:406416.
Google Scholar | Crossref | Medline


147. Lustenberger, C, Boyle, MR, Alagapan, S, Mellin, JM, Vaughn, BV, Fröhlich, F. Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation. Curr Biol. 2016;26:21272136.
Google Scholar | Crossref | Medline


148. Jones, AP, Choe, J, Bryant, NB, et alDose-dependent effects of closed-loop tACS delivered during slow-wave oscillations on memory consolidation. Front Neurosci. 2018;12:867.
Google Scholar | Crossref | Medline

via Perspectives: Hemianopia—Toward Novel Treatment Options Based on Oscillatory Activity? – Estelle Raffin, Roberto F. Salamanca-Giron, Friedhelm Christoph Hummel,

, , , , , , , , ,

Leave a comment

%d bloggers like this: