Posts Tagged Paralysis

[Online Game] Mobility Mission Online Game –

Mobility Mission Online Game

Mobility Mission is an entertaining online game that addresses post-stroke mobility challenges. Stroke is a serious condition, and learning to deal with the effects of surviving a stroke can be challenging. This game will help you gain a better understanding of post-stroke mobility challenges such as spasticity, paralysis, foot drop, as well as management and treatment options you can discuss with your healthcare provider. As you travel through the four levels of the game you will learn how to improve your safety at home and acquire tips to lower your risk of falling. Your journey is waiting!



via Mobility Mission Online Game |


, , , , , ,

Leave a comment

[WEB SITE] Brain-Machine Interface Shows Potential for Hand Paralysis – Rehab Managment

Published on

The use of a brain-machine interface shows potential for helping to restore function in stroke patients with hand paralysis, according to a study of healthy adults published in the Journal of Neuroscience.

According to the study, researchers note that the brain-machine interface, which is designed to combine brain stimulation with a robotic device that controls hand movement, increases the output of pathways connecting the brain and spinal cord.

Researchers Alireza Gharabaghi and colleagues asked participants to imagine opening their hand without actually making any movement while their hand was placed in a device that passively opened and closed their fingers as it received the necessary input from their brain activity. Stimulating the hand area of the motor cortex at the same time, but not after, the robotic device initiated hand movement increased the strength of the neural signal, most likely by harnessing the processing power of additional neurons in the corticospinal tract, explains a media release from the Society for Neuroscience.

However, the signal decreased when participants were not required to imagine moving their hand. Delivering brain stimulation and robotic motor feedback simultaneously during rehabilitation may therefore be beneficial for patients who have lost voluntary muscle control, the release continues.

[Source(s): Society for Neuroscience]

via Brain-Machine Interface Shows Potential for Hand Paralysis – Rehab Managment

, , , , , , , , ,

Leave a comment

[Workshop] Evidence-Based Upper Limb Retraining after Stroke 2017 – Pre-Reading and Workshop Tasks – PDF

CHAPTER 40: Optimizing motor performance and sensation after brain impairment


This chapter provides a framework for optimizing motor performance and sensation in adults with brain impairment. Conditions such as stroke and traumatic brain injury are the main focus, however, the chapter content can apply to adults with other neurological conditions. The tasks of eating and drinking are used as examples throughout the chapter. Skills and knowledge required by graduates are identified, including knowledge of motor behaviour, the essential components of reaching to grasp and reaching in sitting, and how to identify compensatory strategies, develop and test movement hypotheses. Factors that enhance skill acquisition are discussed, including task specificity, practice intensity and timely feedback, with implications for therapists’ teaching skills. Finally, a summary is provided of evidence-based interventions to improve motor performance and sensation, including high intensity, task-specific training, mirror therapy, mental practice, electrical stimulation and constraint therapy.

Key Points:

  1. Essential knowledge in neurological rehabilitation includes an understanding of normal motor behaviour, muscle biology and skill acquisition.
  2. Abnormal motor performance can be observed during a task such as reaching for a cup, and compared with expected performance. Hypotheses about the cause(s) of observed movement differences can then be made and tested.

  3. Paralysis, weakness and loss of co-ordination affect upper limb motor performance. To improve performance after brain impairment, therapists should primarily focus on improving strength and co-ordination.

  4. Many people with brain impairment have difficulty understanding instructions, goals and feedback, and consequently may not practice well. To teach people to practice well and learn skills, therapists need to be good coaches.

  5. Motor performance and sensation can be improved using low-cost evidence-based strategies such as high intensity, repetitive, task-specific training, mirror therapy, mental practice, electrical stimulation and constraint-induced movement therapy.

1. Introduction

Upper motor neuron lesions typically cause impairments such as paralysis, muscle weakness and loss of sensation. These impairments can limit participation in everyday tasks such as eating a meal. Motor control is a term commonly used in rehabilitation (Shumway-Cook, 2012; van Vliet et al 2013) and refers to control of movements such as reaching to grasp a cup and standing up. Occupational therapists and physiotherapists retrain motor and sensory impairments that interfere with tasks such as grasping a cup and sitting safely on the toilet.

The aim of this chapter is to provide a framework that helps therapists to systematically observe, analyse and measure motor and sensory impairments. Targeted evidence-based interventions will be described that can drive neuroplasticity. Therapists need to proactively seek muscle activity and sensation. It is not enough to teach a person how to compensate using one-handed techniques, or to wait for recovery to possibly occur.[…]

Full Text PDF


, , , , , , , , , , , ,

Leave a comment

[ARTICLE] The Efficacy of State of the Art Overground Gait Rehabilitation Robotics: A Bird’s Eye View – Full Text


To date, rehabilitation robotics has come a long way effectively aiding the rehabilitation process of the patients suffering from paraplegia or hemiplegia due to spinal cord injury (SCI) or stroke respectively, through partial or even full functional recovery of the affected limb. The increased therapeutic outcome primarily results from a combination of increased patient independence and as well as reduced physical burden on the therapist. Especially for the case of gait rehabilitation following SCI or stroke, the rehab robots have the potential to significantly increase the independence of the patient during the rehabilitation process without the patient’s safety being compromised. An intensive gait-oriented rehabilitation therapy is often effective irrespective of the type of rehabilitation paradigm. However, eventually overground gait training, in comparison with body-weight supported treadmill training (BWSTT), has the potential of higher therapeutic outcome due its associated biomechanics being very close to that of the natural gait. Recognizing the apparent superiority of the overground gait training paradigms, a through literature survey on all the major overground robotic gait rehabilitation approaches was carried out and is presented in this paper. The survey includes an in-depth comparative study amongst these robotic approaches in terms of gait rehabilitation efficacy.

Download full text in PDF

Source: The Efficacy of State of the Art Overground Gait Rehabilitation Robotics: A Bird’s Eye View

, , , , , , , , , ,

Leave a comment

[Abstract] The effect of peripheral nerve electrical stimulation on corticomotor excitability and motor function of the paretic hand in stroke


Electrical stimulation to the stroke-affected paretic upper limb (UL) has been a treatment to promote its motor recovery. Despite its efficacy in promoting muscle strength and enhancing motor training, the underlying neurophysiological mechanism for such motor improvement has not been clear. It is crucial to delineate the corticomotor plasticity effects of electrical stimulation when it is applied as a single entity and as an adjunct to other forms of therapies, since the knowledge would support formulation of effective treatment for the paretic UL in stroke rehabilitation.

This dissertation incorporated 4 studies to examine the corticomotor excitability modulation and motor function effects of electrical stimulation on the paretic UL due to stroke. Study 1 reviewed randomized controlled trials published before 2012 to scrutinize the efficacy of electrical stimulation on motor function improvement as well as corticomotor excitability for muscles in the paretic hand. Results of the meta-analysis showed that electrical stimulation could improve UL motor impairment but not its ability in functional task performance measured with the Action Research Arm Test. The corticomotor excitability changes associated with electrical stimulation could not be concluded because of diverse outcomes reported in only 3 studies. Study 2 was a randomized cross-over sham-controlled experiment (n = 32) set to determine a single session of 1-hour electrical stimulation delivered to the ulnar and radial nerves (PNS) of the paretic UL at an intensity of 2 to 3 sensory thresholds in modulating the corticomotor excitability in both brain hemispheres. The results confirmed that PNS could increase corticomotor excitability in terms of the recruitment curve (RC) slope and peak amplitude of motor-evoked potentials (pMEP) for the corticospinal projections to the contralateral first dorsal interosseous hand muscle (FDI) measured in both hemispheres. The PNS also enhanced better hand pincer dexterity scored by the Purdue pegboard test than the sham stimulation (PNSsham). Then Study 3 was conducted to examine if PNS could condition the corticomotor pathways for another treatment targeting motor improvement in the paretic UL. This pilot randomized cross-over study involved 20 subjects to receive 1-hour PNS paired with observation of movement demonstration in videos (termed action observation, AO) that was introduced during the last 30 minutes of PNS. PNS+AO improved the Purdue dexterity score of the paretic hand, but the change in corticomotor excitability for the contralateral FDI in the lesioned hemisphere was not significant. The control intervention PNSsham+AO did not change any of the outcome measurements. Study 4 further tested the hypothesis that PNS and/or jointly with AO might effectively condition motor training of the paretic UL in enhancing corticomotor plastic changes and hand dexterity. In this randomized sham-controlled cross-over study, 20 subjects in chronic stage of stroke were exposed to 3 separate sessions of different interventions composed of 1-hour PNS or PNSsham paired with 30 minutes of AO or sham AO (AOsham), all followed by 30-minute training of index finger abduction. The results revealed that PNS+AO+Training led to significantly increased corticomotor excitability in terms of RC slope and pMEP amplitude localized in the lesioned hemisphere but that of the intact hemisphere was not altered. This neuroplastic modulation was accompanied by enhanced hand dexterity at 24 hours post-intervention better than the control with PNSsham+AOsham+Training. On the other hand, PNS+AOsham+Training did not modulate corticomotor excitability functions but hand dexterity was increased immediately after the intervention better than after PNSsham+AOsham+Training. Training after PNSsham+AOsham conditioning was not effective on the outcome measurements.
Results of the series of studies supported that (1) one-hour PNS could increase the excitability of corticomotor pathways for the contralateral hand muscle in both the lesioned and intact hemispheres similarly; (2) one-hour PNS alone, or applied as a conditioning treatment in the presence of AO or AOsham prior to movement training in the paretic hand could lead to better hand dexterity than training after sham controls; (3) Up-regulation of corticomotor excitability specifically confined to the stroke-lesioned hemisphere was evident after a session of PNS paired with AO and Training.

To conclude, one session of PNS or PNS-associated interventions for the paretic UL could effectively improve dexterity of the paretic hand in people with chronic stroke. PNS might have primed the corticomotor pathways for AO and motor training to result in corticomotor excitability enhancement specifically confined to the stroke-lesioned hemisphere.

Source: The effect of peripheral nerve electrical stimulation on corticomotor excitability and motor function of the paretic hand in stroke | PolyU Institutional Research Archive

, , , , , , , , , , ,

Leave a comment

[WEB SITE] “Selfie Pay”: Making Online Payments Via Selfies – Assistive Technology Blog

Selfies are all the rage these days. Using this popular technique of taking photos, Mastercard is trialing a new method of payment that may be helpful to people with disabilities. The company’s new mobile app, called “Identity Check Mobile” (and popularly known as Selfie Pay) allows shoppers to pay for their purchases online by taking a selfie.

This is how it works: The app, when first downloaded, takes a photo of the user, and stores a digitized photo of their face on Mastercard’s servers. When that user is shopping online on their computer, and is ready to pay, they get a notification on their phone to verify the purchase amount. Once they verify it (by simply tapping on the amount), the next screen asks them to take a selfie. The selfie is then matched with the digitized photo of that person’s face, and if there is a match, the purchase is approved. The app also asks the person to blink to ensure that a human is actually taking the selfie, and someone is not just holding a photo of the person in front of the phone camera.

This can be beneficial for people with not very good motor skills, amputees, people with vision impairment or anyone who would want to speed up the checkout process by not typing on the keyboard.

This app is already available in several countries in Europe, and Mastercard says it should be available across the globe starting sometime next year.

Source: “Selfie Pay”: Making Online Payments Via Selfies – Assistive Technology Blog

, , , , , , ,

Leave a comment

[WEB SITE] New wearable electronic device could revolutionise treatment for stroke patients

Stroke patients are starting a trial of a new electronic device to recover movement and control of their hand.

Neuroscientists at Newcastle University have developed the device, the size of a mobile phone, which delivers a series of small electrical shocks followed by an audible click to strengthen brain and spinal connections.

The experts believe this could revolutionise treatment for patients, providing a wearable solution to the effects of stroke.

Following successful work in primates and healthy human subjects, the Newcastle University team are now working with colleagues at the prestigious Institute of Neurosciences, Kolkata, India, to start the clinical trial. Involving 150 stroke patients, the aim of the study is to see whether it leads to improved hand and arm control.

Stuart Baker, Professor of Movement Neuroscience at Newcastle University who has led the work said: “We were astonished to find that a small electric shock and the sound of a click had the potential to change the brain’s connections. However, our previous research in primates changed our thinking about how we could activate these pathways, leading to our study in humans.”

Recovering hand control

Publishing today in the Journal of Neuroscience, the team report on the development of the miniaturised device and its success in healthy patients at strengthening connections in the reticulospinal tract, one of the signal pathways between the brain and spinal cord.

This is important for patients as when people have a stroke they often lose the major pathway found in all mammals connecting the brain to spinal cord. The team’s previous work in primates showed that after a stroke they can adapt and use a different, more primitive pathway, the reticulospinal tract, to recover.

However, their recovery tends to be imbalanced with more connections made to flexors, the muscles that close the hand, than extensors, those that open the hand. This imbalance is also seen in stroke patients as typically, even after a period of recuperation, they find that they still have weakness of the extensor muscles preventing them opening their fist which leads to the distinctive curled hand.

Partial paralysis of the arms, typically on just one side, is common after stroke, and can affect someone’s ability to wash, dress or feed themselves. Only about 15% of stroke patients spontaneously recover the use of their hand and arm, with many people left facing the rest of their lives with a severe level of disability.

Senior author of the paper, Professor Baker added: “We have developed a miniaturised device which delivers an audible click followed by a weak electric shock to the arm muscle to strengthen the brain’s connections. This means the stroke patients in the trial are wearing an earpiece and a pad on the arm, each linked by wires to the device so that the click and shock can be continually delivered to them.

“We think that if they wear this for 4 hours a day we will be able to see a permanent improvement in their extensor muscle connections which will help them gain control on their hand.”

Improving connections

The techniques to strengthen brain connections using paired stimuli are well documented, but until now this has needed bulky equipment, with a mains electric supply.

The research published today is a proof of concept in human subjects and comes directly out of the team’s work on primates. In the paper they report how they pair a click in a headphone with an electric shock to a muscle to induce the changes in connections either strengthening or weakening reflexes depending on the sequence selected. They demonstrated that wearing the portable electronic device for seven hours strengthened the signal pathway in more than half of the subjects (15 out of 25).

Professor Stuart Baker added: “We would never have thought of using audible clicks unless we had the recordings from primates to show us that this might work. Furthermore, it is our earlier work in primates which shows that the connections we are changing are definitely involved in stroke recovery.”

The work has been funded through a Milstein Award from the Medical Research Council and the Wellcome Trust.

The clinical trial is just starting at the Institute of Neurosciences, Kolkata, India. The country has a higher rate of stroke than Western countries which can affect people at a younger age meaning there is a large number of patients. The Institute has strong collaborative links with Newcastle University enabling a carefully controlled clinical trial with results expected at the end of this year.

A patient’s perspective

Chris Blower, 30, is a third year Biomedical Sciences student at Newcastle University and he had a stroke when he was a child after open heart surgery. He describes his thoughts on the research:

I had a stroke at the age of seven. The immediate effect was paralysis of the right-hand side of my body, which caused slurred speech, loss of bowel control and an inability to move unaided. Though I have recovered from these immediate effects, I am now feeling the longer term effects of stroke; slow, limited and difficult movement of my right arm and leg.

My situation is not unique and many stroke survivors have similar long-term effects to mine. Professor Baker’s work may be able to help people in my position regain some, if not all, motor control of their arm and hand. His research shows that, in stroke, the brains motor pathway to the spinal cord is damaged and that an evolutionarily older signal pathway could be ‘piggybacked’ and used instead. With electrical stimulation, exercise and an audible cue the brain can be taught to use this older pathway instead.

This gives me a lot of hope for stroke survivors. My wrist and fingers pull in, closing my hand into a fist, but with the device Professor Baker is proposing my brain could be re-taught to use my muscles and pull back, opening my hand out. The options presented to me so far, by doctors, have been Botox injections and surgery; Botox in my arm would weaken the muscles closing my hand and allow my fingers to spread, surgery would do the same thing by moving the tendons in my arm. Professor Baker’s electrical stimulations is certainly a more appealing option, to me, as it seems to be a permanent solution that would not require an operation on my arm.

I was invited to look around the animal house and observe a macaque monkey undergoing a test and this has made me think about my own stroke and the effect it has had on my life.

I have never seen anything like this before and I didn’t know what to expect. The macaque monkey that I observed was calmly carrying out finger manipulation tests while electrodes monitored the cells of her spinal cord.

Although this procedure requires electrodes to be placed into the brain and spine of the animal, Professor Baker explained how the monkey had been practicing and learning this test for two years before the monitoring equipment was attached. In this way the testing has become routine before it had even started and the animal was in no pain or distress, even at the sight of a stranger (me).

The animals’ calm, placid temperaments carry over to their living spaces; with lots of windows, natural light and high up spaces the macaques are able to see all around them and along the corridors. This means that they aren’t feeling threatened when people approach and are comfortable enough that even a stranger (me, again) can approach and say ‘hello’.

From my tour of the animal house at the Institute of Neuroscience I saw animals in calm, healthy conditions, to which the tests were just a part of their daily routine. Animal testing is controversial but I think that the work of Professor Baker and his team is important in helping people who have suffered stroke and other life-changing trauma to regain their independence and, often, their lives.

Source: Newcastle University

Source: New wearable electronic device could revolutionise treatment for stroke patients

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Paralyzed man uses intention of movement to control robotic arm – Medical News Today

A 34-year-old man left paralyzed after suffering a bullet wound has become the first person to have a neuroprosthetic device implanted in the brain region responsible for movement intention, allowing him to control a robotic arm with his mind.
Erik Sorto controlling the robotic arm with his mind
Thanks to the neuroprosthetic device, Sorta is able to control a robotic arm with just his thoughts.
Image credit: Spencer Kellis, Caltech

Erik Sorto, a father of two from California, endured a gunshot wound at the age of 21, severing his spinal cord and leaving him unable to move his arms and legs. Thanks to the new device, Sorto is now able to shake hands, pick up a beverage and even play “rock, paper, scissors.”

“I was surprised at how easy it was [to control the robotic arm],” says Sorto. “I remember just having this out-of-body experience, and I wanted to just run around and high-five everybody.”

The success of the neuroprosthetic device is the result of a joint project involving researchers from the California Institute of Technology (Caltech), Keck Medicine of the University of Southern California (USC) and the Rancho Los Amigos National Rehabilitation Center in Downey, CA.

In the journal Science, principal investigator Richard Anderson, James G. Boswell professor of neuroscience at Caltech, and colleagues explain how they implanted the device and how it works.

Previously, research into neuroprosthetics has focused on implanting devices in the motor cortex – the area of the brain that controls movement. Though this has allowed patients to possess some control over robotic limbs, results have been inconsistent, with motion often being severely delayed or shaky.

For this project, the team focused on the posterior parietal cortex (PPC) – the brain region that controls the intention of movement rather than movement itself.

PPC activity recorded by tiny electrode arrays and decoded to control robotic arm

Surgeons from Keck Medicine of USC implanted two small electrode arrays – 4 mm x 4 mm in size – into Sorta’s PPC. One electrode array controls reach, while the other controls grasp. Each array consists of 96 active electrodes that note the activity of each nerve cell in the PPC.

A cable connects the electrode arrays to a computer system that reads nerve cell activity in the PPC, decoding it to determine the brain’s intention of movement and control devices it is connected to – in this case, a robotic arm and a computer cursor.

The surgery – conducted on April 17th, 2013 – was a complex procedure and took 5 hours to complete, according to the team.

“These arrays are very small so their placement has to be exceptionally precise, and it took a tremendous amount of planning – working with the Caltech team to make sure we got it right,” says neurosurgeon Charles Liu, professor of neurological surgery and neurology and biomedical engineering at USC.

“Because it was the first time anyone had implanted this part of the human brain, everything about the surgery was different: the location, the positioning and how you manage the hardware,” he adds. “Keep in mind that what we’re able to do – the ability to record the brain’s signals and decode them to eventually move the robotic arm – is critically dependent on the functionality of these arrays, which is determined largely at the time of surgery.”

Sorta and the research team talk more about the procedure in the video below:

Study offers hope for patients with paralysis

Sorto started rehabilitation at the Rancho Los Amigos National Rehabilitation Center 16 days after the procedure.

Though he was able to use his thoughts to move the robotic arm immediately, it took weeks of mind training to refine arm movements. Now, Sorta is able to carry out a number of tasks using the arm, such as picking up a beverage.

“He’s been able to do various things,” Andersen told The Washington Post. “He can play video games and do rock paper scissors, he can grasp objects. And of course he had a personal goal, which is to control the speed at which he drinks a beer, so we implemented that first.”

According to the Christopher & Dana Reeve Foundation, around 6 million people in the US are living with some form of paralysis – the equivalent to almost 1 in 50 Americans.

The success of the neuroprosthetic device so far has excited neurological researchers, representing another step toward helping patients with full or partial paralysis.

Study investigator Christine Heck, associate professor of neurology and co-director of the Neurorestoration Center at USC, says:

“We are at a point in human research where we are making huge strides in overcoming a lot of neurologic disease.

These very important early clinical trials could provide hope for patients with all sorts of neurologic problems that involve paralysis such as stroke, brain injury,ALS and even multiple sclerosis.”

The project is ongoing, with Sorto committing to another year of study.”This study has been very meaningful to me,” he says. “As much as the project needed me, I needed the project. It gives me great pleasure to be part of the solution for improving paralyzed patients’ lives.”

The National Institutes of Health, the Boswell Foundation, the Department of Defense and the USC Neurorestoration Center funded the study.

In December 2014, Medical News Today reported on a study published in the Journal of Neural Engineering, in which researchers revealed how a 52-year-old quadriplegic woman was able to control a robotic arm with her mind.

That study detailed similar techniques to those used in this latest research, though the electrode arrays were implanted into the patients left motor cortex rather than the PPC.

Source: Paralyzed man uses intention of movement to control robotic arm – Medical News Today

, , , , , , , , ,

Leave a comment

[Abstract] Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area.



The supplementary motor area (SMA) syndrome is a well-studied lesional model of brain plasticity involving the sensorimotor network. Patients with diffuse low-grade gliomas in the SMA may exhibit this syndrome after resective surgery. They experience a temporary loss of motor function, which completely resolves within 3 months. The authors used functional MRI (fMRI) resting state analysis of the sensorimotor network to investigate large-scale brain plasticity between the immediate postoperative period and 3 months’ follow-up.


Resting state fMRI was performed preoperatively, during the immediate postoperative period, and 3 months postoperatively in 6 patients with diffuse low-grade gliomas who underwent partial surgical excision of the SMA. Correlation analysis within the sensorimotor network was carried out on those 3 time points to study modifications of its functional connectivity.


The results showed a large-scale reorganization of the sensorimotor network. Interhemispheric connectivity was decreased in the postoperative period, and increased again during the recovery process. Connectivity between the lesion side motor area and the contralateral SMA rose to higher values than in the preoperative period. Intrahemispheric connectivity was decreased during the immediate postoperative period and had returned to preoperative values at 3 months after surgery.


These results confirm the findings reported in the existing literature on the plasticity of the SMA, showing large-scale modifications of the sensorimotor network, at both inter- and intrahemispheric levels. They suggest that interhemispheric connectivity might be a correlate of SMA syndrome recovery.

Source : Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area

, , , , , , , ,

Leave a comment

[WEB SITE] Bionic implant could help paralyzed people ‘walk with the power of thought’ – Medical News Today

A team of researchers is developing a revolutionary bionic brain implant to help paralyzed people control a robotic exoskeleton just by thinking about it.

The team plans to test the stentrode in humans in 2017; they will insert it via a vein and implant it next to the motor cortex, where it will pick up brain signals so the patient can control an exoskeleton just by thinking about it. Image credit: University of Melbourne

The team is hoping to test the matchstick-sized stent electrode, or “stentrode,” in a group of paralyzed patients with spinal cord injuries in 2017.

The device is inserted via a blood vessel and is deposited in a blood vessel next to the motor cortex – the part of the brain that generates signals that control movement – bypassing the need for complex brain surgery.

The brain-machine interface is not dissimilar to the idea of a heart pacemaker, in that it interacts electrically with tissue using sensors inserted into a vein, except the vein is inside the brain.

The medical innovation is the work of 39 scientists, researchers and engineers from 16 departments at the University of Melbourne in Australia, who report their work so far in a paper published in the journal Nature Biotechnology.

First author and neurologist Dr. Thomas Oxley, who among other things heads the multi-disciplinary vascular bionics lab at Melbourne, says:

“We have been able to create the world’s only minimally invasive device that is implanted into a blood vessel in the brain via a simple day procedure, avoiding the need for high-risk open brain surgery.”

Their goal is to help completely paralyzed patients regain mobility by recording their brain activity and converting those signals into electrical commands that control exoskeletons and prosthetic limbs.

“In essence this is a bionic spinal cord,” explains Dr. Oxley.

The signals could also be used to control wheelchairs and computers, say the researchers.

Pre-clinical trials suggest stentrode is effective, safe for long-term use

The pre-clinical trials described in the paper show that the type of brain activity the stentrode picks up are the sort that can control the movement of bionic limbs.

The researchers carried out experiments on sheep that show the device can record high-quality signals emitted from the motor cortex, and it can be safely inserted via angiography without incurring the risks associated with open brain surgery.

The results suggest the implanted stentrode is safe for long-term use. The researchers were able to successfully record brain activity over many months, and the quality of the recording improved as the device was incorporated into tissue.

Stroke and spinal cord injuries are leading causes of disability, affecting around 1 in 50 people. In the US, nearly 6 million people are living with paralysis.

In Australia – where the stentrode is being developed – around 150,000 people are living with severe disability following a stroke, and around 20,000 people have spinal cord injuries – the typical patient being a 19-year-old male.

The team plans to start the first in-human trial in 2017; the intention is to achieve direct brain control of an exoskeleton in three paralyzed patients.

At the moment, to switch to a different mode like stand, start, stop or turn, the user has to operate a joystick. When the trial patients begin to use the stentrode, it will be the first human-operated device that enables direct control of the switching between these modes.

In the following video, the researchers describe where the idea of the stentrode came from, how they developed it and the technique for implanting it:

The researchers see potential for the stentrode to help patients with Parkinson’s disease, epilepsy and other brain diseases.

The news follows that of another medical innovation Medical News Today learned about recently, where researchers have developed and successfully tested an external electrical forehead patch as a treatment for chronic post-traumatic stress disorder(PTSD). The patch, which is worn during sleep, is powered by a 9-volt battery and sends a weak current to stimulate nerves in the forehead.

Source: Bionic implant could help paralyzed people ‘walk with the power of thought’ – Medical News Today

, , , , , ,

Leave a comment

%d bloggers like this: