Posts Tagged paraplegic

[NEWS] Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk

Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk again and exhibit partial motor recovery

IMAGE

IMAGE: THE NON-INVASIVE CLOSED-LOOP NEUROREHABILITATION PROTOCOL: I) EEG: ELECTROENCEPHALOGRAPHY, NON-INVASIVE BRAIN-RECORDING. II) BRAIN-MACHINE INTERFACE: REAL-TIME DECODING OF MOTOR INTENTIONS. III) THE LEFT OR RIGHT LEG MUSCLES ARE STIMULATED TO TRIGGER THE… view more 
CREDIT: WALK AGAIN PROJECT – ASSOCIAÇÃO ALBERTO SANTOS DUMONT PARA APOIO À PESQUISA

In another major clinical breakthrough of the Walk Again Project, a non-profit international consortium aimed at developing new neuro-rehabilitation protocols, technologies and therapies for spinal cord injury, two patients with paraplegia regained the ability to walk with minimal assistance, through the employment of a fully non-invasive brain-machine interface that does not require the use of any invasive spinal cord surgical procedure. The results of this study appeared on the May 1 issue of the journal Scientific Reports.

The two patients with paraplegia (AIS C) used their own brain activity to control the non-invasive delivery of electrical pulses to a total of 16 muscles (eight in each leg), allowing them to produce a more physiological walk than previously reported, requiring only a conventional walker and a body weight support system as assistive devices. Overall, the two patients were able to produce more than 4,500 steps using this new technology, which combines a non-invasive brain-machine interface, based on a 16-channel EEG, to control a multi-channel functional electrical stimulation system (FES), tailored to produce a much smoother gait pattern than the state of the art of this technique.

“What surprised us was that, in addition to allowing these patients to walk with little help, one of them displayed a clear motor improvement by practicing with this new approach. Patients required approximatively 25 sessions to master the training before they were able to walk using this apparatus,” said Solaiman Shokur one of the authors of the study.

The two patients that used this new rehabilitation approach had previously participated in the long-term neurorehabilitation study carried out using the Walk Again Project Neurorehabilitation (WANR) protocol. As reported in a recent publication from the same team (Shokur et al., PLoS One, Nov. 2018), all seven patients who participated in that protocol for a period of 28 months improved their clinical status, from complete paraplegia (AIS A or B, meaning no motor functions below the level of the injury, according to the ASIA classification) to partial paraplegia (AIS C, meaning partial recovery of sensory and motor function below the injury level). This significant neurological recovery included major clinical improvements in sensory discrimination (tactile, nociception, vibration, and pressure), voluntary motor control of abdomen and leg muscles, and important gains in autonomic control, such as bladder, bowel, and sexual functions.

“The last two studies published by the Walk Again Project clearly indicate that partial neurological and functional recovery can be induced in chronic spinal cord injury patients by combining multiple non-invasive technologies that are based around the concept of using a brain-machine interface to control different types of actuators, like virtual avatars, robotic walkers, or muscle stimulating devices, to allow the total involvement of patients in their own rehabilitation routine,” said Miguel Nicolelis, scientific director of the Walk Again Project and one of the authors of the study.

In a recent report by another group, one AIS C and two AIS D patients were able to walk thanks to the employment of an invasive method for spinal cord electrical stimulation, which required a spinal surgical procedure. In contrast, in the present study two AIS C patients – which originally were AIS A (see Supplemental Material below)- and a third AIS B subject, who recently achieved similar results, were able to regain a significant degree of autonomous walking without the need for such invasive treatments. Instead, these patients only received electrical stimulation patterns delivered to the skin surface of their legs, so that a total of eight muscles in each limb could be electrically stimulated in a physiologically accurate sequence. This was done in order to produce a smoother and more natural pattern of locomotion.

“Crucial for this implementation was the development of a closed-loop controller that allowed real-time correction of the patients’ walking pattern, taking into account muscle fatigue and external perturbations, in order to produce a predefined gait trajectory. Another major component of our approach was the use of a wearable haptic display to deliver tactile feedback to the patients´ forearms in order to provide them with a continuous source of proprioceptive feedback related to their walking,” said Solaiman Shokur.

To control the pattern of electrical muscle stimulation in each leg, these patients utilized an EEG-based brain-machine interface. In this setup, patients learned to alternate the generation of “stepping motor imagery” activity in their right and left motor cortices, in order to create alternated movements of their left and right legs.

According to the authors, the patients exhibited not only “less dependency on walking assistance, but also partial neurological recovery, with substantial rates of motor improvement in one of them.” The improvement in motor control in this last AIS C patient was 9 points in the lower extremity motor score (LEMS), which was comparable with that observed using invasive spinal cord stimulation.

Based on the results obtained over the past 5 years, the WAP now intends to combine all its neurorehabilitation tools into a single integrated, non-invasive platform to treat spinal cord injury patients. This platform will allow patients to begin training soon after the injury occurs. It will also allow the employment of a multi-dimensional integrated brain-machine interface capable of simultaneously controlling virtual and robotic actuators (like a lowerlimb exoskeleton), a multi-channel non-invasive electrical muscle stimulation system (like the FES used in the present study), and a novel non-invasive spinal cord stimulation approach. In this final configuration, this WAP platform will incorporate all these technologies together in order to maximize neurological and functional recovery in the shortest possible time, without the need of any invasive procedure.

According to Dr. Nicolelis, “there is no silver bullet to treat spinal cord injuries. More and more, it looks like we need to implement multiple techniques simultaneously to achieve the best neurorehabilitation results. In this context, it is also imperative to consider the occurrence of cortical plasticity as a major component in the planning of our rehabilitation approach.”

###

The other authors of this paper are Aurelie Selfslagh, Debora S.F. Campos, Ana R. C. Donati, Sabrina Almeida, Seidi Y. Yamauti, Daniel B. Coelho and Mohamed Bouri. This project was developed through a collaboration between the Neurorehabilitation Laboratory of the Associação Alberto Santos Dumont para Apoio à Pesquisa (AASDAP), the headquarters of the Walk Again Project, the Biomechanics and Motor Control Laboratory at the Federal University of ABC (UFABC), and the Laboratory of Robotic System at the Swiss Institute of Technology of Lausanne (EPFL). It was funded by a grant from the Brazilian Financing Agency for Studies and Projects (FINEP) 01.12.0514.00, Ministry of Science, Technology, Innovation and Communications (MCTIC), to AASDAP.

Supplemental Material:

https://www.youtube.com/watch?v=AZbQeuJiSOI

Supporting Research Studies:

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206464

https://www.nature.com/articles/s41598-019-43041-9

 

via Brain-controlled, non-invasive muscle stimulation allows chronic paraplegics to walk | EurekAlert! Science News

 

, , , , , , , , , ,

Leave a comment

[WEB SITE] Symbitron | Symbiotic man-machine interaction in wearable exoskeletons to enhance mobility for paraplegics – CORDIS Project

Welcome to the Symbitron project website! Our main goals are:

  • To develop a safe, bio-inspired, personalized wearable exoskeleton that enables SCI patients to walk without additional assistance, by complementing their remaining motor function
  • To develop training environments and training protocols for SCI patients and their clinicians
  • To provide clinical proof of concept for safety and functionality of the system

WE2_S01720p

Video of one of the test pilots with a complete spinal cord injury, walking in WE2 (ankle, knee and hip actuation)


General information

Symbitron – Symbiotic man-machine interactions in wearable exoskeletons to enhance mobility for paraplegics

Project Coordination: University of Twente, Enschede, The Netherlands

Project Coordinator: Herman van der Kooij (University of Twente)

Project Partners: see Consortium

E-mail: info at symbitron dot eu

Funding: European Union, Seventh Framework Programme

                 FP7-ICT-2013-10, ID 661626

Start date: October 1st, 2013

Duration: 48 months

EU funding: 3.099.898

Tree-Clouds-4cm-4cm-300dpi-RVBThe Symbitron project is part of the “Future and Emerging Technologies (FET)” programme of the European Commission: http://ec.europa.eu/digital-agenda/en/future-emerging-technologies-fet.

Objectives

A)  To develop an integrated neuromuscular model that describes the physiology of healthy versus impaired human gait (WP2)

B)  To design and manufacture personalised modular exoskeletons that compensate for SCI impairments (WP3)

C)  To develop personalised human inspired neuro-muscular controllers for the wearable exoskeletons (WP4)

D)  To optimise the design & control, and bi-directional symbiotic man-machine interaction of wearable exoskeletons (WP5)

E)  To determine the safety and functionality of the personalised SYMBITRON wearable exoskeletons in a clinical study (WP6)

F) To disseminate key findings to relevant stakeholders and to secure IP protection and exploitation of valuable innovatins (WP7)

Symbitron objectivesVisit Site —>  Symbitron | Symbiotic man-machine interaction

, , , ,

Leave a comment

[ARTICLE] Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients – Full Text HTML

Abstract

Brain-machine interfaces (BMIs) provide a new assistive strategy aimed at restoring mobility in severely paralyzed patients. Yet, no study in animals or in human subjects has indicated that long-term BMI training could induce any type of clinical recovery. Eight chronic (3–13 years) spinal cord injury (SCI) paraplegics were subjected to long-term training (12 months) with a multi-stage BMI-based gait neurorehabilitation paradigm aimed at restoring locomotion. This paradigm combined intense immersive virtual reality training, enriched visual-tactile feedback, and walking with two EEG-controlled robotic actuators, including a custom-designed lower limb exoskeleton capable of delivering tactile feedback to subjects. Following 12 months of training with this paradigm, all eight patients experienced neurological improvements in somatic sensation (pain localization, fine/crude touch, and proprioceptive sensing) in multiple dermatomes. Patients also regained voluntary motor control in key muscles below the SCI level, as measured by EMGs, resulting in marked improvement in their walking index. As a result, 50% of these patients were upgraded to an incomplete paraplegia classification. Neurological recovery was paralleled by the reemergence of lower limb motor imagery at cortical level. We hypothesize that this unprecedented neurological recovery results from both cortical and spinal cord plasticity triggered by long-term BMI usage.

Introduction

Spinal Cord Injury (SCI) rehabilitation remains a major clinical challenge, especially in cases involving chronic complete injury. Clinical studies using body weight support systems1,2, robotic assistance1,2,3,4, and functional electrostimulation of the leg5,6 have proposed potential solutions for assisting SCI patients in walking7,8. Yet, none of these approaches have generated any consistent clinical improvement in neurological functions, namely somatosensory (tactile, proprioceptive, pain, and temperature) perception and voluntary motor control, below the level of the spinal cord lesion.

Since the first experimental demonstrations in rats9, monkeys10,11, and the subsequent clinical reports in humans12,13,14, brain-machine interfaces (BMIs) have emerged as potential options to restore mobility in patients who are severely paralyzed as a result of spinal cord injuries (SCIs) or neurodegenerative disorders15. However, to our knowledge, no study has suggested that long-term training associating BMI-based paradigms and physical training could trigger neurological recovery, particularly in patients clinically diagnosed as having a complete SCI. Yet, in 60–80% of these “complete” SCI patients, neurophysiological assessments16,17 and post-mortem anatomical18 studies have indicated the existence of a number of viable axons crossing the level of the SCI. This led some authors to refer to these patients as having a “discomplete” SCI17 and predict that these remaining axons could mediate some degree of neurological recovery.

For the past few years, our multidisciplinary team has been engaged in a project to implement a multi-stage neurorehabilitation protocol – the Walk Again Neurorehabilitation (WA-NR) – in chronic SCI patients. This protocol included the intensive employment of immersive virtual-reality environments, combining training on non-invasive brain-control of virtual avatar bodies with rich visual and tactile feedback, and the use of closed-loop BMI platforms in conjunction with lower limb robotic actuators, such as a commercially available robotic walker (Lokomat, Hocoma AG, Volketswil, Switzerland), and a brain-controlled robotic exoskeleton, custom-designed specifically for the execution of this project.

Originally, our central goal was to explore how much such a long-term BMI-based protocol could help SCI patients regain their ability to walk autonomously using our brain-controlled exoskeleton. Among other innovations, this device provides tactile feedback to subjects through the combination of multiple force-sensors, applied to key locations of the exoskeleton, such as the plantar surface of the feet, and a multi-channel haptic display, applied to the patient’s forearm skin surface.

Unexpectedly, at the end of the first 12 months of training with the WA-NR protocol, a comprehensive neurological examination revealed that all of our eight patients had experienced a significant clinical improvement in their ability to perceive somatic sensations and exert voluntary motor control in dermatomes located below the original SCI. EEG analysis revealed clear signs of cortical functional plasticity, at the level of the primary somatosensory and motor cortical areas, during the same period. These findings suggest, for the first time, that long-term exposure to BMI-based protocols enriched with tactile feedback and combined with robotic gait training may induce cortical and subcortical plasticity capable of triggering partial neurological recovery even in patients originally diagnosed with a chronic complete spinal cord injury.

Methods

Eight paraplegic patients, suffering from chronic (>1 year) spinal cord injury (SCI, seven complete and one incomplete, see Fig. 1A, Supplementary Methods Inclusion/exclusion Criteria), were followed by a multidisciplinary rehabilitation team, comprised of clinical staff, engineers, neuroscientists, and roboticists, during the 12 months of 2014. Our clinical protocol, which we named the Walk Again Neurorehabilitation (WA-NR), was approved by both a local ethics committee (Associação de Assistência à Criança Deficiente, Sao Paulo, Sao Paulo, Brazil #364.027) and the Brazilian federal government ethics committee (CONEP, CAAE: 13165913.1.0000.0085). All research activities were carried out in accordance with the guidelines and regulations of the Associação de Assistência à Criança Deficiente and CONEP. Each participant signed written informed consent before enrolling in the study. The central goal of this study was to investigate the clinical impact of the WA-NR, which consisted of the integration between traditional physical rehabilitation and the use of multiple brain-machine interface paradigms (BMI). This protocol included six components: (1) an immersive virtual reality environment in which a seated patient employed his/her brain activity, recorded via a 16-channel EEG, to control the movements of a human body avatar, while receiving visuo-tactile feedback; (2) identical interaction with the same virtual environment and BMI protocol while patients were upright, supported by a stand-in-table device; (3) training on a robotic body weight support (BWS) gait system on a treadmill (Lokomat, Hocoma AG, Switzerland); (4) training with a BWS gait system fixed on an overground track (ZeroG, Aretech LLC., Ashburn, VA); (5) training with a brain-controlled robotic BWS gait system on a treadmill; and (6) gait training with a brain-controlled, sensorized 12 degrees of freedom robotic exoskeleton (seeSupplementary Material).

(A) Cumulated number of hours and sessions for all patients over 12 months. We report cumulated hours for the following activities: classic physiotherapy activities (e.g. strengthening/stretching), gait-BMI-based neurorehabilitation, one-to-one consultations with a psychologist, periodic measurements for research purposes and routine medical monitoring (vital signs, etc.). (B) Neurorehabilitation training paradigm and corresponding cumulated number of hours for all patients: 1) Brain controlled 3D avatar with tactile feedback when patient is seated on a wheelchair or 2) in an orthostatic position on a stand-in-table, 3) Gait training using a robotic body weight support (BWS) system on a treadmill (LokomatPro, Hocoma), 4) Gait training using an overground BWS system (ZeroG, Aretech). 5–6) Brain controlled robotic gait training integrated with the sensory support of the tactile feedback at gait devices (BWS system on a treadmill or the exoskeleton). (C) Material used for the clinical sensory assessment of dermatomes in the trunk and lower limbs: to evaluate pain sensitivity, examiner used a pin-prick in random positions of the body segments. Nylon monofilaments applying forces ranging between 300 to 0.2 grams on the skin, were used to evaluate patients’ sensitivity for crude to fine touch. Dry cotton and alcohol swabs were used to assess respectively warm and cold sensation. Vibration test was done using a diapason on patients’ legs bone surface. Deep pressure was assessed with an adapted plicometer in every dermatome.

Continue —> Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients : Scientific Reports

, , , , ,

Leave a comment

[WEB SITE] Engineer invents hands-free wheelchair for best friend

Kevin Halsall designed the Ogo wheelchair for his best friend. Credit: Ogo Technology

When Marcus Thompson was left paraplegic after a skiing accident, his best friend Kevin Halsall wanted to design a wheelchair that would suit his active lifestyle.

The New Zealand engineer came up with a “game changing” wheelchair, called the Ogo, based on Segway technology that enables the user to move intuitively, more precisely and hands-free.

And with special features, like being able to change tyres to allow users to travel in all terrains, the wheelchair can move up to 20km per hour even off-road.

The prototype, which took Mr Halsall alongside Mr Thompson four years of development, is now a finalist in the National Innovators Awards and is in the process of being made available for purchase.

“The disabled are exactly like you and me, they all need freedom and excitement in their life. And Ogo takes that to a whole new level. It will go faster, it will go more places and is smaller and lighter than just about anything else.And the fact that you can operate it completely hands-free makes Ogo a definite game-changer.– KEVIN HALSALL”

Users simply lean in the direction of travel and use their core muscles even to stay in balance which occupational therapists say is a key benefit of the Ogo.

Its hands-free design will enable users freedom to do more from playing sports to mowing the lawn.

“It’s one of the life affirming things that this machine does, it puts you in touch with your whole body again,” Mr Thompson said.

Marcus Thompson helped developed the Ogo and demonstrates its use as a sports wheelchair. Credit: Ogo Technology

The Ogo has been tested on people with disabilities from T4 to T12 and some tetraplegics. Anyone with abdominal control can operate the device hands free.

Those without abdominal control can still use the chair by holding on to its sides.

The wheelchair also has stabilisers for when users are working or lifting items off the floor. The battery-powered wheelchair can also be steered manually.

A price for the Ogo is yet to be fixed but Mr Halsall says he wants to keep it as low as he can to “make it affordable to people that need it”.

Source: Engineer invents hands-free wheelchair for best friend – ITV News

, , , , , ,

Leave a comment

%d bloggers like this: