Posts Tagged paresis

[WEB SITE] Brain-Machine Interface Shows Potential for Hand Paralysis – Rehab Managment

Published on

The use of a brain-machine interface shows potential for helping to restore function in stroke patients with hand paralysis, according to a study of healthy adults published in the Journal of Neuroscience.

According to the study, researchers note that the brain-machine interface, which is designed to combine brain stimulation with a robotic device that controls hand movement, increases the output of pathways connecting the brain and spinal cord.

Researchers Alireza Gharabaghi and colleagues asked participants to imagine opening their hand without actually making any movement while their hand was placed in a device that passively opened and closed their fingers as it received the necessary input from their brain activity. Stimulating the hand area of the motor cortex at the same time, but not after, the robotic device initiated hand movement increased the strength of the neural signal, most likely by harnessing the processing power of additional neurons in the corticospinal tract, explains a media release from the Society for Neuroscience.

However, the signal decreased when participants were not required to imagine moving their hand. Delivering brain stimulation and robotic motor feedback simultaneously during rehabilitation may therefore be beneficial for patients who have lost voluntary muscle control, the release continues.

[Source(s): Society for Neuroscience]

via Brain-Machine Interface Shows Potential for Hand Paralysis – Rehab Managment


, , , , , , , , ,

Leave a comment

[WEB SITE] Virtual Reality Tech Tackles Post-Stroke Effects No Worse Than Physiotherapy.

Travel journalists watch a virtual reality presentation given by United Airlines as part of their new international business class dubbed United Polaris in New York, U.S. June 2, 2016

Virtual reality (VR) training is no less effective than conventional physiotherapy during post-stroke rehabilitation, a new report in Neurology magazine states.

German researchers led by Iris Brunner from Bergen University in Norway tested two methodologies as a total of 120 patients underwent post-stroke rehabilitation, comprising a minimum of 16 60-minute sessions over four weeks. The patients with an equal degree of paresis were divided into two groups, 60 in each, to perform either traditional training, or one involving use of VR technologies.

​The study provides sufficient evidence that for patients with upper extremity motor impairment, VR training and physiotherapy contributed equally to upper extremity function improvement, which was estimated at about 21 percent promptly after the training sessions. However, the former also allows doctors to adjust by hand the intensity of the VR training depending on the severity of paresis. Three months after the rehabilitation program, patients could boast of having boosted their motor functions by a staggering 30 percent.

“The results found that additional upper extremity VR training was not superior but equally as effective as additional conventional training (CT) in the subacute phase following a stroke,” the Neurology abstract reads.
VR technologies have long been used for purposes other than entertainment. For instance, VR glasses imitating social interactions are being employed to help cure such medical conditions as paranoia, depression and have even helped eradicate the fear of death in some cases.

via Virtual Reality Tech Tackles Post-Stroke Effects No Worse Than Physiotherapy – Sputnik International

, , , , , , , ,

Leave a comment

[ARTICLE] Hemiparetic Stroke Rehabilitation Using Avatar and Electrical Stimulation Based on Non-invasive Brain Computer Interface – Full Text

Brain computer interfaces (BCIs) have been employed in rehabilitation training for post-stroke patients. Patients in the chronic stage, and/or with severe paresis, are particularly challenging for conventional rehabilitation. We present results from two such patients who participated in BCI training with first-person avatar feedback. Five assessments were conducted to assess any behavioural changes after the intervention, including the upper extremity Fugl-Meyer assessment (UE-FMA) and 9 hole-peg test (9HPT). Patient 1 (P1) increased his UE-FMA score from 25 to 46 points after the intervention. He could not perform the 9HPT in the first session. After the 18th session, he was able to perform the 9HPT and reduced the time from 10 min 22 sec to 2 min 53 sec. Patient 2 (P2) increased her UE-FMA from 17 to 28 points after the intervention. She could not perform the 9HPT throughout the training session. However, she managed to complete the test in 17 min 17 sec during the post-assessment session.
These results show that the feasibility of this BCI approach with chronic patients with severe paresis, and further support the growing consensus that these types of tools might develop into a new paradigm for rehabilitation tool for stroke patients. However, the results are from only two chronic stroke patients. This approach should be furthe validated in broader randomized controlled studies involving more patients.

Download Full Text PDF

, , , , , , , , , ,

Leave a comment

[Abstract] Motor Imagery Training After Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials


Background and Purpose: A number of studies have suggested that imagery training (motor imagery [MI]) has value for improving motor function in persons with neurologic conditions. We performed a systematic review and meta-analysis to assess the available literature related to efficacy of MI in the recovery of individuals after stroke.

Methods: We searched the following databases: PubMed, Web of Knowledge, Scopus, Cochrane, and PEDro. Two reviewers independently selected clinical trials that investigated the effect of MI on outcomes commonly investigated in studies of stroke recovery. Quality and risk of bias of each study were assessed.

Results: Of the 1156 articles found, 32 articles were included. There was a high heterogeneity of protocols among studies. Most studies showed benefits of MI, albeit with a large proportion of low-quality studies. The meta-analysis of all studies, regardless of quality, revealed significant differences on overall analysis for outcomes related to balance, lower limb/gait, and upper limb. However, when only high-quality studies were included, no significant difference was found. On subgroup analyses, MI was associated with balance gains on the Functional Reach Test and improved performance on the Timed Up and Go, gait speed, Action Research Arm Test, and the Fugl-Meyer Upper Limb subscale.

Discussion and Conclusions: Our review reported a high heterogeneity in methodological quality of the studies and conflicting results. More high-quality studies and greater standardization of interventions are needed to determine the value of MI for persons with stroke.

Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1,

Source: Motor Imagery Training After Stroke: A Systematic Review an… : Journal of Neurologic Physical Therapy

, , , ,

Leave a comment

[Abstract] Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke


Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS+BCI, compared to sham rTMS+BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main Results. Motor improvements were observed in both real rTMS+BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS+BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS+BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as demonstrated by behavioral improvements for the sham rTMS+BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

Source: Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke – IOPscience

, , , , , ,

Leave a comment

[ARTICLE] Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial – Full Text

Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group (n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group (n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT’s grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points (p < 0.01) and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points (p < 0.01). Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT) and 15.8% (FMMA). These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.


Motor imagery (Page et al., 2001), or mental practice, attracted considerable interest as a potential neurorehabilitation technique improving motor recovery following stroke (Jackson et al., 2001). According to the Guidelines for adult stroke rehabilitation and recovery (Winstein et al., 2016), mental practice may proof beneficial as an adjunct to upper extremity rehabilitation services (Winstein et al., 2016). Several studies suggest that motor imagery can trigger neuroplasticity in ipsilesional motor cortical areas despite severe paralysis after stroke (Grosse-Wentrup et al., 2011Shih et al., 2012Mokienko et al., 2013bSoekadar et al., 2015).

The effect of motor imagery on motor function and neuroplasticity has been demonstrated in numerous neurophysiological studies in healthy subjects. Motor imagery has been shown to activate the primary motor cortex (M1) and brain structures involved in planning and control of voluntary movements (Shih et al., 2012Mokienko et al., 2013a,bFrolov et al., 2014). For example, it was shown that motor imagery of fist clenching reduces the excitation threshold of motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) delivered to M1 (Mokienko et al., 2013b).

As motor imagery results in specific modulations of brain electroencephalographic (EEG) signals, e.g., sensorimotor rhythms (SMR) (Pfurtscheller and Aranibar, 1979), it can be used to voluntarily control an external device, e.g., a robot or exoskeleton using a brain-computer interface (BCI) (Nicolas-Alonso and Gomez-Gil, 2012). Such system allowing for voluntary control of an exoskeleton moving a paralyzed limb can be used as an assistive device restoring lost function (Maciejasz et al., 2014). Besides receiving visual feedback, the user receives haptic and kinesthetic feedback which is contingent upon the imagination of a specific movement.

Several BCI studies involving this type of haptic and kinesthetic feedback have demonstrated improvements in clinical parameters of post-stroke motor recovery (Ramos-Murguialday et al., 2013Ang et al., 20142015Ono et al., 2014). The number of subjects with post-stroke upper extremity paresis included in these studies was, however, relatively low [from 12 (Ono et al., 2014) to 32 (Ramos-Murguialday et al., 2013) patients]. As BCI-driven external devices, a haptic knob (Ang et al., 2014), MIT-Manus (Ang et al., 2015), or a custom-made orthotic device (Ramos-Murguialday et al., 2013Ono et al., 2014) were used. Furthermore, several other studies reported on using BCI-driven exoskeletons in patients with post-stroke hand paresis (Biryukova et al., 2016Kotov et al., 2016Mokienko et al., 2016), but these reports did not test for clinical efficacy and did not include a control group. While very promising, it still remains unclear whether BCI training is an effective tool to facilitate motor recovery after stroke or other lesions of the central nervous system (CNS) (Teo and Chew, 2014).

Here we report a randomized and controlled multicenter study investigating whether 10 sessions of BCI-controlled hand-exoskeleton active training after subacute and chronic stroke yields a better clinical outcome than 10 sessions in which hand-exoskeleton induced passive movements were not controlled by motor imagery-related modulations of brain activity. Besides assessing the effect of BCI training on clinical scores such as the ARAT and FMMA, we tested whether improvements in the upper extremity function correlates with the patient’s ability to generate motor imagery-related modulations of EEG activity.[…]

Continue —> Frontiers | Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial | Neuroscience


Figure 1. The subject flow diagram from recruitment through analysis (Consolidated Standards of Reporting Trials flow diagram).

, , , , , ,

Leave a comment

[Abstract] Case Report on the Use of a Custom Myoelectric Elbow–Wrist–Hand Orthosis for the Remediation of Upper Extremity Paresis and Loss of Function in Chronic Stroke.


Introduction: This case study describes the application of a commercially available, custom myoelectric elbow–wrist–hand orthosis (MEWHO), on a veteran diagnosed with chronic stroke with residual left hemiparesis. The MEWHO provides powered active assistance for elbow flexion/extension and 3 jaw chuck grip. It is a noninvasive orthosis that is driven by the user’s electromyographic signal. Experience with the MEWHO and associated outcomes are reported.

Materials and Methods: The participant completed 21 outpatient occupational therapy sessions that incorporated the use of a custom MEWHO without grasp capability into traditional occupational therapy interventions. He then upgraded to an advanced version of that MEWHO that incorporated grasp capability and completed an additional 14 sessions. Range of motion, strength, spasticity (Modified Ashworth Scale [MAS]), the Box and Blocks test, the Fugl–Meyer assessment and observation of functional tasks were used to track progress. The participant also completed a home log and a manufacturers’ survey to track usage and user satisfaction over a 6-month period.

Results: Active left upper extremity range of motion and strength increased significantly (both with and without the MEWHO) and tone decreased, demonstrating both a training and an assistive effect. The participant also demonstrated an improved ability to incorporate his affected extremity (with the MEWHO) into a wide variety of bilateral, gross motor activities of daily living such as carrying a laundry basket, lifting heavy objects (e.g. a chair), using a tape measure, meal preparation, and opening doors.

Conclusion: Custom myoelectric orthoses offer an exciting opportunity for individuals diagnosed with a variety of neurological conditions to make advancements toward their recovery and independence, and warrant further research into their training effects as well as their use as assistive devices.

Source: EBSCOhost | 123998452 | Case Report on the Use of a Custom Myoelectric Elbow–Wrist–Hand Orthosis for the Remediation of Upper Extremity Paresis and Loss of Function in Chronic Stroke.

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Effect of upper extremity coordination exercise during standing on the paretic side on balance, gait ability and activities of daily living in persons with stroke – Full Text PDF

Objective: The purpose of this study was to determine the effect of upper extremity coordination exercise (UECE) during standing on the paretic side on balance, gait ability and activities of daily living (ADL) in persons with stroke.
Design: A randomized controlled trial.
Methods: A total of 27 patients with hemiplegic diagnosis after stroke were divided into two groups. Fourteen patients were in the study group and 13 patients were in the control group. The study group received conventional physical therapy and UECE during standing on the paretic side. The control group received conventional physical therapy and simple upper extremity exercise (SUEE). Subjects in both groups were given upper extremity training for 30 minutes per day, five times a week for 4 weeks. Initial evaluation was performed before treatment and reevaluated 4 weeks later to compare the changes of balance, gait ability and ADL (Korean version of modified Barthel index, K-MBI).
Results: Both groups showed a significant effect for balance, gait ability and ADL (p<0.05). In the Independent t-test, between both groups showed a significant effect for balance and gait ability except ADL (p<0.05).
Conclusions: In this paper, we investigated the changes in balance, walking, and ADL through UECE. We found significant changes in the study group and the control group. Results of the present study indicated that UECE during standing on the paretic side for 4 weeks had an effect on balance, gait ability and ADL (K-MBI) in persons with hemiplegia after stroke.

Download Full Text PDF


, , , , , , , , , , ,

Leave a comment

[ARTICLE] Brain regions important for recovery after severe post-stroke upper limb paresis – Full Text


Background The ability to predict outcome after stroke is clinically important for planning treatment and for stratification in restorative clinical trials. In relation to the upper limbs, the main predictor of outcome is initial severity, with patients who present with mild to moderate impairment regaining about 70% of their initial impairment by 3 months post-stroke. However, in those with severe presentations, this proportional recovery applies in only about half, with the other half experiencing poor recovery. The reasons for this failure to recover are not established although the extent of corticospinal tract damage is suggested to be a contributory factor. In this study, we investigated 30 patients with chronic stroke who had presented with severe upper limb impairment and asked whether it was possible to differentiate those with a subsequent good or poor recovery of the upper limb based solely on a T1-weighted structural brain scan.

Methods A support vector machine approach using voxel-wise lesion likelihood values was used to show that it was possible to classify patients as good or poor recoverers with variable accuracy depending on which brain regions were used to perform the classification.

Results While considering damage within a corticospinal tract mask resulted in 73% classification accuracy, using other (non-corticospinal tract) motor areas provided 87% accuracy, and combining both resulted in 90% accuracy.

Conclusion This proof of concept approach highlights the relative importance of different anatomical structures in supporting post-stroke upper limb motor recovery and points towards methodologies that might be used to stratify patients in future restorative clinical trials.


Stroke is one of the the most common causes of physical disability worldwide and about 80% of stroke survivors experience impairment of movement on one side of the body.1 Hand and arm impairment in particular is often persistent, disabling and a major contributor to reduced quality of life.2 The main predictor of long-term outcome of upper limb function is the level of initial impairment.3 This can be quantified as the proportional recovery rule which states that by 3 months, patients with stroke will recover about 70% of the initial upper limb motor impairment that has been observed on day 3 post-stroke.4–6 The prediction works extremely well for those presenting with mild to moderate upper limb impairment, but in only about half of those with initially severe upper limb impairment.4–6 In the other half, patients do worse than predicted, that is, there is a failure of proportional recovery. A key question then is, what is the difference between patients with stroke matched for initial severity who go on and have different recovery trajectories? The answer to this will point to the factors that are important for the dynamic process of recovery independent from the causes of initial impairment.

One possibility is the anatomy of the damage may be different in each group. A number of recent studies have proposed that the corticospinal tract (CST) plays a decisive role in this categorical difference7–11 as cortical reorganisation for improved motor function ultimately requires access for cortical motor areas to muscles. However, CST lesion load correlates with initial motor impairment,12 which is the major predictor of long-term outcome. It is therefore reasonable to ask how much CST lesion load can improve prediction of long-term outcome over and above initial severity. Furthermore, most of the patients involved in these studies had suffered from subcortical stroke and recent work has suggested that taking account of cortical damage after stroke can improve prediction of the motor clinical consequences.13 14

In this study, we investigated 30 patients with chronic stroke with a range of lesion locations (cortical and/or subcortical involvement) known to have presented with severe initial upper limb impairment but who had gone on to have quite different recovery trajectories. We applied a support vector machine approach to data representing lesion likelihood derived from structural T1-weighted MRI to answer the following questions. First, how accurately can patients with stroke with severe initial upper limb impairment be classified as having either good or poor recovery using only data extracted from whole brain structural MRI? Second, which brain regions contribute most to the classification? The results have the potential to transform how prediction of long-term upper limb outcome after stroke is achieved in routine clinical practice in future. The ability to easily and accurately predict outcome with standard clinical neuroimaging would have important implications for planning of treatment but also for stratification in future trials of restorative therapies.15[…]

Continue —> Brain regions important for recovery after severe post-stroke upper limb paresis | Journal of Neurology, Neurosurgery & Psychiatry

Figure 1

Figure 1 Data representation. In the figure to the left, a mask corresponding to the corticospinal tract is overlaid on an image obtained through lesion likelihood. Each voxel corresponds to a value between 0 and 1 encoding the probability of being part of injured tissue. The enlarged section of the image in the figure to the right shows that each voxel within a region of interest corresponds to a particular feature in the multivariate analysis. 

, , , , ,

Leave a comment

[Abstract] Effects of Transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: A randomized controlled trial  




To test whether a multi-strategy intervention enhanced recovery immediately and longitudinally in patients with severe to moderate upper extremity (UE) paresis.


Double-blind randomized controlled trial with placebo control.


An outpatient department of a local medical center.


People (n = 25) with chronic stroke were randomly assigned to 2 groups. Participants in the transcranial direct current stimulation with sensory modulation (tDCS-SM) and in the control group were 55.3±11.5 (n=14) and 56.9±13.5 (n=11) years old, respectively.


8-week intervention. The tDCS-SM group received bilateral tDCS, bilateral cutaneous anesthesia, and high repetitions of passive movements on the paretic hand. The control group received the same passive movements but with sham tDCS and sham anesthesia. During the experiment, all participants continued their regular rehabilitation.

Main outcome measures

Voluntary UE movement, spasticity, UE function, and basic activities of daily living. Outcomes were assessed at baseline, at post-intervention, and at 3- and 6-month follow-ups.


No significant differences were found between groups. However, there was a trend that the voluntary UE movement improved more in the tDCS-SM group than in the control group, with a moderate immediate effect (partial η2, ηp2 = 0.14, p = 0.07) and moderate long-term effects (ηp2 =0.17, p = 0.05 and ηp2 = 0.12, p = 0.10). Compared with the control group, the tDCS-SM group had a trend of a small immediate effect (ηp2 = 0.02 – 0.04) on reducing spasticity but no long-term effect. A trend of small immediate and long-term effects in favor of tDCS-SM was found on UE function and daily function recovery (ηp2= 0.02 – 0.09).


Accompanied with traditional rehabilitation, tDCS-SM had a non-significant trend of having immediate and longitudinal effects on voluntary UE movement recovery in patients with severe to moderate UE paresis after stroke, but its effects on spasticity reduction and functional recovery may be limited. (NCT01847157)

Source: Effects of Transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: A randomized controlled trial – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , ,

Leave a comment

%d bloggers like this: