Posts Tagged paresis

[Abstract] Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study  

Abstract

Objective

To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient’s unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training.

Design

Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks.

Setting

Rehabilitation university hospital.

Participants

Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo).

Interventions

Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment.

Main Outcome Measures

Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log.

Results

Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05).

Conclusions

EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis.

Source: Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , , ,

Leave a comment

[Abstract] Does Task-Specific Training Improve Upper Limb Performance in Daily Life Poststroke?

Please click here for full access options

Background. A common assumption is that changes in upper limb (UL) capacity, or what an individual is capable of doing, translates to improved UL performance in daily life, or what an individual actually does. This assumption should be explicitly tested for individuals with UL paresis poststroke.

Objective. To examine changes in UL performance after an intensive, individualized, progressive, task-specific UL intervention for individuals at least 6 months poststroke.

Methods. Secondary analysis on 78 individuals with UL paresis who participated in a phase II, single-blind, randomized parallel dose-response trial. Participants were enrolled in a task-specific intervention for 8 weeks. Participants were randomized into 1 of 4 treatment groups with each group completing different amounts of UL movement practice. UL performance was assessed with bilateral, wrist-worn accelerometers once a week for 24 hours throughout the duration of the study. The 6 accelerometer variables were tested for change and the influence of potential modifiers using hierarchical linear modeling.

Results. No changes in UL performance were found on any of the 6 accelerometer variables used to quantify UL performance. Neither changes in UL capacity nor the overall amount of movement practice influenced changes in UL performance. Stroke chronicity, baseline UL capacity, concordance, and ADL status significantly increased the baseline starting points but did not influence the rate of change (slopes) for participants.

Conclusions. Improved motor capacity resulting from an intensive outpatient UL intervention does not appear to translate to increased UL performance outside the clinic.

Source: Does Task-Specific Training Improve Upper Limb Performance in Daily Life Poststroke? – Mar 01, 2017

, , , , , , ,

Leave a comment

[Poster] A Toolkit for Objective Clinical Outcome Measures of Muscle Tone – Archives of Physical Medicine and Rehabilitation

To evaluate a wearable sensor-based toolkit for quantifying muscle tone in patients with upper motor neuron syndrome (UMNS).

Source: A Toolkit for Objective Clinical Outcome Measures of Muscle Tone – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[ARTICLE] Electrical somatosensory stimulation followed by motor training of the paretic upper limb in acute stroke: study protocol for a randomized controlled trial | Trials – Full Text

Abstract

Background

Upper limb paresis is one of the most frequent and persistent impairments following stroke. Only 12–34% of stroke patients achieve full recovery of upper limb functioning, which seems to be required to habitually use the affected arm in daily tasks. Although the recovery of upper limb functioning is most pronounced during the first 4 weeks post stroke, there are few studies investigating the effect of rehabilitation during this critical time window. The purpose of this trial is to determine the effect of electrical somatosensory stimulation (ESS) initiated in the acute stroke phase on the recovery of upper limb functioning in a nonselected sample of stroke patients.

Methods/design

A sample of 102 patients with upper limb paresis of varying degrees of severity is assigned to either the intervention or the control group using stratified random sampling. The intervention group receives ESS plus usual rehabilitation and the control group receives sham ESS plus usual rehabilitation. The intervention is applied as 1 h of ESS/sham ESS daily, followed by motor training of the affected upper limb. The ESS/sham ESS treatment is initiated within 7 days from stroke onset and it is delivered during hospitalization, but no longer than 4 weeks post stroke. The primary outcome is hand dexterity assessed by the Box and Block Test; secondary outcomes are the Fugl-Meyer Assessment, hand grip strength, pinch strength, perceptual threshold of touch, degree of pain, and modified Rankin Scale score. Outcome measurements are conducted at baseline, post intervention and at 6-month follow-up.

Discussion

Because of the wide inclusion criteria, we believe that the results can be generalized to the larger population of patients with a first-ever stroke who present with an upper limb paresis of varying severity. On the other hand, the sample size (n = 102) may preclude subgroup analyses in such a heterogeneous sample. The sham ESS treatment totals a mere 2% of the active ESS treatment delivered to the intervention group per ESS session, and we consider that this dose is too small to induce a treatment effect.

Background

Stroke is ranked as the third largest cause of disease burden globally [1], causing substantial physical, psychological and financial demands on patients, families, and societies at large [2, 3, 4]. Upper limb paresis is one of the most frequent impairments following stroke and affects 48–77% of patients in the acute stroke phase [5, 6, 7]. Moreover, upper limb paresis has been identified as a major obstacle to regaining independence in activities of daily living (ADLs) [8]. In fact, only 12–34% of the patients achieve full functional recovery of the affected upper limb at 6 months post stroke [9, 10]. This represents a considerable challenge since near complete functional recovery is required to routinely involve the affected upper limb in performing ADLs [11].

Recovery of upper limb functioning is typically pronounced during the first month and subsequently levels off by 6 months post stroke [12, 13, 14]. Regaining hand dexterity (i.e., motor skills such as reaching, grasping, gripping, moving and releasing objects) is often achieved already within the first 4 weeks, implying that there may be a critical time window for recovery of upper limb functioning [9, 10] during which rehabilitation efforts may maximize functional recovery. However, there are few studies investigating the effect of motor rehabilitation methods in the initial weeks after stroke.

Electrical stimulation (ES) is one of the methods that have been used to facilitate recovery of upper limb functioning following stroke. ES can induce a muscle contraction, or it can be a somatosensory stimulation below the motor threshold [15]. The majority of studies using ES have been conducted in chronic stroke and, therefore, it remains unknown to what extent ES applied in the acute phase after stroke could affect the recovery of upper limb functioning. Also, these investigations have largely focused on ES that induces muscle contraction. In healthy persons, the application of low-intensity ES with no or small motor responses to peripheral hand nerves [16, 17, 18, 19, 20], forearm muscles [21] or the whole hand [22, 23] elicits an increase in the cortical excitability of the representations that control the stimulated body parts, which seems to outlast the stimulation period itself [18, 21, 23]. It has been hypothesized that increasing the amount of somatosensory input may enhance the motor recovery of patients following stroke [24]. Recent data on acute, subacute and mostly chronic stroke patients suggest that a single 2-h session of ESS to the peripheral hand nerves leads to transient improvement of pinch force, movement kinematics and upper limb motor skills required for ADL performance [25, 26, 27, 28, 29, 30, 31]. However, ESS was only used in conjunction with motor training in one of these studies [29]. Interestingly, there is some evidence that multiple sessions of ESS to the peripheral hand nerves, in conjunction with motor training, might improve motor skills of the paretic upper limb in subacute [32, 33] and chronic stroke patients [34], and, moreover, that these positive results seems to be long lasting [34]. However, the effect of ESS in conjunction with motor training has never been investigated in acute stroke patients. It is noteworthy that ESS is benign in nature, causes patients minimal discomfort and adverse effects (itch and blushing), is relatively inexpensive and can easily be incorporated into clinical practice [35]. Therefore, it would be valuable to establish the effect of multiple sessions of ESS in conjunction with motor training in the restoration of upper limb functioning in the acute stroke phase.

The purpose of the present trial is to investigate the effect of multiple sessions of ESS treatment accompanied by motor training on the recovery of the affected upper limb following stroke. The ESS treatment is initiated in the acute stroke phase and each ESS session is immediately followed by motor training of the paretic upper limb. Specifically, we wish to address the following:

  1. (1)

    Does ESS treatment: (a) reduce motor and sensory impairments, (b) improve hand dexterity and (c) reduce disability at the end of the intervention period (short-term effect)?

  2. (2)

    Are the changes that can be observed at the end of the intervention period still present or improved at 6 months post stroke (long-term effect)?

Our hypothesis is that ESS treatment initiated in the acute stroke phase will improve paretic upper limb functioning as measured by the Box and Block Test (BBT) (primary outcome measure) at 6 months post stroke.

Continue —> Electrical somatosensory stimulation followed by motor training of the paretic upper limb in acute stroke: study protocol for a randomized controlled trial | Trials | Full Text

Fig. 2 Placement of the electrodes

, , , , , , , , ,

Leave a comment

[Abstract] Strength of ~20-Hz Rebound and Motor Recovery After Stroke.

Background. Stroke is a major cause of disability worldwide, and effective rehabilitation is crucial to regain skills for independent living. Recently, novel therapeutic approaches manipulating the excitatory-inhibitory balance of the motor cortex have been introduced to boost recovery after stroke. However, stroke-induced neurophysiological changes of the motor cortex may vary despite of similar clinical symptoms. Therefore, better understanding of excitability changes after stroke is essential when developing and targeting novel therapeutic approaches.

Objective and Methods. We identified recovery-related alterations in motor cortex excitability after stroke using magnetoencephalography. Dynamics (suppression and rebound) of the ~20-Hz motor cortex rhythm were monitored during passive movement of the index finger in 23 stroke patients with upper limb paresis at acute phase, 1 month, and 1 year after stroke.

Results. After stroke, the strength of the ~20-Hz rebound to stimulation of both impaired and healthy hand was decreased with respect to the controls in the affected (AH) and unaffected (UH) hemispheres, and increased during recovery. Importantly, the rebound strength was lower than that of the controls in the AH and UH also to healthy-hand stimulation despite of intact afferent input. In the AH, the rebound strength to impaired-hand stimulation correlated with hand motor recovery.

Conclusions. Motor cortex excitability is increased bilaterally after stroke and decreases concomitantly with recovery. Motor cortex excitability changes are related to both alterations in local excitatory-inhibitory circuits and changes in afferent input. Fluent sensorimotor integration, which is closely coupled with excitability changes, seems to be a key factor for motor recovery.

Source: Strength of ~20-Hz Rebound and Motor Recovery After Stroke – Feb 04, 2017

, , , , , , ,

Leave a comment

[Abstract] Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis

Abstract

Background and Purpose—It is unknown whether one method of neuromuscular electrical stimulation for poststroke upper limb rehabilitation is more effective than another. Our aim was to compare the effects of contralaterally controlled functional electrical stimulation (CCFES) with cyclic neuromuscular electrical stimulation (cNMES).

Methods—Stroke patients with chronic (>6 months) moderate to severe upper extremity hemiparesis (n=80) were randomized to receive 10 sessions/wk of CCFES- or cNMES-assisted hand opening exercise at home plus 20 sessions of functional task practice in the laboratory for 12 weeks. The task practice for the CCFES group was stimulation assisted. The primary outcome was change in Box and Block Test (BBT) score at 6 months post treatment. Upper extremity Fugl–Meyer and Arm Motor Abilities Test were also measured.

Results—At 6 months post treatment, the CCFES group had greater improvement on the BBT, 4.6 (95% confidence interval [CI], 2.2–7.0), than the cNMES group, 1.8 (95% CI, 0.6–3.0), between-group difference of 2.8 (95% CI, 0.1–5.5), P=0.045. No significant between-group difference was found for the upper extremity Fugl–Meyer (P=0.888) or Arm Motor Abilities Test (P=0.096). Participants who had the largest improvements on BBT were <2 years post stroke with moderate (ie, not severe) hand impairment at baseline. Among these, the 6-month post-treatment BBT gains of the CCFES group, 9.6 (95% CI, 5.6–13.6), were greater than those of the cNMES group, 4.1 (95% CI, 1.7–6.5), between-group difference of 5.5 (95% CI, 0.8–10.2), P=0.023.

Conclusions—CCFES improved hand dexterity more than cNMES in chronic stroke survivors.

Source: Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis | Stroke

, , , , , , , , , ,

Leave a comment

[Abstract] Detecting voluntary gait intention of chronic stroke patients towards top-down gait rehabilitation using EEG

Abstract:

One of the recent trends in gait rehabilitation is to incorporate bio-signals, such as electromyography (EMG) or electroencephalography (EEG), for facilitating neuroplasticity, i.e. top-down approach. In this study, we investigated decoding stroke patients’ gait intention through a wireless EEG system. To overcome patient-specific EEG patterns due to impaired cerebral cortices, common spatial patterns (CSP) was employed. We demonstrated that CSP filter can be used to maximize the EEG signal variance-ratio of gait and standing conditions. Finally, linear discriminant analysis (LDA) classification was conducted, whereby the average accuracy of 73.2% and the average delay of 0.13 s were achieved for 3 chronic stroke patients. Additionally, we also found out that the inverse CSP matrix topography of stroke patients’ EEG showed good agreement with the patients’ paretic side.

Source: IEEE Xplore Document – Detecting voluntary gait intention of chronic stroke patients towards top-down gait rehabilitation using EEG

, , , , , , , , , , ,

Leave a comment

[Abstract] Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis – Stroke

Abstract

Background and Purpose—It is unknown whether one method of neuromuscular electrical stimulation for poststroke upper limb rehabilitation is more effective than another. Our aim was to compare the effects of contralaterally controlled functional electrical stimulation (CCFES) with cyclic neuromuscular electrical stimulation (cNMES).

Methods—Stroke patients with chronic (>6 months) moderate to severe upper extremity hemiparesis (n=80) were randomized to receive 10 sessions/wk of CCFES- or cNMES-assisted hand opening exercise at home plus 20 sessions of functional task practice in the laboratory for 12 weeks. The task practice for the CCFES group was stimulation assisted. The primary outcome was change in Box and Block Test (BBT) score at 6 months post treatment. Upper extremity Fugl–Meyer and Arm Motor Abilities Test were also measured.

Results—At 6 months post treatment, the CCFES group had greater improvement on the BBT, 4.6 (95% confidence interval [CI], 2.2–7.0), than the cNMES group, 1.8 (95% CI, 0.6–3.0), between-group difference of 2.8 (95% CI, 0.1–5.5), P=0.045. No significant between-group difference was found for the upper extremity Fugl–Meyer (P=0.888) or Arm Motor Abilities Test (P=0.096). Participants who had the largest improvements on BBT were <2 years post stroke with moderate (ie, not severe) hand impairment at baseline. Among these, the 6-month post-treatment BBT gains of the CCFES group, 9.6 (95% CI, 5.6–13.6), were greater than those of the cNMES group, 4.1 (95% CI, 1.7–6.5), between-group difference of 5.5 (95% CI, 0.8–10.2), P=0.023.

Conclusions—CCFES improved hand dexterity more than cNMES in chronic stroke survivors.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00891319.

Source: Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis | Stroke

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis – Full Text PDF

Abstract

Background and Purpose—It is unknown whether one method of neuromuscular electrical stimulation for poststroke upper limb rehabilitation is more effective than another. Our aim was to compare the effects of contralaterally controlled functional electrical stimulation (CCFES) with cyclic neuromuscular electrical stimulation (cNMES).

Methods—Stroke patients with chronic (>6 months) moderate to severe upper extremity hemiparesis (n=80) were randomized to receive 10 sessions/wk of CCFES- or cNMES-assisted hand opening exercise at home plus 20 sessions of functional task practice in the laboratory for 12 weeks. The task practice for the CCFES group was stimulation assisted. The primary outcome was change in Box and Block Test (BBT) score at 6 months post treatment. Upper extremity Fugl–Meyer and Arm Motor Abilities Test were also measured.

Results—At 6 months post treatment, the CCFES group had greater improvement on the BBT, 4.6 (95% confidence interval [CI], 2.2–7.0), than the cNMES group, 1.8 (95% CI, 0.6–3.0), between-group difference of 2.8 (95% CI, 0.1–5.5), P=0.045. No significant between-group difference was found for the upper extremity Fugl–Meyer (P=0.888) or Arm Motor Abilities Test (P=0.096). Participants who had the largest improvements on BBT were <2 years post stroke with moderate (ie, not severe) hand impairment at baseline. Among these, the 6-month post-treatment BBT gains of the CCFES group, 9.6 (95% CI, 5.6–13.6), were greater than those of the cNMES group, 4.1 (95% CI, 1.7–6.5), between-group difference of 5.5 (95% CI, 0.8–10.2), P=0.023.

Conclusions—CCFES improved hand dexterity more than cNMES in chronic stroke survivors.

Download Full Text PDF

 

Source: Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis

, , , , , , , , , , , ,

Leave a comment

[Review] Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery – Full Text PDF

Abstract

Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients’ mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients.

This multiple systematic review focuses both on standard treatment methods and on innovating  rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed.

At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some  interventions may be under debate, motor skill learning and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

Introduction

The World Health Organisation (WHO) estimates that stroke events in EU countries are likely to increase by 30% between 2000 and 2025 (Truelsen et al., 2006). The most common deficit after stroke is hemiparesis of the contralateral upper limb, with more than 80% of stroke patients experiencing this condition acutely and more than 40% chronically (Cramer et al., 1997).

Common manifestations of upper extremity motor impairment include muscle weakness or contracture, changes in muscle tone, joint laxity and impaired motor control. These impairments induce disabilities in common activities such as reaching, picking up objects, and holding onto objects (for a review on precision grip deficits, see Bleyenheuft and Gordon, 2014).

Motor paresis of the upper extremity may be associated with other neurological manifestations that affect the recovery of motor function and thus require focused therapeutic intervention. Deficits in somatic sensations (body senses such as touch, temperature, pain and proprioception)  after stroke are common with prevalence rates variously reported to be 11%-85% (Carey et al., 1993; Hunter, 2002; Yekutiel, 2000). Functionally, the motor problems resulting from sensory deficits after stroke can be summarized as (1) impaired detection of sensory information, (2) disturbed motor tasks performance requiring somatosensory information, and (3) diminished upper extremity rehabilitation outcomes (Hunter, 2002). Sensation is essential for safety even  if there is adequate motor recovery (Yekutiel, 2000). Also, up to 50% of patients experience  pain of the upper extremity during the first year after stroke, especially shoulder pain and complex regional pain syndrome-type I (CRPS-type I), which may impede adequate early rehabilitation (Jönsson et al., 2006; Kocabas et al., 2007; Lundström et al., 2009; Sackley et al.,2008). Furthermore, joint subluxation and muscle contractures can lead to nociceptive musculoskeletal pain (de Oliveira et al., 2012). Among other complications of stroke the neglect syndrome (Ringman et al., 2004) and spasticity (Sommerfeld et al., 2004; Welmer et al., 2010) affect motor and functional outcomes.

 Download Provisional Article 

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: