Posts Tagged participation

[ARTICLE] Acceptability of a Mobile Phone–Based Augmented Reality Game for Rehabilitation of Patients With Upper Limb Deficits from Stroke: Case Study – Full Text


Background: Upper limb functional deficits are common after stroke and result from motor weakness, ataxia, spasticity, spatial neglect, and poor stamina. Past studies employing a range of commercial gaming systems to deliver rehabilitation to stroke patients provided short-term efficacy but have not yet demonstrated whether or not those games are acceptable, that is, motivational, comfortable, and engaging, which are all necessary for potential adoption and use by patients.

Objective: The goal of the study was to assess the acceptability of a smartphone-based augmented reality game as a means of delivering stroke rehabilitation for patients with upper limb motor function loss.

Methods: Patients aged 50 to 70 years, all of whom experienced motor deficits after acute ischemic stroke, participated in 3 optional therapy sessions using augmented reality therapeutic gaming over the course of 1 week, targeting deficits in upper extremity strength and range of motion. After completion of the game, we administered a 16-item questionnaire to the patients to assess the game’s acceptability; 8 questions were answered by rating on a scale from 1 (very negative experience) to 5 (very positive experience); 8 questions were qualitative.

Results: Patients (n=5) completed a total of 23 out of 45 scheduled augmented reality game sessions, with patient fatigue as the primary factor for uncompleted sessions. Each patient consented to 9 potential game sessions and completed a mean of 4.6 (SE 1.3) games. Of the 5 patients, 4 (80%) completed the questionnaire at the end of their final gaming session. Of note, patients were motivated to continue to the end of a given gaming session (mean 4.25, 95% CI 3.31-5.19), to try other game-based therapies (mean 3.75, 95% CI 2.81-4.69), to do another session (mean 3.50, 95% CI 2.93-4.07), and to perform other daily rehabilitation exercises (mean 3.25, 95% CI 2.76-3.74). In addition, participants gave mean scores of 4.00 (95% CI 2.87-5.13) for overall experience; 4.25 (95% CI 3.31-5.19) for comfort; 3.25 (95% CI 2.31-4.19) for finding the study fun, enjoyable, and engaging; and 3.50 (95% CI 2.52-4.48) for believing the technology could help them reach their rehabilitation goals. For each of the 4 patients, their reported scores were statistically significantly higher than those generated by a random sampling of values (patient 1: P=.04; patient 2: P=.04; patient 4: P=.004; patient 5: P=.04).

Conclusions: Based on the questionnaire scores, the patients with upper limb motor deficits following stroke who participated in our case study found our augmented reality game motivating, comfortable, engaging, and tolerable. Improvements in augmented reality technology motivated by this case study may one day allow patients to work with improved versions of this therapy independently in their own home. We therefore anticipate that smartphone-based augmented reality gaming systems may eventually provide useful postdischarge self-treatment as a supplement to professional therapy for patients with upper limb deficiencies from stroke.



Stroke induces a variety of functional impairments, as well as pain and other ailments, depending on its type and location [1]. Common deficits associated with ischemic stroke include motor function, spatial neglect, and psychological changes [1]. Motor function deficits after stroke often include partial or total loss of function of the upper or lower limbs on a given side, with associated muscle weakness, poor stamina, lack of muscle control, and even paralysis [2]. These deficits impact the patient’s independent lifestyle and decrease their performance of activities of daily living [1]. According to the National Institute of Neurological Disorders and Stroke, the most important part of rehabilitation programs is “carefully directed, well-focused, repetitive practice [3].”

Prior Work

Patients who engage in rigorous, time-intensive, and challenging therapeutic exercises after ischemic stroke tend to experience greater functional recovery, while if ignored or insufficiently treated, impairments may remain [4,5]. The dosage of motor skill practice correlates to the extent of motor recovery following a stroke [4]. In addition, the type of therapy delivered relative to patient’s impairment determines outcomes after therapy. For example, for those who have upper limb motor impairment, best therapeutic practice modifies the prescribed exercises as the patient’s symptoms evolve [5,6]. Regrettably, patients report their experiences of conventional repetitive stroke rehabilitation therapies as tedious and difficult to hold their interest, which conflicts with the fact that patient motivation is often required to obtain good clinical outcomes [710].

Rehabilitation doctors and medical staff, therefore, face a significant problem: how can they provide high intensity therapy in large quantities for upper limb impairments with this seemingly intrinsic motivational deficit? Especially problematic are patient’s therapeutic needs after their discharge from the hospital—their therapeutic needs still exist, but medical staff have substantially reduced access to the patient to provide targeted care. Given the difficulty of this problem, an insufficient percentage of patients regain the full functional potential of their upper limb after ischemic stroke [11]. This regrettable outcome motivates an ongoing search for new therapeutic approaches that provide acceptable (motivational, comfortable, and engaging) experiences, hence, effective therapy, especially at the patient’s home. 

Use of commercial augmented reality devices has found recent application in stroke rehabilitation using existing expensive commercial headsets [4,617]. However, there are few studies that assay the acceptability of augmented reality gaming system–based patient rehabilitation after stroke [10,12,1719], and then, only in a cursory fashion. For example, 30 patients recovering from stroke were surveyed for their opinions on game-based rehabilitation, and the researchers concluded that though games for patients recovering from stroke existed, they were primarily designed for efficacy, not entertainment [10]; they suggest investing in a single, affordable gaming platform for patient rehabilitation after stroke that also focuses on entertainment and provides diverse gaming content [10]. Augmented reality technology and an upper-limb assistive device were tested on 3 individuals recovering from stroke for 6 weeks, and the study reported that both the user and therapist believed that their augmented reality environment was user friendly due to the lightness of the assistive devices and the simplicity of set-up [18]. Finally, a study of 4 patients recovering from stroke who were exposed to several gaming platforms reported that manually adjusting the difficulty of games to provide a challenge and creating games with deeper story lines helped the patients stay motivated to perform their gaming exercises [17]. To the best of our knowledge, our case study is the first of its kind that analyzes the opinions of patients recovering from stroke regarding the problems of current augmented reality–specific game-based rehabilitation systems to provides insight into future designs of augmented reality game-based stroke rehabilitation systems. Augmented reality, provided by one of a variety of device designs, represents one such approach. Augmented reality projects a live camera view of a user’s environment and computer-generated objects with a variety of properties—movement and sound, typically. As an example, Pokémon Go, a smartphone-based augmented reality game, has had documented success sustaining the interest of users for extended periods of time while consistently increasing their physical activity [13], making augmented reality a prime candidate for facilitating otherwise tedious therapy.


Since patient motivation often drives a larger dosage of rehabilitation therapy, hence, improved clinical outcomes [20,21], we hypothesized that augmented reality deployed on a relatively inexpensive and readily available platform—a smartphone—could provide a motivational, comfortable, and engaging rehabilitation experience. To test this hypothesis, we first developed a candidate rehabilitation game on a smartphone that could encourage a patient’s hand motions through use of simple visual cues with a custom-made app. We then asked patients with acute upper-motor stroke to use this system and report their experiences via a questionnaire that assayed the acceptability of the game in terms of motivation to continue to play, comfort, and engagement.



This acceptability study was conducted at Harborview Medical Center in Seattle, Washington from November 2018 to March 2019. Inpatients who were recovering from an acute ischemic stroke participated and provided consent. These patients had impaired strength as determined by physical and occupational therapists. To be included in the study, they had to have at least antigravity strength in deltoid or biceps muscles as well as the ability to perform internal and external shoulder rotations. All patients in this study had a Medical Research Council manual muscle score of 3 or 4 in the affected limb.


We designed and built an augmented reality game using Unity (Unity Technologies) that is deployable on any modern smartphone with a camera (Table 1 and Figure 1). The game presents users with a view of an augmented reality dolphin swimming under the ocean with the task of capturing fish and feeding turtles, worn on the hand associated with the upper-limb deficit (Multimedia Appendix 1). To experience the game, patients wore an augmented reality headset, which did not obscure the camera mounted on the phone, and a custom device on their hand. We used two headsets—the Google Daydream headset, which required us to remove the front panel that held the phone in place, and the Merge augmented reality/virtual reality headset, which did not require any modification (Figure 1). The game also required users to place the hand associated with their motor deficits within a padded box that replaced their hand as seen in augmented reality with a dolphin (Figure 1). Finally, we required the user to look at a complex landscape through their headset while wearing the padded box and while playing the game. Instead of holding the phone, the headset supported the phone for the user. We built customized controllers with different interior sizes that changed the effective grip strength of the controller; this was important because our patients’ ability to hold the controllers varied. Viewing the complex landscape through the augmented reality system caused our software to create a seascape that contained a turtle, fish, and other underwater flora and fauna (Multimedia Appendix 1). Successful placement of the dolphin over a fish allowed the dolphin to capture the fish. Placement of the dolphin plus fish over the turtle allowed the user to feed the turtle, thereby winning points.

Notably, we used the TeamViewer (TeamViewer AG) app to project the screen view of the patient from the phone to a laptop, so we could see the patient’s view with, however, the complex landscape was also projected in the background, so we could check the viewer’s alignment with the landscape while they played (Figure 1).

Set-up of the game, to ensure that system function was verified, occurred prior to patients using the system. Patients followed verbal directions and instructions from study staff on how to use the system, facilitated by demonstration of the game using the TeamViewer app. Examples of directions included how to start the game, the actions required to pick up the fish, and how to colocate the dolphin plus fish with the turtle for point accumulation. Some patients required physical assistance to adjust the view of the environment. Examples of physical assistance included moving the patient’s chair or wheelchair closer or farther away from the images recognized by the camera (Figure 1).

Table 1. Vuforia compatible mobile devices.
Figure 1. (A) phone: Asus Zenfone 2, phone operating system: Android 7 Nougat, Unity version: 2018.2.10, developer operating system: Windows 10; (B) headsets: Google Daydream (left) Merge augmented reality/virtual reality goggles (right); (C) controllers with various grip sizes consisting of soft foam inserts; (D) virtual dolphin avatar; (E) image target; (F) study staff during game play with (1) smartphone (2) headset (3) controller (4) image target; (G) user experience.



, , , , , , , , , , ,

Leave a comment

[Abstract] Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview.

OBJECTIVE:This review evaluates the use of virtual reality (VR) tools in cognitive rehabilitation of stroke-affected individuals.
METHODS:Studies performed between 2010 and 2017 that fulfilled inclusion criteria were selected from PubMed, Scopus, Cochrane, and Web of Sciences databases. The search combined the terms “VR,” “rehabilitation,” and “stroke.”
RESULTS:Stroke patients experienced significant improvement in many cognitive domains (such as executive and visual-spatial abilities and speech, attention, and memory skills) after the use of VR training.
CONCLUSIONS:Rehabilitation using new VR tools could positively affect stroke patient cognitive outcomes by boosting motivation and participation.

via Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview. – Abstract – Europe PMC

, , , , ,

Leave a comment

[ARTICLE] Psychological Resilience Is Associated With Participation Outcomes Following Mild to Severe Traumatic Brain Injury – Full Text

Traumatic brain injury (TBI) causes physical and cognitive-behavioral impairments that reduce participation in employment, leisure, and social relationships. Demographic and injury-related factors account for a small proportion of variance in participation post-injury. Personal factors such as resilience may also impact outcomes. This study aimed to examine the association of resilience alongside demographic, injury-related, cognitive, emotional, and family factors with participation following TBI. It was hypothesized that resilience would make an independent contribution to participation outcomes after TBI. Participants included 245 individuals with mild-severe TBI [Mage = 44.41, SDage = 16.09; post traumatic amnesia (PTA) duration M 24.95 days, SD 45.99] who completed the Participation Assessment with Recombined Tools-Objective (PART-O), TBI Quality of Life Resilience scale, Family Assessment Device General Functioning Scale, Rey Auditory Verbal Learning Test, National Adult Reading Test, and Hospital Anxiety and Depression Scale an average 4.63 years post-injury (SD3.02, R 0.5–13). Multiple regression analyses were used to examine predictors of PART-O scores as the participation measure. Variables in the model accounted for a significant 38% of the variability in participation outcomes, F(13, 211) = 9.93, p < 0.05, R2 = 0.38, adjusted R2 = 0.34. Resilience was a significant predictor of higher participation, along with shorter PTA duration, more years since injury, higher education and IQ, and younger age. Mediation analyses revealed depression mediated the relationship between resilience and participation. As greater resilience may protect against depression and enhance participation this may be a focus of intervention.


Following traumatic brain injury (TBI), participation in employment, education, leisure, and relationships is often significantly reduced, leaving individuals substantially less integrated in their communities (14). As a result, many individuals spend increased time at home, straining family and other relationships (5). Given that TBI occurs commonly during young adulthood (6), participation deficits coincide with a critical period of development in which individuals are completing education, establishing a vocation, leaving home, and forming important lifelong relationships. Failure to attain these goals may profoundly impact their sense of self, mental health and general well-being. Reduced participation often extends beyond the acute recovery period and continues to be associated with poorer quality of life up to two decades after injury (7). Arguably participation in these life roles, including employment, education, leisure and relationships, represents one of the most important and objective indicators of injury outcomes.

Numerous variables have been associated with participation outcomes post-TBI, including injury-related and demographic variables as well as post-injury environmental and personal factors. Injury severity, cognitive difficulties, and limb injuries with related pain and impact on mood, affect an individual’s ability to engage socially and often present significant barriers to education and employment (816). Injury severity is a particularly well-researched predictor of participation outcomes, with duration of post traumatic amnesia (PTA) having the most robust association (1721). With respect to demographic factors, younger age, higher premorbid education level, higher premorbid IQ, and being employed prior to injury have all been associated with better participation outcomes (102229). Notably, older age at injury has been found to predict both worse participation overall as well as progressively worsening participation over time (10). Although gender does not appear to be directly associated with participation (30), it may have an indirect association, for example through mood and pre-injury education (14). Post-injury psychological functioning, particularly depression and anxiety, are also important predictors of participation outcomes (10123133). The impact of family functioning on participation is thought to be both direct, and through association with emotional well-being (3435).

Due to this broad range of factors influencing outcome, research has moved toward a multivariate approach to prediction of participation outcomes following TBI (24363738). These models contribute to a more comprehensive understanding of participation outcomes; however, the average amount of variance accounted for by predictive models is around 30% (21). This suggests there are additional predictive factors yet to be identified. One such factor that has increasingly gained scholarly recognition, due its positive association with quality of life and well-being outcomes among different clinical populations, is resilience.

Resilience has been conceptualized as a process of adaptation to adversity or the ability to bounce back after trauma or adversity. Resilience arguably influences the extent to which a person is able to resume important life roles after an injury. Resilience may impact participation outcomes directly through facilitating or promoting return to normal life or the development and achievement of new life goals (39), and indirectly through its effects on improved well-being, quality of life and psychological adjustment. Participating in employment, education, leisure, and relationships represent fundamental areas of participation. Resilience has been positively associated with physical and emotional well-being in individuals with cancer (40), Parkinson’s disease (41), diabetes (42), chronic spinal cord injury (43), multiple sclerosis, spina bifida, stroke, and posttraumatic stress disorder (4445). There has been less resilience research in TBI, with only one study to date examining the association between resilience and participation. Notably, it has been suggested that the study of resilience after TBI poses a distinct challenge, in that the skills characteristically associated with resilience are typically impaired after TBI (4547). For example, resilience requires emotional stability, a positive outlook, good problem-solving skills and social perception (47); however, TBI is commonly associated with impaired executive functioning (4849), irritability and aggression (5051), depression (3345), and difficulties with social perception (52).

The little research that has focused on resilience after TBI has been largely limited to patients with mild TBI, in whom no studies have examined impact on participation. In this group, greater resilience has been associated with less reporting of post-concussional and post-traumatic stress symptoms (5355), reduced fatigue, insomnia, stress, and depressive symptoms, as well as better quality of life (56). One study found that greater pre-injury resilience was significantly associated with greater post-concussion symptom severity 1 month post-injury (57), perhaps reflecting insufficient time for participants to “bounce back” (44), or overrating of pre-injury resilience levels, a phenomenon known as the “Good Old Days”(58).

Only three studies have examined resilience in individuals with moderate to severe TBI, of which one examined an association with participation. Marwitz et al. (39), conducted a large (n = 195) longitudinal study and found that resilience was significantly associated with participation over the first 12 months post-injury (39). Other studies have associated higher resilience in individuals with moderate to severe TBI with fewer depressive and anxiety symptoms, better emotional adjustment, use of task oriented coping and greater social support (4445). However, one of these studies used a sample of individuals who were actively seeking help with adjusting to changes post-injury, possibly biasing the sample toward those experiencing greater adjustment problems (45).

The aim of the present study was to examine the relative association of resilience, as well as demographic, injury-related, cognitive, emotional, and family factors with participation (productivity, social relations and leisure) following mild to severe TBI. To the best of our knowledge, this is the first study to examine the association between resilience and participation outcomes more than 12 months after mild to severe TBI. This critically extends previous research by examining the impact of resilience across the spectrum of TBI severity, from mild to severe, and how this association influences outcomes beyond the acute post-injury period. It was hypothesized that resilience would make an independent contribution to participation after TBI, in a model that would include demographic variables (gender, age, pre-morbid IQ, education, pre-injury employment), injury variables (injury severity, cognitive functioning, limb injury, time since injury) and post-injury personal and environmental factors (depression, anxiety, family support).[…]


Continue —> Frontiers | Psychological Resilience Is Associated With Participation Outcomes Following Mild to Severe Traumatic Brain Injury | Neurology

, , , , ,

Leave a comment

[Abstract] Non-pharmacological interventions for spasticity in adults: An overview of systematic reviews



Spasticity causes significant long-term disability-burden, requiring comprehensive management. This review evaluates evidence from published systematic reviews of clinical trials for effectiveness of non-pharmacological interventions for improved spasticity outcomes.


Data sources: a literature search was conducted using medical and health science electronic (MEDLINE, EMBASE, CINAHL, PubMed, and the Cochrane Library) databases for published systematic reviews up to 15th June 2017. Data extraction and synthesis: two reviewers applied inclusion criteria to select potential systematic reviews, independently extracted data for methodological quality using Assessment of Multiple Systematic Reviews (AMSTAR). Quality of evidence was critically appraised with Grades of Recommendation, Assessment, Development and Evaluation (GRADE).


Overall 18 systematic reviews were evaluated for evidence for a range of non-pharmacological interventions currently used in managing spasticity in various neurological conditions. There is “moderate” evidence for electro-neuromuscular stimulation and acupuncture as an adjunct therapy to conventional routine care (pharmacological and rehabilitation) in persons following stroke. “Low” quality evidence for rehabilitation programs targeting spasticity (such as induced movement therapy, stretching, dynamic elbow-splinting, occupational therapy) in stroke and other neurological conditions; extracorporeal shock-wave therapy in brain injury; transcranial direct current stimulation in stroke; transcranial magnetic stimulation and transcutaneous electrical nerve stimulation for other neurological conditions; physical activity programs and repetitive magnetic stimulation in persons with MS, vibration therapy for SCI and stretching for other neurological condition. For other interventions, evidence was inconclusive.


Despite the available range of non-pharmacological interventions for spasticity, there is lack of high-quality evidence for many modalities. Further research is needed to judge the effect with appropriate study designs, timing and intensity of modalities, and associate costs of these interventions.


via Non-pharmacological interventions for spasticity in adults: An overview of systematic reviews – ScienceDirect

, , , , ,

Leave a comment

[Abstract] Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation

Use of virtual reality (VR) and serious games (SGs) interventions within rehabilitation as motivating tools for task specific training for individuals with neurological conditions are fast-developing. Within this perspective paper we use the framework of the IV STEP conference to summarize the literature on VR and SG for children and adults by three topics: Prevention; Outcomes: Body-Function-Structure, Activity and Participation; and Plasticity. Overall the literature in this area offers support for use of VR and SGs to improve body functions and to some extent activity domain outcomes. Critical analysis of clients’ goals and selective evaluation of VR and SGs are necessary to appropriately take advantage of these tools within intervention. Further research on prevention, participation, and plasticity is warranted. We offer suggestions for bridging the gap between research and practice integrating VR and SGs into physical therapist education and practice.

Source: Virtual Reality and Serious Games in Neurorehabilitation of… : Pediatric Physical Therapy

, , , , , ,

Leave a comment

[ARTICLE] Occupational therapy hand assessment practices: Cause for concern? – Full Text HTML


INTRODUCTION: Assessment is critical for measuring improvement, or lack thereof, and demonstrating the outcome of intervention. In response to the lack of research in this area, this study aimed to determine the assessment practices of occupational therapists working with clients with hand conditions

METHODS: A quantitative cross sectional survey design was used. A convenience sample of occupational therapists was recruited from five provinces. Respondents completed a questionnaire developed for the study that comprised demographic information, assessments used, frequency of use and factors influencing assessment choice. Data were analysed with Statistica version 11

RESULTS: Eighty-one respondents (n=114) completed questionnaires representing a 71% response rate. Goniometry (84.0%), manual muscle testing (76.5%) and testing for flexor tendon function (76.3%) were used most frequently. The most common reasons for not using assessments were lack of availability and unfamiliarity

CONCLUSION: It is of concern that the assessment practices of participants in this study focussed primarily on the assessment of body function and structure with few therapists using activity and participation measures. This could seriously limit the evidence needed to verify the outcomes achieved through occupational therapy intervention in the treatment of hand conditions.

Continue —> South African Journal of Occupational Therapy – Occupational therapy hand assessment practices: Cause for concern?

, , , ,

Leave a comment

[REVIEW] Outcome Measures | EBRSR – Evidence-Based Review of Stroke Rehabilitation – Full Text PDF


To enhance the clinical meaningfulness of the SREBR, the present review provides the best available information on how outcome measures might be classified and selected for use, based upon their measurement qualities. For this purpose, we have selected for review some of the most commonly-used measures in stroke rehabilitation. The ICF conceptual framework is used to classify measures in stroke rehabilitation and aspects of measurement theory pertinent for evaluating measures are discussed. Each measure reviewed in this chapter was evaluated in terms of appropriateness, reliability, validity, responsiveness, precision, interpretability, applicability and feasibility. All measures were assessed for the thoroughness with which its reliability, validity and responsiveness have been reported. The present document contains summary reviews of 38 assessment tools used in the evaluation of Body Structure (14 tools), Activity (15 tools) and Participation (9 tools) outcomes.

Get Full Text PDF

via Outcome Measures | EBRSR – Evidence-Based Review of Stroke Rehabilitation.

, , , , , , , ,

Leave a comment

%d bloggers like this: