Posts Tagged Pathophysiology

[Abstract + References] Neuron–glia interactions in the pathophysiology of epilepsy


Epilepsy is a neurological disorder afflicting ~65 million people worldwide. It is caused by aberrant synchronized firing of populations of neurons primarily due to imbalance between excitatory and inhibitory neurotransmission. Hence, the historical focus of epilepsy research has been neurocentric. However, the past two decades have enjoyed an explosion of research into the role of glia in supporting and modulating neuronal activity, providing compelling evidence of glial involvement in the pathophysiology of epilepsy. The mechanisms by which glia, particularly astrocytes and microglia, may contribute to epilepsy and consequently could be harnessed therapeutically are discussed in this Review.


  1. 1.

    Sontheimer, H. Diseases of the Nervous System 61–95 (Elsevier, 2015).

  2. 2.

    Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014).

  3. 3.

    Kaplan, D. I., Isom, L. L. & Petrou, S. Role of sodium channels in epilepsy. Cold Spring Harb. Perspect. Med. 6, a022814 (2016).

  4. 4.

    Loscher, W., Hirsch, L. J. & Schmidt, D. The enigma of the latent period in the development of symptomatic acquired epilepsy – traditional view versus new concepts. Epilepsy Behav. 52, 78–92 (2015).

  5. 5.

    Sofroniew, M. V. Astrogliosis. Cold Spring Harb. Perspect. Biol. 7, a020420 (2014).

  6. 6.

    Vezzani, A., French, J., Bartfai, T. & Baram, T. Z. The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40 (2011).

  7. 7.

    van Vliet, E. A. et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain130, 521–534 (2007).

  8. 8.

    Dingledine, R., Varvel, N. H. & Dudek, F. E. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv. Exp. Med. Biol. 813, 109–122 (2014).

  9. 9.

    Jessberger, S. & Parent, J. M. Epilepsy and adult neurogenesis. Cold Spring Harb. Perspect. Biol. 7, a020677 (2015).

  10. 10.

    Goldberg, E. M. & Coulter, D. A. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat. Rev. Neurosci. 14, 337–349 (2013).

  11. 11.

    Devinsky, O., Vezzani, A., Najjar, S., De Lanerolle, N. C. & Rogawski, M. A. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 36, 174–184 (2013).

  12. 12.

    Kim, S. Y., Porter, B. E., Friedman, A. & Kaufer, D. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy. J. Neurosci. Res.94, 794–803 (2016).

  13. 13.

    Hauser, R. M., Henshall, D. C. & Lubin, F. D. The epigenetics of epilepsy and its progression. Neuroscientist 24, 186–200 (2018).

  14. 14.

    Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

  15. 15.

    Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

  16. 16.

    Robel, S. et al. Reactive astrogliosis causes the development of spontaneous seizures. J. Neurosci.35, 3330–3345 (2015).This study shows that genetically induced astrogliosis is sufficient to cause epileptic seizures in mice without any other CNS pathologies.

  17. 17.

    Ortinski, P. I. et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat. Neurosci. 13, 584–591 (2010).This study demonstrates that selective induction of astrogliosis in mice using a virus is sufficient to cause network hyperexcitability by impairing neuronal inhibition.

  18. 18.

    Uhlmann, E. J. et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann. Neurol. 52, 285–296 (2002).

  19. 19.

    Sosunov, A. A. et al. Phenotypic conversions of “protoplasmic” to “reactive” astrocytes in Alexander disease. J. Neurosci. 33, 7439–7450 (2013).

  20. 20.

    Messing, A., Brenner, M., Feany, M. B., Nedergaard, M. & Goldman, J. E. Alexander disease. J. Neurosci.32, 5017–5023 (2012).

  21. 21.

    Rossini, L. et al. Seizure activity per se does not induce tissue damage markers in human neocortical focal epilepsy. Ann. Neurol. 82, 331–341 (2017).

  22. 22.

    Buckmaster, P. S., Abrams, E. & Wen, X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J. Comp. Neurol. 525, 2592–2610 (2017).

  23. 23.

    Moody, W. J., Futamachi, K. J. & Prince, D. A. Extracellular potassium activity during epileptogenesis. Exp. Neurol. 42, 248–263 (1974).

  24. 24.

    Heinemann, U. & Lux, H. D. Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res. 120, 231–249 (1977).

  25. 25.

    Coulter, D. A. & Steinhauser, C. Role of astrocytes in epilepsy. Cold Spring Harb. Perspect. Med. 5, a022434 (2015).

  26. 26.

    Traynelis, S. F. & Dingledine, R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276 (1988).

  27. 27.

    Gabriel, S. et al. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J. Neurosci. 24, 10416–10430 (2004).

  28. 28.

    Olsen, M. L. & Sontheimer, H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J. Neurochem.107, 589–601 (2008).

  29. 29.

    Steinhauser, C., Seifert, G. & Bedner, P. Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60, 1192–1202 (2012).

  30. 30.

    Heuser, K. et al. Loss of perivascular Kir4.1 potassium channels in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 71, 814–825 (2012).

  31. 31.

    Hinterkeuser, S. et al. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur. J. Neurosci. 12, 2087–2096 (2000).

  32. 32.

    Djukic, B., Casper, K. B., Philpot, B. D., Chin, L. S. & McCarthy, K. D. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci. 27, 11354–11365 (2007).

  33. 33.

    Buono, R. J. et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res. 58, 175–183 (2004).

  34. 34.

    Ferraro, T. N. et al. Fine mapping of a seizure susceptibility locus on mouse chromosome 1: nomination of Kcnj10 as a causative gene. Mamm. Genome 15, 239–251 (2004).

  35. 35.

    Kucheryavykh, Y. V. et al. Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55, 274–281 (2007).

  36. 36.

    Doyon, N., Vinay, L., Prescott, S. A. & De Koninck, Y. Chloride regulation: a dynamic equilibrium crucial for synaptic inhibition. Neuron 89, 1157–1172 (2016).

  37. 37.

    Moore, Y. E., Kelley, M. R., Brandon, N. J., Deeb, T. Z. & Moss, S. J. Seizing control of KCC2: a new therapeutic target for epilepsy. Trends Neurosci. 40, 555–571 (2017).

  38. 38.

    Lee, H. H., Deeb, T. Z., Walker, J. A., Davies, P. A. & Moss, S. J. NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents. Nat. Neurosci. 14, 736–743 (2011).

  39. 39.

    Rivera, C. et al. BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J. Cell Biol. 159, 747–752 (2002).

  40. 40.

    Papadopoulos, M. C. & Verkman, A. S. Aquaporin water channels in the nervous system. Nat. Rev.: Neurosci. 14, 265–277 (2013).

  41. 41.

    Binder, D. K., Nagelhus, E. A. & Ottersen, O. P. Aquaporin-4 and epilepsy. Glia 60, 1203–1214 (2012).

  42. 42.

    Solenov, E., Watanabe, H., Manley, G. T. & Verkman, A. S. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. 286, C426–C432 (2004).

  43. 43.

    Nicchia, G. P., Frigeri, A., Liuzzi, G. M. & Svelto, M. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J. 17, 1508–1510 (2003).

  44. 44.

    Vajda, Z. et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc. Natl Acad. Sci. USA 99, 13131–13136 (2002).

  45. 45.

    Neely, J. D. et al. Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc. Natl Acad. Sci. USA 98, 14108–14113 (2001).

  46. 46.

    Nagelhus, E. A., Mathiisen, T. M. & Ottersen, O. P. Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129, 905–913 (2004).

  47. 47.

    Hochman, D. W. The extracellular space and epileptic activity in the adult brain: explaining the antiepileptic effects of furosemide and bumetanide. Epilepsia 53 (Suppl. 1), 18–25 (2012).

  48. 48.

    Amiry-Moghaddam, M. et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl Acad. Sci. USA 100, 13615–13620 (2003).

  49. 49.

    Binder, D. K. et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53, 631–636 (2006).

  50. 50.

    Giaume, C., Koulakoff, A., Roux, L., Holcman, D. & Rouach, N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat. Rev. Neurosci. 11, 87–99 (2010).

  51. 51.

    Mylvaganam, S., Ramani, M., Krawczyk, M. & Carlen, P. L. Roles of gap junctions, connexins, and pannexins in epilepsy. Frontiers Physiol. 5, 172 (2014).

  52. 52.

    Deshpande, T. et al. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65, 1809–1820 (2017).

  53. 53.

    Bedner, P. et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138, 1208–1222 (2015).

  54. 54.

    Voss, L. J., Jacobson, G., Sleigh, J. W., Steyn-Ross, A. & Steyn-Ross, M. Excitatory effects of gap junction blockers on cerebral cortex seizure-like activity in rats and mice. Epilepsia 50, 1971–1978 (2009).

  55. 55.

    During, M. J. & Spencer, D. D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341, 1607–1610 (1993).

  56. 56.

    Eid, T., Williamson, A., Lee, T. S., Petroff, O. A. & de Lanerolle, N. C. Glutamate and astrocytes—key players in human mesial temporal lobe epilepsy? Epilepsia 49 (Suppl. 2), 42–52 (2008).

  57. 57.

    Schousboe, A., Scafidi, S., Bak, L. K., Waagepetersen, H. S. & McKenna, M. C. Glutamate metabolism in the brain focusing on astrocytes. Adv. Neurobiol. 11, 13–30 (2014).

  58. 58.

    Vandenberg, R. J. & Ryan, R. M. Mechanisms of glutamate transport. Physiol. Rev. 93, 1621–1657 (2013).

  59. 59.

    Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).This is the first study to show that the homozygous knockout of GLT1 in mice causes lethal spontaneous seizures.

  60. 60.

    Kong, Q. et al. Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol. Dis. 47, 145–154 (2012).

  61. 61.

    Rothstein, J. D. et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73–77 (2005).

  62. 62.

    Zeng, L. H., Bero, A. W., Zhang, B., Holtzman, D. M. & Wong, M. Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 37, 764–771 (2010).

  63. 63.

    Sha, L. et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J. Exp. Med. 214, 547–563 (2017).

  64. 64.

    Campbell, S. L., Hablitz, J. J. & Olsen, M. L. Functional changes in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia. Front. Cell. Neurosci. 8, 425 (2014).

  65. 65.

    Campbell, S. L. & Hablitz, J. J. Decreased glutamate transport enhances excitability in a rat model of cortical dysplasia. Neurobiol. Dis. 32, 254–261 (2008).

  66. 66.

    Eid, T. et al. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28–37 (2004).This study establishes a key role of GS in astrocytes for maintaining an optimal level of extracellular glutamate through the glutamate–glutamine cycle.

  67. 67.

    van der Hel, W. S. et al. Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64, 326–333 (2005).

  68. 68.

    Eid, T. et al. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 131, 2061–2070 (2008).

  69. 69.

    Jiang, E., Yan, X. & Weng, H. R. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn. J. Neurochem. 121, 526–536 (2012).

  70. 70.

    Kaczor, P., Rakus, D. & Mozrzymas, J. W. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes. Front. Cell. Neurosci. 9, 120 (2015).

  71. 71.

    Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).

  72. 72.

    Pellerin, L. & Magistretti, P. J. Sweet sixteen for ANLS. J. Cereb. Blood Flow Metab. 32, 1152–1166 (2012).

  73. 73.

    Gano, L. B., Patel, M. & Rho, J. M. Ketogenic diets, mitochondria, and neurological diseases. J. Lipid Res.55, 2211–2228 (2014).

  74. 74.

    Sada, N., Lee, S., Katsu, T., Otsuki, T. & Inoue, T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347, 1362–1367 (2015).

  75. 75.

    Verkhratsky, A. & Nedergaard, M. Physiology of astroglia. Physiol. Rev. 98, 239–389 (2017).

  76. 76.

    Tyzack, G. E. et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun. 5, 4294 (2014).

  77. 77.

    Andresen, L. et al. Gabapentin attenuates hyperexcitability in the freeze-lesion model of developmental cortical malformation. Neurobiol. Dis.71, 305–316 (2014).

  78. 78.

    Neniskyte, U. & Gross, C. T. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat. Rev. Neurosci.18, 658 (2017).

  79. 79.

    Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).This study demonstrates that astrocytes regulate complement-mediated synaptic pruning by phagocytic microglia.

  80. 80.

    Chu, Y. et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl Acad. Sci. USA 107, 7975–7980 (2010).

  81. 81.

    Clarke, L. E. & Barres, B. A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311–321 (2013).

  82. 82.

    Aronica, E. et al. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol. Dis. 26, 497–511 (2007).

  83. 83.

    Hughes, E. G., Elmariah, S. B. & Balice-Gordon, R. J. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol. Cell. Neurosci. 43, 136–145 (2010).

  84. 84.

    Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

  85. 85.

    Schafer, D. P. et al. Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. eLife 5, e15224 (2016).

  86. 86.

    Tian, G.-F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973 (2005).This is the first study to show that glutamate released from astrocytes induces neuronal firing and seizure activity.

  87. 87.

    Clasadonte, J. & Haydon, P. G. in Jasper’s Basic Mechanisms of the Epilepsies (eds Noebels, J. L., Avoli, M., Rogawski, M. A., Olsen, R. W. & Delgado-Escueta, A. V.) (National Center for Biotechnology Information (US), 2012).

  88. 88.

    Kang, N., Xu, J., Xu, Q., Nedergaard, M. & Kang, J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J. Neurophysiol.94, 4121–4130 (2005).

  89. 89.

    Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G. & Haydon, P. G. Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J. Neurosci.26, 9312–9322 (2006).

  90. 90.

    Robert, S. M. et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl Med. 7, 289ra86 (2015).

  91. 91.

    Buckingham, S. C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1269–1274 (2011).

  92. 92.

    Tewari, B. P. et al. Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat. Commun.9, 4724 (2018).

  93. 93.

    Campbell, S. L. et al. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 63, 23–36 (2015).

  94. 94.

    Pallud, J. et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl Med. 6, 244ra89 (2014).

  95. 95.

    Boison, D. Adenosinergic signaling in epilepsy. Neuropharmacology 104, 131–139 (2016).

  96. 96.

    Bowser, D. N. & Khakh, B. S. ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J. Neurosci. 24, 8606 (2004).

  97. 97.

    Zhang, J.-M. et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003).

  98. 98.

    Gomes, C. V., Kaster, M. P., Tomé, A. R., Agostinho, P. M. & Cunha, R. A. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim. Biophys. Acta 1808, 1380–1399 (2011).

  99. 99.

    During, M. J. & Spencer, D. D. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann. Neurol. 32, 618–624 (1992).

  100. 100.

    Aronica, E. et al. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52, 1645–1655 (2011).

  101. 101.

    Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14, 722–729 (2013).

  102. 102.

    McRae, P. A., Baranov, E., Rogers, S. L. & Porter, B. E. Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur. J. Neurosci. 36, 3471–3482 (2012).

  103. 103.

    Dityatev, A. & Fellin, T. Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biol. 4, 235–247 (2008).

  104. 104.

    Dityatev, A. Remodeling of extracellular matrix and epileptogenesis. Epilepsia 51, 61–65 (2010).

  105. 105.

    Dubey, D. et al. Increased metalloproteinase activity in the hippocampus following status epilepticus. Epilepsy Res. 132, 50–58 (2017).

  106. 106.

    Mizoguchi, H. & Yamada, K. Roles of matrix metalloproteinases and their targets in epileptogenesis and seizures. Clin. Psychopharmacol. Neurosci. 11, 45 (2013).

  107. 107.

    Pollock, E., Everest, M., Brown, A. & Poulter, M. O. Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiol. Dis. 70, 21–31 (2014).

  108. 108.

    Arranz, A. M. et al. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 34, 6164–6176 (2014).This study reports the first direct evidence for the development of seizures due to degradation of the ECM.

  109. 109.

    Rempe, R. G. et al. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J. Neurosci. 38, 4301–4315 (2018).

  110. 110.

    Rankin-Gee, E. K. et al. Perineuronal net degradation in epilepsy. Epilepsia 56, 1124–1133 (2015).

  111. 111.

    Kochlamazashvili, G. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca2+ channels. Neuron 67, 116–128 (2010).

  112. 112.

    Favuzzi, E. et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron 95, 639–655 (2017).

  113. 113.

    Srinivasan, J., Schachner, M. & Catterall, W. A. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc. Natl Acad. Sci. USA 95, 15753–15757 (1998).

  114. 114.

    Frischknecht, R. et al. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat. Neurosci. 12, 897–904 (2009).This is one of the first studies to explain the molecular mechanism of ECM-regulated synaptic plasticity.

  115. 115.

    Balmer, T. S. Perineuronal nets enhance the excitability of fast-spiking neurons. eNeuro

  116. 116.

    Morawski, M. et al. Ion exchanger in the brain: quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Sci. Rep. 5, 16471 (2015).

  117. 117.

    Härtig, W. et al. Cortical neurons immunoreactive for the potassium channel Kv3. 1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res. 842, 15–29 (1999).

  118. 118.

    Glykys, J. et al. Local impermeant anions establish the neuronal chloride concentration. Science 343, 670–675 (2014).This is one of the first studies to show the regulation of neuronal chloride homeostasis by the ECM.

  119. 119.

    Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

  120. 120.

    Struve, J. et al. Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia 52, 16–24 (2005).

  121. 121.

    Ye, Z.-C. & Sontheimer, H. Modulation of glial glutamate transport through cell interactions with the extracellular matrix. Int. J. Dev. Neurosci. 20, 209–217 (2002).

  122. 122.

    Guadagno, E. & Moukhles, H. Laminin-induced aggregation of the inwardly rectifying potassium channel, Kir4. 1, and the water-permeable channel, AQP4, via a dystroglycan-containing complex in astrocytes. Glia 47, 138–149 (2004).

  123. 123.

    Seiffert, E. et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J. Neurosci. 24, 7829–7836 (2004).This study provides the first direct evidence that BBB disruption contributes to epileptogenesis.

  124. 124.

    Ivens, S. et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130, 535–547 (2007).This study demonstrates the epileptogenic role of serum albumin and the TGFβ signalling in astrocytes following BBB disruption.

  125. 125.

    Kim, S. Y., Buckwalter, M., Soreq, H., Vezzani, A. & Kaufer, D. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia 53 (Suppl. 6), 37–44 (2012).

  126. 126.

    Weissberg, I. et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol. Dis. 78, 115–125 (2015).

  127. 127.

    Salar, S. et al. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia 55, 1255–1263 (2014).

  128. 128.

    Kim, S. Y. et al. TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci. Rep. 7, 7711 (2017).

  129. 129.

    Bar-Klein, G. et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann. Neurol. 75, 864–875 (2014).

  130. 130.

    Yang, Y., Estrada, E. Y., Thompson, J. F., Liu, W. & Rosenberg, G. A. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J. Cereb. Blood Flow Metab. 27, 697–709 (2007).This study provides direct evidence that MMPs impair the integrity of the BBB by degrading tight junction proteins.

  131. 131.

    Feng, S. et al. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLOS ONE 6, e20599 (2011).

  132. 132.

    Djerbal, L., Lortat-Jacob, H. & Kwok, J. Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj. J. 34, 363–376 (2017).

  133. 133.

    Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).This is the first study to demonstrate the functional role of PNNs in the visual cortex as a determinant of experience-dependent plasticity.

  134. 134.

    Engel, T., Alves, M., Sheedy, C. & Henshall, D. C. ATPergic signalling during seizures and epilepsy. Neuropharmacology 104, 140–153 (2016).

  135. 135.

    Cacheaux, L. P. et al. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J. Neurosci. 29, 8927–8935 (2009).

  136. 136.

    Dzyubenko, E., Gottschling, C. & Faissner, A. Neuron-glia interactions in neural plasticity: contributions of neural extracellular matrix and perineuronal nets. Neural Plast. 2016, 5214961 (2016).

  137. 137.

    Naffah-Mazzacoratti, M. et al. Selective alterations of glycosaminoglycans synthesis and proteoglycan expression in rat cortex and hippocampus in pilocarpine-induced epilepsy. Brain Res. Bull. 50, 229–239 (1999).

  138. 138.

    Gottschall, P. E. & Howell, M. D. ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol. 44, 70–76 (2015).

  139. 139.

    Mataga, N., Mizuguchi, Y. & Hensch, T. K. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44, 1031–1041 (2004).

  140. 140.

    Bast, T., Ramantani, G., Seitz, A. & Rating, D. Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurol. Scand. 113, 72–81 (2006).

  141. 141.

    Iseki, K. et al. Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia 39, 1–9 (2002).

  142. 142.

    Hoffmann, K. et al. Retarded kindling progression in mice deficient in the extracellular matrix glycoprotein tenascin-R. Epilepsia 50, 859–869 (2009).

  143. 143.

    Muir, E. et al. Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Mol. Brain Res. 100, 103–117 (2002).

  144. 144.

    Wilczynski, G. M. et al. Important role of matrix metalloproteinase 9 in epileptogenesis. J. Cell Biol.180, 1021–1035 (2008).

  145. 145.

    Kochlamazashvili, G. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca 2+ channels. Neuron 67, 116–128 (2010).

  146. 146.

    Evers, M. R. et al. Impairment of L-type Ca2+channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J. Neurosci. 22, 7177–7194 (2002).

  147. 147.

    Konopka, A. et al. Cleavage of hyaluronan and CD44 adhesion molecule regulate astrocyte morphology via Rac1 signalling. PLOS ONE 11, e0155053 (2016).

  148. 148.

    Perosa, S. et al. Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy. Brain Res. Bull. 58, 509–516 (2002).

  149. 149.

    Jones, E. V. & Bouvier, D. S. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast. 2014, 321209 (2014).

  150. 150.

    Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

via Neuron–glia interactions in the pathophysiology of epilepsy | Nature Reviews Neuroscience

, , , , ,

Leave a comment

[ARTICLE] Stroke recovery and rehabilitation in 2016: a year in review of basic science and clinical science – Full Text


Advances in acute stroke treatment and the widespread establishment of dedicated stroke units have resulted in an increase in poststroke survival and life expectancy. However, stroke remains a leading cause of long-term disability worldwide, making the improvement of poststroke outcomes a chief healthcare goal for many countries. The current strategies strive to reduce the initial injury by acutely implementing thrombolytic and/or endovascular interventions, to better understand the major determinants that influence the stroke recovery and to search for innovative, effective and accessible recovery and rehabilitation modalities that can mitigate various poststroke deficits and enhance the quality of life. These approaches require a collaboration and integration of fundamental and clinical science research to more efficiently translate benchwork results into therapeutic bedside interventions. Due to a variety of stroke research advances in both the basic and clinical sciences over the last few years, especially in 2016, the field of stroke recovery and rehabilitation has celebrated many hopes and progresses. Our goal was to explore these studies and better identify, understand and integrate key findings for the purpose of identifying new targets that could be translated into clinically rewarding therapeutic interventions in future.

We manually searched professional journals with an average 5-year impact factor >3 (from 2012 to 2016) that were known to publish manuscript with topics in stroke recovery and rehabilitation. We aimed to selectively highlight relevant basic and clinical science stroke recovery research published between December 2015 and December 2016 in these journals. Certain selection biases cannot be completely ruled out and omissions are possible. The list of journals are Science, Nature, Nature Neuroscience, Neuron, Proceedings of the National Academy of Sciences of the United States of America, Neurobiology of Disease, Scientific Report, PLOS ONE, Acta Neuropathologica, Journal of Neuroscience, Annals of Neurology, Neurology, JAMA Neurology, Stroke, The Lancet, Lancet of Neurology, JAMA, Brain, Brain Stimulation, Stem Cells, Cell Death and Differentiation, Neurorehabilitation and Neural Repair, Journal of Cerebral Blood Flow and Metabolism and New England Journal of Medicine.

Continue —> Stroke recovery and rehabilitation in 2016: a year in review of basic science and clinical science | Stroke and Vascular Neurology


, , , , , ,

Leave a comment

[WEB SITE] ADD Program receives $19.5 million NIH contract to test drugs for treating epilepsy

The University of Utah College of Pharmacy’s Anticonvulsant Drug Development (ADD) Program has been awarded a five-year $19.5 million contract renewal with the National Institutes of Health (NIH) to test drugs to treat epilepsy, and the major focus of the project is to address needs that affect millions of people worldwide -identify novel investigational compounds to prevent the development of epilepsy or to treat refractory, or drug-resistant, epilepsy.

The ADD program began in 1975 and since then has tested the vast majority of drugs used to control seizures in patients with epilepsy, helping millions of people worldwide. Unfortunately, almost one-third of the estimated 50 million people with the disorder has refractory, or unresponsive, epilepsy that isn’t adequately controlled by medications currently available. The contract renewal, awarded through the National Institute of Neurological Disorders and Stroke (NINDS) to the U Department of Pharmacology and Toxicology, represents a shift in the mission to identify new therapies, according to ADD Director Karen S. Wilcox, Ph.D., professor and chair of pharmacology and toxicology and principal investigator of the contract.

“We’re proud that over the past 41 years, the ADD program has played a key role in identifying and characterizing many of the drugs now available to treat patients with epilepsy and to control their seizures,” Wilcox says. “Now, we’re looking for drugs that can modify or prevent the disease, particularly in those patients either with refractory epilepsy or at risk for developing epilepsy following a brain injury.”

Epilepsy is a group of neurological disorders characterized by a tendency for repeated seizures over time. It occurs when permanent changes in the brain result in abnormal or excessive neuronal activity in the brain. An estimated 2.9 million people in the United States and 50 million people worldwide have active epilepsy, according the Centers for Disease Control and World Health Organization. There is no cure for epilepsy and the mainstay of treatment is anti-seizure medications.

ADD is a long-standing program dedicated to testing drugs to treat epilepsy. It has received continuous funding from NINDS’ Epilepsy Therapy Screening Program (ETSP) (formerly known as the Anticonvulsant Screening Program) since its founding in 1974. In collaboration, the ETSP and the ADD Program have evaluated more than 32,000 compounds. ADD received the contract in a competitive bidding process. The renewal of the contractual relationship between the NINDS and the University of Utah reflects the ongoing commitment of the NIH and the ETSP to finding and developing novel therapies for epilepsy and represents a unique partnership between government, industry, and academia.

“The NIH-NINDS ETSP is pleased to continue the productive relationship with the University of Utah,” says Dr. John Kehne, a Program Director at NINDS and head of the ETSP. “These and other efforts supported by the NINDS will help to discover new pharmacotherapies to address the unmet medical needs of people living with epilepsy.”

In addition to its focus on evaluating potential candidate drugs for the treatment of therapy-resistant epilepsy, the mission of the ADD Program includes efforts to identify novel therapies for different types of epilepsy. The program also serves as a base for innovative basic research that sheds new light on the pathophysiology of epilepsy and provides a unique training environment for students, research fellows, and visiting scientists. Currently, the ADD program employ18 researchers, technicians, and staff. Cameron S. Metcalf, Ph.D is associate director and a co-Investigator of the contract and Peter J. West, Ph.D., and Misty D. Smith, Ph.D, research assistant professors of pharmacology and toxicology, are also co-investigators on the contract renewal.

Although there currently is no cure for epilepsy, Wilcox, who previously served as a co-Investigator of ADD before taking over as PI in 2016, believes that can be changed.

“The brain has remarkable plasticity throughout a person’s life,” she says. “If we learn enough about neuroscience and the details of how the brain works, it’s very possible to find a cure.”

Source: University of Utah Health Sciences

Source: ADD Program receives $19.5 million NIH contract to test drugs for treating epilepsy

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Gait post-stroke: Pathophysiology and rehabilitation strategies



We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait.

In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait.

Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side.

Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side.

Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait.

Source: Gait post-stroke: Pathophysiology and rehabilitation strategies

, , , , , ,

Leave a comment

%d bloggers like this: