Posts Tagged Patient outcome assessment

[Abstract] Systematic reviews of clinical benefits of exoskeleton use for gait and mobility in neurological disorders: a tertiary study

Abstract

Objective

To describe systematic reviews (SRs) of the use of exoskeletons for gait and mobility by persons with neurological disorders and to evaluate their quality as guidance for research and clinical practice.

Data sources

PubMed, EMBASE, Web of Science, CINAHL Complete, PsycINFO, Cochrane Database of Systematic Reviews, PEDro, and Google Scholar were searched from database inception to January 23, 2018.

Study selection

A total of 331 de-duplicated abstracts from bibliographic database and ancestor searching were independently screened by two reviewers, resulting in 109 articles for which full text was obtained. Independent screening of those 109 articles by two reviewers resulted in a final selection of 17 SRs.

Data extraction

Data were extracted by one reviewer using a pretested Excel form with 158 fields and checked by a second reviewer. Key data included the purpose of the SR, methods used, outcome measures presented, and conclusions. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) and A MeaSurement Tool to Assess systematic Reviews (AMSTAR) 2 were used to evaluate reporting and methodological quality, respectively, of the SRs.

Data synthesis

The SRs generally were of poor methodological and reporting quality. They failed to report some information on patients (e.g. height, weight, baseline ambulatory status) and interventions (e.g. treatment hours/sessions planned and delivered) that clinicians and other stakeholders might want to have, and often failed to notice that the primary studies duplicated subjects.

Conclusions

Published SRs on exoskeletons have many weaknesses in design and execution; clinicians, researchers, and other stakeholders should be cautious in relying on them to make decisions on the use of this technology. Future studies need to address the multiple methodological limitations.

 

via Systematic reviews of clinical benefits of exoskeleton use for gait and mobility in neurological disorders: a tertiary study – Archives of Physical Medicine and Rehabilitation

, , , , , ,

Leave a comment

[A CLINICAL PRACTICE GUIDELINE] A Core Set of Outcome Measures for Adults With Neurologic Conditions Undergoing Rehabilitation

Background: Use of outcome measures (OMs) in adult neurologic physical therapy is essential for monitoring changes in a patient’s status over time, quantifying observations and patient-reported function, enhancing communication, and increasing the efficiency of patient care. OMs also provide a mechanism to compare patient and organizational outcomes, examine intervention effectiveness, and generate new knowledge. This clinical practice guideline (CPG) examined the literature related to OMs of balance, gait, transfers, and patient-stated goals to identify a core set of OMs for use across adults with neurologic conditions and practice settings.

Methods: To determine the scope of this CPG, surveys were conducted to assess the needs and priorities of consumers and physical therapists. OMs were identified through recommendations of the Academy of Neurologic Physical Therapy’s Evidence Database to Guide Effectiveness task forces. A systematic review of the literature on the OMs was conducted and additional OMs were identified; the literature search was repeated on these measures. Articles meeting the inclusion criteria were critically appraised by 2 reviewers using a modified version of the COnsensus-based Standards for the selection of health Measurement INstruments. (COSMIN) checklist. Methodological quality and the strength of statistical results were determined. To be recommended for the core set, the OMs needed to demonstrate excellent psychometric properties in high-quality studies across neurologic conditions.

Results/Discussion: Based on survey results, the CPG focuses on OMs that have acceptable clinical utility and can be used to assess change over time in a patient’s balance, gait, transfers, and patient-stated goals. Strong, level I evidence supports the use of the Berg Balance Scale to assess changes in static and dynamic sitting and standing balance and the Activities-specific Balance Confidence Scale to assess changes in balance confidence. Strong to moderate evidence supports the use of the Functional Gait Assessment to assess changes in dynamic balance while walking, the 10 meter Walk Test to assess changes in gait speed, and the 6-Minute Walk Test to assess changes in walking distance. Best practice evidence supports the use of the 5 Times Sit-to-Stand to assess sit to standing transfers. Evidence was insufficient to support use of a specific OM to assess patient-stated goals across adult neurologic conditions. Physical therapists should discuss the OM results with patients and collaboratively decide how the results should inform the plan of care.

Disclaimer: The recommendations included in this CPG are intended as a guide for clinicians, patients, educators, and researchers to improve rehabilitation care and its impact on adults with neurologic conditions. The contents of this CPG were developed with support from the APTA and the Academy of Neurologic Physical Therapy (ANPT). The Guideline Development Group (GDG) used a rigorous review process and was able to freely express its findings and recommendations without influence from the APTA or the ANPT. The authors declare no competing interest.

Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A214.

TABLE OF CONTENTS

  • INTRODUCTION AND METHODS
  • Levels of Evidence and Grades of Recommendations ………………………………………………..178
  • Summary of Action Statements ………………………………………………..179
  • Introduction ………………………………………………..181
  • Methods ………………………………………………..182
  • OUTCOME MEASURE RECOMMENDATIONS
  • The Core Set of Outcome Measures for Neurologic Physical Therapy ………………………………………………..191
  • Action Statement 1: Static and Dynamic Sitting and Standing Balance Assessment ………………………………………………..191
  • Action Statement 2: Walking Balance Assessment ………………………………………………..195
  • Action Statement 3: Balance Confidence Assessment ………………………………………………..197
  • Action Statement 4: Walking Speed Assessment ………………………………………………..199
  • Action Statement 5: Walking Distance Assessment ………………………………………………..203
  • Action Statement 6: Transfer Assessment ………………………………………………..207
  • Action Statement 7: Documentation of Patient Goals ………………………………………………..208
  • Action Statement 8: Use of the Core Set of Outcome Measures ………………………………………………..209
  • Action Statement 9: Discuss Outcome Measure Results and Use
  • Collaborative/Shared Decision-Making With Patients ………………………………………………..211
  • Guideline Implementation Recommendations ………………………………………………..212
  • Summary of Research Recommendations ………………………………………………..215
  • ACKNOWLEDGMENTS AND REFERENCES
  • Acknowledgments ………………………………………………..217
  • References ………………………………………………..217
  • TABLES
  • Table 1: Levels of Evidence ………………………………………………..178
  • Table 2: Grades of Recommendations ………………………………………………..178
  • Table 3: Outline of the CPG Process ………………………………………………..183
  • Table 4: Inclusion and Exclusion Criteria for Article Review ………………………………………………..187
  • Table 5: COSMIN Ratings for Strength of Statistics ………………………………………………..189
  • Table 6: Process Used to Make Recommendations ………………………………………………..190
  • Table 7: Evidence Table, Berg Balance Scale ………………………………………………..192
  • Table 8: Evidence Table, Functional Gait Assessment ………………………………………………..196
  • Table 9: Evidence Table, Activities-specific Balance Confidence ………………………………………………..198
  • Table 10: Evidence Table, 10 meter Walk Test ………………………………………………..201
  • Table 11: Evidence Table, 6-Minute Walk Test ………………………………………………..205
  • Table 12: Evidence Table, 5 Times Sit-to-Stand ………………………………………………..208

[…]

Continue —>  A Core Set of Outcome Measures for Adults With Neurologic Co… : Journal of Neurologic Physical Therapy

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Post-Acute Traumatic Brain Injury Rehabilitation Treatment Variables: A Mixed Methods Study – Full Text

Abstract

Purpose

This study explores gains in function, measured by the Mayo-Portland Adaptability Inventory-4 (MPAI-4) and qualitative interviews, of individuals who participated in a Post Hospital Interdisciplinary Brain Injury Rehabilitation – Residential (PHIDBIR-R) program as part of their recovery from brain injury.

Methods

The study uses a mixed methods design to identify correlates and explore pathways to functional recovery. Change scores from the MPAI-4 were derived to identify participants with greatest functional improvement. Qualitative interviews were employed to understand PHIDBIR-R program constructs associated with functional improvement. MPAI-4 data were derived from a bank of 135 PHIDBIR-R programs in 22 states. Participants were adults who sustained a brain injury and participated in a PHIDBIR-R program. 57 participants were identified as highest scorers; 10 completed semi-structured interviews.

Results

Data were analyzed using constant comparison procedures and rigorous credibility techniques. Thirteen themes within four categories (support, therapies, continuum of care, environment of care) emerged, reflecting participants’ understanding of constructs contributing to positive outcomes.

Conclusions

The results provided a cogent framework for program development, stakeholder program selection, and advocate and legislator considerations.

INTRODUCTION

Traumatic brain injury (TBI) is an alteration in brain function or other evidence of brain pathology caused by an external force. These injuries manifest as mild, moderate, or severe impairments to one or more areas, such as cognition, communication, memory, concentration, reasoning, physical functions, and psychosocial behavior [1].
The consequences of brain injuries are numerous with the potential to create life-long challenges for survivors and their families. Stories involving TBI permeate the news: the high-school athlete concussed in a football game, the soldier wounded in an explosive blast, and the teenager injured in a car accident. In these scenarios, futures transition from navigating routine activities to struggling to function.
A formidable fact surrounding these circumstances is that brain injury does not discriminate – it can happen to any person, at any time. Each year in the United States, 1.7 million TBIs occur either as an isolated injury or in conjunction with other injuries or illnesses. In the U.S., TBI is a contributing factor to nearly a third (30.5%) of all injury-related deaths [2] and figures indicate that 5.3 million people live with a TBI-related disability [3]. Annually, TBIs cost Americans $76.5 billion in medical care, rehabilitation, and loss of work [4,5].
Other etiologies of brain injury further elevate these numbers. The annual incidence of stroke is 795,000 [6]. Further, the annual estimate of brain tumors is 64,530, along with 27,000 aneurysms, and 20,000 viral encephalitis cases [68]. No national data are available for anoxic brain injury and other subtypes [1]. When all types of brain injury are aggregated, the annual occurrence in the U.S. approaches 8.5 million.
In addition, brain injuries reach beyond the individual who has sustained the TBI, affecting the lives of loved ones. Grief-stricken families witness trauma, entering a reality in which survival is the daily hope. Improvements in medical care have improved life expectancy, yielding a steady increase in the number of older adults living with a brain injury [9,10].
Once evident that an individual will survive the brain injury, goals focus on regaining lost function or rehabilitation. Just as each individual is unique, so is each recovery. Families commonly observe physical disabilities, impaired learning, and personality changes post injury. Nearly 20 years ago, the National Institutes of Health held a conference wherein an expert panel recommended that patients with TBI receive an individualized rehabilitation program based on the patient’s unique strengths and capacities, and adapted to needs over time. The group further advised that persons with moderate to severe brain injuries have individually tailored treatment programs that draw on the coordinated skills of various specialists [11].
Past research of rehabilitation following brain injury has often focused on the evaluation of a specific treatment modality or of a program’s efficacy as quantified by outcomes measurements. Many studies have sought to determine if rehabilitation has been successful, perhaps to the detriment of learning how rehabilitation has been efficacious. Studying how rehabilitation works over time is important in learning more about the individual and family experience while advancing an understanding of measured functional improvements.
Current research explores the therapies and interventions that facilitate long-term recovery of function. Individuals follow diverse recovery paths because there are a wide variety of options for rehabilitation [12]. This study focuses on Post-Hospital Inter-Disciplinary Brain Injury Rehabilitation – Residential (PHIDBIR-R) programs, which are 24-hour, 7-days a week rehabilitative care programs delivered in non-hospital, home-like, community-based environments. PHIDBIR-R programs strive to implement effective therapeutic interventions, supports, and services that maximize functional gains; these programs are judged on their ability to produce improvements in function [13].
While research efforts have focused on demonstrating positive outcomes, the identification of attributes that contribute to how improvement happens is largely untouched [1318]. Although several PHIDBIR-R programs report positive outcomes [19,20], the empirical evidence is limited and studies habitually focus on quantitative analysis. Including a qualitative component may provide insight into the PHIDBIR-R, eludicating how these experiences advance an understanding of functional improvements. […]

Continue —> Post-Acute Traumatic Brain Injury Rehabilitation Treatment Variables: A Mixed Methods Study

, , , ,

Leave a comment

%d bloggers like this: