Posts Tagged perception

[BLOG POST] A Brain Injury Life – formerly TBI to LIFE

Perception of Self after Brain Injury

Lately I’ve been wondering whether brain injury really changed the person I am or if it just added a new layer to my old self.  It may be impossible to articulate and probably unanswerable. Obviously, an injury physically changes how the brain works and directly causes a host of problems—physical pain, cognitive deficits, and the loss of identity (e.g. the tendency to ask existential questions like this). But cause and effect are not always clear. There are many problems that could be organic or could just as well be new incarnations of innate character traits.

I’ve gotten used to the idea that everything different in my life since my TBI has either been caused by the brain injury or what I learned in my neuropsychological rehabilitation. But what if there are fewer changes than I imagined? Am I still who I was but with some parts missing? That would explain the feeling of being lost in a foreign land.

For example, I used to think I was always right. But if brain injury has altered me functionally (it has, now I am often wrong), while leaving my sense of self intact (i.e. I still see myself as in the right), my perception would contradict reality. Since I’m nothing if not logical, one or the other would have to give. The belief of always being right could, unconsciously, be directed somewhere else. So instead of being convinced that my answers were better, I’d think I was wiser because I’d learned the best strategies, and was convinced that I could recognize a brain injury—or deficit—intuitively and in the moment. Which I am.

Does that make any sense? One more try:

If brain injury changed the life I lived—the structure, productivity, and satisfaction—but not who I think I am in life, it would explain why I feel rudderless. I keep trying to find my place in the world, a goal I can realistically accomplish and the initiation to follow through. Instead, I feel like I have no purpose. I come up with labels to define myself like an advocate (really?), a leader in the community (since when—6 years ago?), or educating people about brain injury (who am I teaching?). So what’s up with that?

All I can say with certainty is that the feeling of being unmoored seems to grow deeper as time passes.

via A Brain Injury Life – formerly TBI to LIFE

, , , , , ,

Leave a comment

[WEB SITE] Virtual Reality Reduces Pain and Increases Performance During Exercise – Neuroscience News

Summary: Researchers report virtual reality can help to lower pain levels and increase performance when undertaking physical activity. Participants using VR reported a pain intensity 10% lower than those not using the technology when performing isometric bicep curls.

Source: University of Kent.

The research, led by PhD candidate Maria Matsangidou from EDA, set out to determine how using VR while exercising could affect performance by measuring a raft of criteria: heart rate, including pain intensity, perceived exhaustion, time to exhaustion and private body consciousness.

To do this they monitored 80 individuals performing an isometric bicep curl set at 20% of the maximum weight they could lift, which they were then asked to hold for as long as possible. Half of the group acted as a control group who did the lift and hold inside a room that had a chair, a table and yoga mat on the floor.

The VR group were placed in the same room with the same items. They then put on a VR headset and saw the same environment, including a visual representation of an arm and the weight (see image below). They then carried out the same lift and hold as the non-VR group.

The results showed a clear reduction in perception of pain and effort when using VR technology. The data showed that after a minute the VR group had reported a pain intensity that was 10% lower than the non-VR group.

Furthermore the time to exhaustion for the VR group was around two minutes longer than those doing conventional exercise. The VR group also showed a lower heart rate of three beats per minute than the non-VR group.

Results from the study also showed no significant effect of private body consciousness on the positive impact of VR. Private body consciousness is the subjective awareness each of us has to bodily sensations.

the vr system

Previous research has shown that individuals who have a high private body consciousness tend to better understand their body and as a result perceive higher pain when exercising. However, the study’s findings revealed that VR was effective in reducing perceived pain and that private body consciousness did not lessen this effect.

As such, the improvements shown by the VR group suggest that it could be a possible way to encourage less active people to exercise by reducing the perceived pain that exercise can cause and improving performance, regardless of private body consciousness.

Lead researcher Maria Matsangidou said: ‘It is clear from the data gathered that the use of VR technology can improve performance during exercise on a number of criteria. This could have major implications for exercise regimes for everyone, from occasional gym users to professional athletes.’

ABOUT THIS NEUROSCIENCE RESEARCH ARTICLE

 

Dr Jim Ang from EDA and Dr Alex Mauger from the School of Sport and Exercise Sciences at Kent were also involved in the research.

Source: Dan Worth – University of Kent
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Maria Matsangidou.
Original Research: Abstract for “Is your virtual self as sensational as your real? Virtual Reality: The effect of body consciousness on the experience of exercise sensations” by Maria Matsangidou, Chee Siang Ang, Alexis R. Mauger, Jittrapol Intarasirisawat, Boris Otkhmezuri, and Marios N. Avraamides in Psychology of Sports and Exercise. Published July 18 2018.
doi:10.1016/j.psychsport.2018.07.004

CITE THIS NEUROSCIENCENEWS.COM ARTICLE
University of Kent”Virtual Reality Reduces Pain and Increases Performance During Exercise.” NeuroscienceNews. NeuroscienceNews, 1 October 2018.
<http://neurosciencenews.com/virtual-reality-pain-exercise-9941/&gt;.

Abstract

Is your virtual self as sensational as your real? Virtual Reality: The effect of body consciousness on the experience of exercise sensations

Objectives
Past research has shown that Virtual Reality (VR) is an effective method for reducing the perception of pain and effort associated with exercise. As pain and effort are subjective feelings, they are influenced by a variety of psychological factors, including one’s awareness of internal body sensations, known as Private Body Consciousness (PBC). The goal of the present study was to investigate whether the effectiveness of VR in reducing the feeling of exercise pain and effort is moderated by PBC.

Design and methods
Eighty participants were recruited to this study and were randomly assigned to a VR or a non-VR control group. All participants were required to maintain a 20% 1RM isometric bicep curl, whilst reporting ratings of pain intensity and perception of effort. Participants in the VR group completed the isometric bicep curl task whilst wearing a VR device which simulated an exercising environment. Participants in the non-VR group completed a conventional isometric bicep curl exercise without VR. Participants’ heart rate was continuously monitored along with time to exhaustion. A questionnaire was used to assess PBC.

Results
Participants in the VR group reported significantly lower pain and effort and exhibited longer time to exhaustion compared to the non-VR group. Notably, PBC had no effect on these measures and did not interact with the VR manipulation.

Conclusions
Results verified that VR during exercise could reduce negative sensations associated with exercise regardless of the levels of PBC.

 

via Virtual Reality Reduces Pain and Increases Performance During Exercise – Neuroscience News

 

, , , , , , , , , , ,

Leave a comment

[Abstract] From cortical blindness to conscious visual perception: Theories on neuronal networks and visual training strategies

Homonymous hemianopia (HH) is the most common cortical visual impairment leading to blindness in the contralateral hemifield. It is associated with many inconveniences and daily restrictions such as exploration and visual orientation difficulties. However, patients with HH can preserve the remarkable ability to unconsciously perceive visual stimuli presented in their blindfield, a phenomenon known as blindsight. Unfortunately, the nature of this captivating residual ability is still misunderstood and the rehabilitation strategies have been insufficiently exploited. This paper discusses type I and type II blindsight in a neuronal framework of altered global workspace, resulting from inefficient perception, attention and conscious networks. To enhance synchronisation and create global availability for residual abilities to reach visual consciousness, rehabilitation tools need to stimulate subcortical extrastriate pathways through V5/MT. Multisensory bottom-up compensation combined with top-down restitution training could target pre-existing and new neuronal mechanisms to recreate a framework for potential functionality.

Source: Frontiers | From cortical blindness to conscious visual perception: Theories on neuronal networks and visual training strategies | Frontiers in Systems Neuroscience

, , , , , , , , , , , ,

Leave a comment

[BOOK] Medical books online: Physiotherapy book online

Medical books online is a website for doctors,nurses,medical students to give review about medical book its contains, about its author and its usefulness. Physiotherapy book online Practical guide to hemiplegia treatment book review Hemiplegia, a lot of unremarkably referred to as a stroke, isn’t simply a medical specialty or a contractor condition, however one with a psychosocial impact on the patient’s life. A sensible Guide to paralysis Treatment addresses the therapy management of paralysis specializing in the broader wants of the patient. This book is split into varied topics starting from basic anatomy and physiology of the human brain and development of the systema nervosum, to clinical diagnosing, symptomology, and therefore the management of paralysis complications. The necessities of rehabilitation medication and approach to treatment area unit lined intimately. For fast reference, varied exercises and treatment techniques area unit divided into lying, sitting and standing positions. Chapters on orofacial rehabilitation, perception, orthotics and management of complications offer a home care programme for paralysis patients. fifty five pictures and illustrations enhance the data provided during this comprehensive guide to paralysis treatment. Key Points

  • Clear format for fast reference and sensible use
  • Chapters embody basic anatomy of human brain and systema nervosum through to symptoms and rehabilitation
  • 55 pictures, illustrations and tables.

via medical books online: Physiotherapy book online.

, , , , , , , ,

Leave a comment

%d bloggers like this: