Posts Tagged phenomenology

[Abstract+References] Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection


Epileptic seizures vary greatly in clinical phenomenology and can markedly affect the patient’s quality of life. As therapeutic interventions focus on reduction or elimination of seizures, the accurate documentation of seizure occurrence is essential. However, patient self-evaluation compared with objective evaluation by video-electroencephalography (EEG) monitoring or long-term ambulatory EEG revealed that patients document fewer than 50% of their seizures, on average, and that documentation accuracy varies significantly over time. For good clinical practice in epilepsy, novel and feasible seizure detection techniques for ambulatory long-term use are needed. Generalised tonic-clonic seizures can already be detected reliably by methods that rely on motion recording (eg, surface electromyography). However, the automatic detection of other seizure types, such as complex partial seizures, will require multimodal approaches that combine the measurement of ictal autonomic alterations (eg, heart rate) and of characteristic movement patterns (eg, accelerometry). Innovative and feasible tools for automatic seizure detection are likely to advance both monitoring of the outcome of a treatment in a patient and clinical research in epilepsy.


  1. Fisher, RS, van Emde Boas, W, Blume, W et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).Epilepsia200546470–472
  2. Beghi, E. Addressing the burden of epilepsy: many unmet needs. Pharmacol Res201610779–84
  3. Schmidt, D and Schachter, SC. Drug treatment of epilepsy in adults. BMJ2014348g254
  4. Fisher, RS, Blum, DE, DiVentura, B et al. Seizure diaries for clinical research and practice: limitations and future prospects. Epilepsy Behav201224304–310
  5. Blum, DE, Eskola, J, Bortz, JJ, and Fisher, RS. Patient awareness of seizures. Neurology199647260–264
  6. Inoue, Y and Mihara, T. Awareness and responsiveness during partial seizures. Epilepsia1998397–10
  7. Nijsen, TM, Arends, JB, Griep, PA, and Cluitmans, PJ. The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy. Epilepsy Behav2005774–84
  8. Kerling, F, Mueller, S, Pauli, E, and Stefan, H. When do patients forget their seizures? An electroclinical study. Epilepsy Behav20069281–285
  9. Hoppe, C, Poepel, A, and Elger, C. Epilepsy: accuracy of patient seizure counts. Arch Neurol2007;641595–1599
  10. Poochikian-Sarkissian, S, Tai, P, del Campo, M et al. Patient awareness of seizures as documented in the epilepsy monitoring unit. Can J Neurosci Nurs20093122–23
  11. DuBois, JM, Boylan, LS, Shiyko, M, Barr, WB, and Devinsky, O. Seizure prediction and recall.Epilepsy Behav201018106–109
  12. Tatum, WO 4th, Winters, L, Gieron, M et al. Outpatient seizure identification: results of 502 patients using computer-assisted ambulatory EEG. J Clin Neurophysiol20011814–19
  13. Fattouch, J, Di Bonaventura, C, Lapenta, L et al. Epilepsy, unawareness of seizures and driving license: the potential role of 24-hour ambulatory EEG in defining seizure freedom. Epilepsy Behav20122532–35
  14. Cook, MJ, O’Brien, TJ, Berkovic, SF et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study.Lancet Neurol201312563–571
  15. Van de Vel, A, Milosevic, M, Bonroy, B et al. Long-term accelerometry-triggered video monitoring and detection of tonic-clonic and clonic seizures in a home environment: pilot study. Epilepsy Behav Case Rep2016566–71
  16. Browne, TR, Dreifuss, FE, Penry, JK, Porter, RJ, and White, BG. Clinical and EEG estimates of absence seizure frequency. Arch Neurol198340469–472
  17. Akman, CI, Montenegro, MA, Jacob, S, Eck, K, Chiriboga, C, and Gilliam, F. Seizure frequency in children with epilepsy: factors influencing accuracy and parental awareness. Seizure200918524–529
  18. Glauser, TA, Cnaan, A, Shinnar, S et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med2010362790–799
  19. Munos, B, Baker, PC, Bot, BM et al. Mobile health: the power of wearables, sensors, and apps to transform clinical trials. Ann N Y Acad Sci201613753–18
  20. Hamandi, K, Beniczky, S, Diehl, B et al. Current practice and recommendations in UK epilepsy monitoring units. Report of a national survey and workshop. Seizure20175092–98
  21. Beniczky, S, Neufeld, M, Diehl, B et al. Testing patients during seizures: a European consensus procedure developed by a joint taskforce of the ILAE—Commission on European Affairs and the European Epilepsy Monitoring Unit Association. Epilepsia2016571363–1368
  22. Osorio, I and Manly, BF. Probability of detection of clinical seizures using heart rate changes.Seizure201530120–123
  23. Ulate-Campos, A, Coughlin, F, Gaínza-Lein, M, Fernández, IS, Pearl, PL, and Loddenkemper, T.Automated seizure detection systems and their effectiveness for each type of seizure. Seizure2016;4088–101
  24. Elger, CE and Mormann, F. Seizure prediction and documentation—two important problems.Lancet Neurol201312531–532
  25. Dalrymple, J and Appleby, J. Cross sectional study of reporting of epileptic seizures to general practitioners. BMJ200032094–97
  26. Del Brutto, OH and Mera, RM. The importance of people compliance (social desirability bias) in the assessment of epilepsy prevalence in rural areas of developing countries. Results of the Atahualpa Project. Epilepsia201657e221–e224
  27. Blachut, B, Hoppe, C, Surges, R, Stahl, J, Elger, CE, and Helmstaedter, C. Counting seizures: the primary outcome measure in epileptology from the patients’ perspective. Seizure20152997–103
  28. Blachut, B, Hoppe, C, Surges, R, Elger, C, and Helmstaedter, C. Subjective seizure counts by epilepsy clinical drug trial participants are not reliable. Epilepsy Behav201767122–127
  29. Detyniecki, K and Blumenfeld, H. Consciousness of seizures and consciousness during seizures: are they related?. Epilepsy Behav2014306–9
  30. Rheims, S and Ryvlin, P. Patients’ safety in the epilepsy monitoring unit: time for revising practices. Curr Opin Neurol201427213–218
  31. Hoppe, C, Feldmann, M, Blachut, B, Surges, R, Elger, CE, and Helmstaedter, C. Novel techniques for automated seizure registration: patients’ wants and needs. Epilepsy Behav2015521–7
  32. Patel, AD, Moss, R, Rust, SW et al. Patient-centered design criteria for wearable seizure detection devices. Epilepsy Behav201664116–121
  33. Tovar Quiroga, DF, Britton, JW, and Wirrell, EC. Patient and caregiver view on seizure detection devices: a survey study. Seizure201641179–181
  34. Van de Vel, A, Smets, K, Wouters, K, and Ceulemans, B. Automated non-EEG based seizure detection: do users have a say?. Epilepsy Behav201662121–128
  35. van Andel, J, Leijten, F, van Delden, H, and van Thiel, G. What makes a good home-based nocturnal seizure detector? A value sensitive design. PLoS One201510e0121446
  36. Schulze-Bonhage, A, Sales, F, Wagner, K et al. Views of patients with epilepsy on seizure prediction devices. Epilepsy Behav201018388–396
  37. Bialer, M, Johannessen, SI, Levy, RH et al. Seizure detection and neuromodulation: a summary of data presented at the XIII conference on new antiepileptic drug and devices (EILAT XIII). Epilepsy Res201713027–36
  38. Van de Vel, A, Cuppens, K, Bonroy, B et al. Non-EEG seizure detection systems and potential SUDEP prevention: state of the art: review and update. Seizure201641141–153
  39. van Andel, J, Thijs, RD, de Weerd, A, Arends, J, and Leijten, F. Non-EEG based ambulatory seizure detection designed for home use: what is available and how will it influence epilepsy care?. Epilepsy Behav20165782–89
  40. Jory, C, Shankar, R, Coker, D, McLean, B, Hanna, J, and Newman, C. Safe and sound? A systematic literature review of seizure detection methods for personal use. Seizure2016364–15
  41. Askamp, J and van Putten, MJ. Mobile EEG in epilepsy. Int J Psychophysiol20149130–35
  42. Mihajlovic, V, Grundlehner, B, Vullers, R, and Penders, J. Wearable, wireless EEG solutions in daily life applications: what are we missing?. IEEE J Biomed Health Inform2015196–21
  43. Grant, AC, Abdel-Baki, SG, Omurtag, A et al. Diagnostic accuracy of microEEG: a miniature, wireless EEG device. Epilepsy Behav20143481–85
  44. Debener, S, Emkes, R, De Vos, M, and Bleichner, M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci Rep2015516743
  45. Baldassano, SN, Brinkmann, BH, Ung, H et al. Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings. Brain20171401680–1691
  46. Mathieson, SR, Stevenson, NJ, Low, E et al. Validation of an automated seizure detection algorithm for term neonates. Clin Neurophysiol2016127156–168
  47. Hopfengärtner, R, Kasper, BS, Graf, W et al. Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: a validation study for clinical routine. Clin Neurophysiol20141251346–1352
  48. Hartmann, MM, Schindler, K, Gebbink, TA, Gritsch, G, and Kluge, T. PureEEG: automatic EEG artifact removal for epilepsy monitoring. Neurophysiol Clin201444479–490
  49. Sierra-Marcos, A, Scheuer, ML, and Rossetti, AO. Seizure detection with automated EEG analysis: a validation study focusing on periodic patterns. Clin Neurophysiol2015126456–462
  50. Touloumes, G, Morse, E, Chen, WC et al. Human bedside evaluation versus automatic responsiveness testing in epilepsy (ARTiE). Epilepsia201657e28–e32
  51. Fürbass, F, Ossenblok, P, Hartmann, M et al. Prospective multi-center study of an automatic online seizure detection system for epilepsy monitoring units. Clin Neurophysiol20151261124–1131
  52. Geller, EB, Skarpaas, TL, Gross, RE et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia201758994–1004
  53. Jobst, BC, Kapur, R, Barkley, GL et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia2017581005–1014
  54. Dericioglu, N, Yetim, E, Bas, DF et al. Non-expert use of quantitative EEG displays for seizure identification in the adult neuro-intensive care unit. Epilepsy Res201510948–56
  55. Rakshasbhuvankar, A, Paul, S, Nagarajan, L, Ghosh, S, and Rao, S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure20153390–98
  56. Temko, A, Marnane, W, Boylan, G, and Lightbody, G. Clinical implementation of a neonatal seizure detection algorithm. Decis Support Syst20157086–96
  57. Tewolde, S, Oommen, K, Lie, DY, Zhang, Y, and Chyu, MC. Epileptic seizure detection and prediction based on continuous cerebral blood flow monitoring—a review. J Health Eng20156159–178
  58. Jeppesen, J, Beniczky, S, Johansen, P, Sidenius, P, and Fuglsang-Frederiksen, A. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients. Seizure20152643–48
  59. Kandler, R, Ponnusamy, A, and Wragg, C. Video ambulatory EEG: a good alternative to inpatient video telemetry?. Seizure20174766–70
  60. Pediaditis, M, Tsiknakis, M, and Leitgeb, N. Vision-based motion detection, analysis and recognition of epileptic seizures—a systematic review. Comput Methods Programs Biomed20121081133–1148
  61. Noda, K. Google Home: smart speaker as environmental control unit. Disabil Rehabil Assist Technol2017; : 1–2
  62. Beniczky, S, Polster, T, Kjaer, TW, and Hjalgrim, H. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia201354e58–e61
  63. Velez, M, Fisher, RS, Bartlett, V, and Le, S. Tracking generalized tonic-clonic seizures with a wrist accelerometer linked to an online database. Seizure20163913–18
  64. Cuppens, K, Karsmakers, P, Van de Vel, A et al. Accelerometry-based home monitoring for detection of nocturnal hypermotor seizures based on novelty detection. IEEE J Biomed Health Inform2014181026–1033
  65. Patterson, AL, Mudigoudar, B, Fulton, S et al. SmartWatch by SmartMonitor: assessment of seizure detection efficacy for various seizure types in children, a large prospective single-center study. Pediatr Neurol201553309–311
  66. Fulton, S, Poppel, KV, McGregor, A, Ellis, M, Patters, A, and Wheless, J. Prospective study of 2 bed alarms for detection of nocturnal seizures. J Child Neurol2013281430–1433
  67. Narechania, AP, Garić, II, Sen-Gupta, I, Macken, MP, Gerard, EE, and Schuele, SU. Assessment of a quasi-piezoelectric mattress monitor as a detection system for generalized convulsions. Epilepsy Behav201328172–176
  68. Beniczky, S, Conradsen, I, Moldovan, M et al. Quantitative analysis of surface electromyography during epileptic and nonepileptic convulsive seizures. Epilepsia2014551128–1134
  69. Halford, JJ, Sperling, MR, Nair, DR et al. Detection of generalized tonic-clonic seizures using surface electromyographic monitoring. Epilepsia2017581861–1869
  70. Beniczky, S, Conradsen, I, Pressler, R, and Wolf, P. Quantitative analysis of surface electromyography: biomarkers for convulsive seizures. Clin Neurophysiol20161272900–2907
  71. Szabó, CÁ, Morgan, LC, Karkar, KM et al. Electromyography-based seizure detector: preliminary results comparing a generalized tonic-clonic seizure detection algorithm to video-EEG recordings.Epilepsia2015561432–1437
  72. Hagge, M, Nunnemann, S, Bauer, S et al. Biceps electromyography in dialeptic and automotor seizures with and without secondary generalization. Clin Neurophysiol20161271163–1169
  73. Osorio, I. Automated seizure detection using EKG. Int J Neural Syst2014241450001
  74. Osorio, I and Manly, BF. Is seizure detection based on EKG clinically relevant?. Clin Neurophysiol20141251946–1951
  75. Jeppesen, J, Fuglsang-Frederiksen, A, Brugada, R et al. Heart rate variability analysis indicates preictal parasympathetic overdrive preceding seizure-induced cardiac dysrhythmias leading to sudden unexpected death in a patient with epilepsy. Epilepsia201455e67–e71
  76. Jeppesen, J, Beniczky, S, Johansen, P, Sidenius, P, and Fuglsang-Frederiksen, A. Detection of epileptic seizures with a modified heart rate variability algorithm based on Lorenz plot. Seizure2015241–7
  77. Eggleston, KS, Olin, BD, and Fisher, RS. Ictal tachycardia: the head-heart connection. Seizure201423496–505
  78. Goldenholz, DM, Kuhn, A, Austermuehle, A et al. Long-term monitoring of cardiorespiratory patterns in drug-resistant epilepsy. Epilepsia20175877–84
  79. Poh, MZ, Loddenkemper, T, Reinsberger, C et al. Autonomic changes with seizures correlate with postictal EEG suppression. Neurology2012781868–1876
  80. Hampel, KG, Jahanbekam, A, Elger, CE, and Surges, R. Seizure-related modulation of systemic arterial blood pressure in focal epilepsy. Epilepsia2016571709–1718
  81. Reinsberger, C, Perez, DL, Murphy, MM, and Dworetzky, BA. Pre- and postictal, not ictal, heart rate distinguishes complex partial and psychogenic nonepileptic seizures. Epilepsy Behav20122368–70
  82. Opherk, C, Coromilas, J, and Hirsch, LJ. Heart rate and EKG changes in 102 seizures: analysis of influencing factors. Epilepsy Res200252117–127
  83. Stefanidou, M, Carlson, C, and Friedman, D. The relationship between seizure onset zone and ictal tachycardia: an intracranial EEG study. Clin Neurophysiol20151262255–2260
  84. Kolsal, E, Serdaroğlu, A, Cilsal, E et al. Can heart rate variability in children with epilepsy be used to predict seizures?. Seizure201423357–362
  85. Franco, AC, Noachtar, S, and Rémi, J. Ictal ipsilateral sweating in focal epilepsy. Seizure2017504–5
  86. Thomas, SS, Nathan, V, Zong, C, Soundarapandian, K, Shi, X, and Jafari, R. BioWatch: a noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE J Biomed Health Inform2016201291–1300
  87. Poh, MZ, McDuff, DJ, and Picard, RW. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans Biomed Eng2011587–11
  88. Fisher, RS, Afra, P, Macken, M et al. Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance—the U.S. E-37 trial. Neuromodulation2016;19188–195
  89. Nass, RD, Sassen, R, Elger, CE, and Surges, R. The role of postictal laboratory blood analyses in the diagnosis and prognosis of seizures. Seizure20174751–65
  90. Surges, R, Kretschmann, A, Abnaof, K et al. Changes in serum miRNAs following generalized convulsive seizures in human mesial temporal lobe epilepsy. Biochem Biophys Res Comm201648113–18
  91. Matz, O, Zdebik, C, Zechbauer, S et al. Lactate as a diagnostic marker in transient loss of consciousness. Seizure20164071–75
  92. Chatzikonstantinou, A, Ebert, AD, and Hennerici, MG. Temporal seizure focus and status epilepticus are associated with high-sensitive troponin I elevation after epileptic seizures. Epilepsy Res201511577–80
  93. Stöcklin, B, Fouzas, S, Schillinger, P et al. Copeptin as a serum biomarker of febrile seizures. PLoS One201510e0124663
  94. Tumani, H, Jobs, C, Brettschneider, J, Hoppner, AC, Kerling, F, and Fauser, S. Effect of epileptic seizures on the cerebrospinal fluid—a systematic retrospective analysis. Epilepsy Res201511423–31
  95. Fisher, RS, Bartfeld, E, and Cramer, JA. Use of an online epilepsy diary to characterize repetitive seizures. Epilepsy Behav20154766–71
  96. Wong, KF, Smith, AC, Pierce, ET et al. Statistical modeling of behavioral dynamics during propofol-induced loss of consciousness. J Neurosci Methods201422765–74
  97. Patel, AC, Thornton, RC, Mitchell, TN, and Michell, AW. Advances in EEG: home video telemetry, high frequency oscillations and electrical source imaging. J Neurol20162632139–2144
  98. Goodwin, E, Kandler, RH, and Alix, JJ. The value of home video with ambulatory EEG: a prospective service review. Seizure201423480–482
  99. Fürbass, F, Kampusch, S, Kaniusas, E et al. Automatic multimodal detection for long-term seizure documentation in epilepsy. Clin Neurophysiol20171281466–1472
  100. Conradsen, I, Beniczky, S, Wolf, P, Kjaer, TW, Sams, T, and Sorensen, HB. Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data. Comput Methods Programs Biomed201210797–110
  101. Cogan, D, Birjandtalab, J, Nourani, M, Harvey, J, and Nagaraddi, V. Multi-biosignal analysis for epileptic seizure monitoring. Int J Neural Syst2017271650031
  102. Larsen, SN, Conradsen, I, Beniczky, S, and Sorensen, HB. Detection of tonic epileptic seizures based on surface electromyography. Conf Proc IEEE Eng Med Biol Soc20142014942–945
  103. Van de Vel, A, Verhaert, K, and Ceulemans, B. Critical evaluation of four different seizure detection systems tested on one patient with focal and generalized tonic and clonic seizures.Epilepsy Behav20143791–94
  104. McLean, B, Shankar, R, Hanna, J, Jory, C, and Newman, C. Sudden unexpected death in epilepsy: measures to reduce risk. Pract Neurol20171713–20
  105. Picard, RW, Migliorini, M, Caborni, C et al. Wrist sensor reveals sympathetic hyperactivity and hypoventilation before probable SUDEP. Neurology201789633–635
  106. Jobst, BC and Cascino, GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA2015313285–293

via Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection

, , ,

Leave a comment

[Abstract] Experience of an upper limb training program with a non-immersive virtual reality system in patients after stroke: a qualitative study



The YouGrabber (YG) is a new virtual reality training system that focuses on unilateral and bimanual activities. This nested study was part of a larger multicentre randomised controlled trial and explored experiences of people with chronic stroke during a 4 week intensive upper limb training with YG.


A qualitative design using semi-structured, face-to-face interviews. A phenomenological descriptive approach was used, with data coded, categorized and summarized using a thematic analysis. Topics investigated included: the experience of YG training, perceived impact of YG training on arm function, and the role of the treating therapist.


Five people were interviewed (1 female, age range 55-75yrs, 1-6yrs post-stroke). Seven main themes were identified: (1) general experience, (2) expectations, (3) feedback, (4) arm function, (5) physiotherapist’s role, (6) fatigue, (7) motivation. Key experiences reported included feelings of motivation and satisfaction, with positive factors identified as challenge, competition, fun and effort. The YG training appeared to trigger greater effort, however fatigue was experienced at the end of the training. Overall, patients described positive changes in upper limb motor function and activity level, e.g. automatic arm use. While the opportunity for self-practice was appreciated, input from the therapist at the start of the intervention was deemed important for safety and confidence.


Reported experiences were mostly positive and the participants were motivated to practice intensively. They enjoyed the challenging component of the games.

Source: Experience of an upper limb training program with a non-immersive virtual reality system in patients after stroke: a qualitative study – Physiotherapy

, , , , , , , ,

Leave a comment

%d bloggers like this: