Posts Tagged phenytoin

[Abstract] Antiepileptic drug clearances during pregnancy and clinical implications for women with epilepsy

Abstract

Objective To characterize the magnitude and time course of pregnancy-related clearance changes for different antiepileptic drugs (AEDs): levetiracetam, oxcarbazepine, topiramate, phenytoin, and valproate. A secondary aim was to determine if a decreased AED serum concentration was associated with increased seizure frequency.

 

Methods Women with epilepsy were enrolled preconception or early in pregnancy and prospectively followed throughout pregnancy and the first postpartum year with daily diaries of AED doses, adherence, and seizures. Study visits with AED concentration measurements occurred every 1–3 months. AED clearances in each trimester were compared to nonpregnant baseline using a mixed linear regression model, with adjustments for age, race, and hours postdose. In women on monotherapy, 2-sample t test was used to compare the ratio to target concentrations (RTC) between women with seizure worsening each trimester and those without.

 

Results AED clearances were calculated for levetiracetam (n = 18 pregnancies), oxcarbazepine (n = 4), topiramate (n = 10), valproate (n = 5), and phenytoin (n = 7). Mean maximal clearances were reached for (1) levetiracetam in first trimester (1.71-fold baseline clearance) (p = 0.0001), (2) oxcarbazepine in second trimester (1.63-fold) (p = 0.0001), and (3) topiramate in second trimester (1.39-fold) (p = 0.025). In 15 women on AED monotherapy, increased seizure frequency in the first, second, and all trimesters was associated with a lower RTC (p < 0.05).

 

Conclusion AED clearance significantly changes by the first trimester for levetiracetam and by the second trimester for oxcarbazepine and topiramate. Lower RTC was associated with seizure worsening. Early therapeutic drug monitoring and dose adjustment may be helpful to avoid increased seizure frequency.

 

via Antiepileptic drug clearances during pregnancy and clinical implications for women with epilepsy | Neurology

, , , , , , , , ,

Leave a comment

[Poster] Effectiveness of Phenytoin and Levetiracetam for Seizure Prophylaxis Among a Traumatic Brain Injury Population: A Systematic Review

To examine the effectiveness of levetiracetam and phenytoin for seizure prophylaxis following brain injury.

Source: Effectiveness of Phenytoin and Levetiracetam for Seizure Prophylaxis Among a Traumatic Brain Injury Population: A Systematic Review – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[ARTICLE] Post-traumatic epilepsy: current and emerging treatment options – Full Text

Abstract

Traumatic brain injury (TBI) leads to many undesired problems and complications, including immediate and long-term seizures/epilepsy, changes in mood, behavioral, and personality problems, cognitive and motor deficits, movement disorders, and sleep problems.

Clinicians involved in the treatment of patients with acute TBI need to be aware of a number of issues, including the incidence and prevalence of early seizures and post-traumatic epilepsy (PTE), comorbidities associated with seizures and anticonvulsant therapies, and factors that can contribute to their emergence.

While strong scientific evidence for early seizure prevention in TBI is available for phenytoin (PHT), other antiepileptic medications, eg, levetiracetam (LEV), are also being utilized in clinical settings. The use of PHT has its drawbacks, including cognitive side effects and effects on function recovery. Rates of recovery after TBI are expected to plateau after a certain period of time. Nevertheless, some patients continue to improve while others deteriorate without any clear contributing factors.

Thus, one must ask, ‘Are there any actions that can be taken to decrease the chance of post-traumatic seizures and epilepsy while minimizing potential short- and long-term effects of anticonvulsants?’ While the answer is ‘probably,’ more evidence is needed to replace PHT with LEV on a permanent basis. Some have proposed studies to address this issue, while others look toward different options, including other anticonvulsants (eg, perampanel or other AMPA antagonists), or less established treatments (eg, ketamine). In this review, we focus on a comparison of the use of PHT versus LEV in the acute TBI setting and summarize the clinical aspects of seizure prevention in humans with appropriate, but general, references to the animal literature.

Full Text–> Post-traumatic epilepsy: current and emerging treatment options.

, , , , , , , , , , , , , ,

Leave a comment

%d bloggers like this: