Posts Tagged Physiology

[NEWS] Scientists can monitor brain activity to predict epileptic seizures few minutes in advance

 

Elizabeth Delacruz can’t crawl or toddle around like most youngsters nearing their second birthday.

A rare metabolic disorder that decimated her mobility has also led to cortical blindness – her brain is unable to process images received from an otherwise healthy set of brown eyes. And multiple times a day Elizabeth suffers seizures that continually reduce her brain function. She can only offer an occasional smile or make soft bubbly sounds to communicate her mood.

“But a few months ago I heard her say, ‘Mama,’ and I started to cry,” said Carmen Mejia, a subtle quaver in her voice as she recalled the joy of hearing her daughter. “That’s the first time she said something.”

Ms. Mejia realizes it may also be the last, unless doctors can find a way to detect and prevent the epileptic seizures stemming from a terminal disease called pyruvate dehydrogenase deficiency (PDHD) – which occurs when mitochondria don’t provide enough energy for the cells.

A UT Southwestern study gives parents like Ms. Mejia renewed hope for their children: By monitoring the brain activity of a specific cell type responsible for seizures, scientists can predict convulsions at least four minutes in advance in both humans and mice. The research further shows that an edible acid called acetate may effectively prevent seizures if they are detected with enough notice.

Although the prediction strategy cannot yet be used clinically – a mobile technology for measuring brain activity would have to be developed – it signifies a potential breakthrough in a field that had only been able to forecast seizures a few seconds ahead.

“Many of the families I meet with are not just bothered by the seizures. The problem is the unpredictability, the not knowing when and where a seizure might occur,” said Dr. Juan Pascual, a pediatric neurologist with UT Southwestern’s O’Donnell Brain Institute who led the study published in Science Translational Medicine. “We’ve found a new approach that may one day solve this issue and hopefully help other scientists track down the root of seizures for many kinds of epilepsy.”

Debunked theory

The critical difference between the study and previous efforts was debunking the long-held belief among researchers that most cells in epilepsy patients have malfunctioning mitochondria. In fact, Dr. Pascual’s team spent a decade developing a PDHD mouse model that enabled them to first discover the key metabolic defect in the brain and then determine only a single neuron type was responsible for seizures as the result of the metabolic defect. They honed in on these neurons’ electrical activity with an electroencephalogram (EEG) to detect which brainwave readings signaled an upcoming seizure.

“It’s much more difficult to predict seizures if you don’t know the cell type and what its activity looks like on the EEG,” Dr. Pascual said. “Until this finding, we thought it was a global deficiency in the cells and so we didn’t even know to look for a specific type.”

Predicting seizures

The study shows how a PDHD mouse model helped scientists trace the seizures to inhibitory neurons near the cortex that normally keep the brain’s electrical activity in check.

Scientists then tested a method of calculating when seizures would occur in mice and humans by reviewing EEG files and looking for decreased activity in energy-deficient neurons. Their calculations enabled them to forecast 98 percent of the convulsions at least four minutes in advance.

Dr. Pascual is hopeful his lab can refine EEG analyses to extend the warning window by several more minutes. Even then, live, clinical predictions won’t be feasible unless scientists develop technology to automatically interpret the brain activity and calculate when a seizure is imminent.

Still, he said, the discovery that a single cell type can be used to forecast seizures is a paradigm-shifting finding that may apply to all mitochondrial diseases and related epilepsies.

Potential therapy

Dr. Pascual’s ongoing efforts to extend the prediction time may be a crucial step in utilizing the other intriguing finding from the study: the use of acetate to prevent seizures.

The study showed that delivering acetate into the blood stream of PDHD mice gave their neurons enough energy to normalize their activity and decrease seizures for as long as the acetate was in the brain. However, Dr. Pascual said the acetate would probably need more time – perhaps 10 minutes or more – to take effect in humans if taken by mouth.

Acetate, which naturally occurs in some foods, has been used in patients for decades – including newborns needing intravenous nutrition or patients whose metabolism has shut down. But it had not yet been established as an effective treatment for mitochondrial diseases that underlie epilepsy.

Among the reasons, Dr. Pascual said, is that labs have struggled to create an animal model of such diseases to study its effects; his own lab spent about a decade doing so. Another is the widespread acceptance of the ketogenic diet to reduce the frequency of seizures.

But amid a growing concern about potentially unhealthy side effects of ketogenic diets, Dr. Pascual has been researching alternatives that may refuel the brain more safely and improve cognition.

Frequent seizures

Elizabeth, among a handful of patients whose EEG data were used in the new study, has been prescribed a ketogenic diet and some vitamins to control the seizures. Her family has seen little improvement. Elizabeth often has more than a dozen seizures a day and her muscles and cognition continue to decline. She can’t hold her head up and her mother wonders how many more seizures her brain can take.

Elizabeth was only a few months old when she was diagnosed with PDHD, which occurs when cells lack certain enzymes to efficiently convert food into energy. Patients who show such early signs often don’t survive beyond a few years.

Ms. Mejia does what she can to comfort her daughter, with the hope that Dr. Pascual’s work can someday change the prognosis for PDHD. Ms. Mejia sings, talks, and offers stuffed animals and other toys to her daughter. Although her little girl can’t see, the objects offer a degree of mental stimulation, she said.

“It’s so hard to see her go through this,” Ms. Mejia said. “Every time she has a seizure, her brain is getting worse. I still hope one day she can get a treatment that could stop all this and make her life better.”

‘Big questions’

Dr. Pascual is already conducting further research into acetate treatments, with the goal of launching a clinical trial for patients like Elizabeth in the coming years.

His lab is also researching other epilepsy conditions – such as glucose transporter type I (Glut1) deficiency – to determine if inhibitory neurons in other parts of the brain are responsible for seizures. If so, the findings could provide strong evidence for where scientists should look in the brain to detect and prevent misfiring neurons.

“It’s an exciting time, but there is much that needs to happen to make this research helpful to patients,” Dr. Pascual said. “How do we find an automated way of detecting neuron activity when patients are away from the lab? What are the best ways to intervene when we know a seizure is coming? These are big questions the field still needs to answer.”

via Scientists can monitor brain activity to predict epileptic seizures few minutes in advance

, , , , , , , , , , , , , ,

Leave a comment

[WEB SITE] ‘Smart’ robotic system could offer home-based rehabilitation

IMAGE

IMAGE: EARLY PROTOTYPES OF ROBOTIC REHABILITATION SYSTEMS CONTROLLED BY THE USER’S OWN BRAIN REQUIRED THE USE OF SKULLCAPS EMBEDDED WITH SENSORS, BUT RESEARCHERS ARE DEVELOPING A SIMPLER VERSION THAT CAN BE… view more 
CREDIT: UNIVERSITY OF HOUSTON

Researchers in Houston and elsewhere have shown that robotic systems controlled by the user’s own brain activity can help patients recovering from stroke and other disabling injuries. But the demonstrations have taken place in highly controlled settings, and none of the systems have been approved for use in clinics or patient’s homes.

An engineer from the University of Houston is leading a team of researchers, health care providers and industry to fast-track the commercialization of a groundbreaking robotic rehabilitation system. Backed by a $750,000 grant from the National Science Foundation’s Partnerships for Innovation program (PFI), the goal is to build a system that can be approved by the U.S. Food and Drug Administration and is sturdy, simple and inexpensive enough for stroke patients to use at home.

“We want to break that wall between the lab and home,” said Jose Luis Contreras-Vidal, professor of electrical and computer engineering at UH and co-director of the Building Reliable Advances and Innovation in Neurotechnology (BRAIN) Center, a NSF-supported Industry/University Collaborative Research Center based at UH and Arizona State University. “We want to build a system that can be used at home with FDA approval.”

The NSF PFI program allows academic innovators to advance prior NSF-funded research by further developing technologies that show promise for commercialization and societal impact. Such technology development efforts benefit from industry-academic collaborations that are needed to accelerate the transition of technology from the academic lab to the marketplace.

The rehabilitation systems work by capturing electrical activity in the brain, which can be translated into movement through the use of algorithms that decode movement intent from patterned brain activity. Early versions of this brain-computer interface relied upon a skull cap embedded with the sensors, but Contreras-Vidal said any system intended for home use will have to be far simpler for patients to use.

He has worked for years with TIRR Memorial Hermann, a nationally ranked rehabilitation hospital, in a quest to design medical systems that can assist in recovery from strokes and other injuries and illnesses.

Other partners in the project are National Instruments Corp. and Harmonic Bionics, both based in Austin, and TIRR Memorial Hermann. The UH Office of Intellectual Property Management will help with commercialization, and Jeff Feng, associate professor for the UH Gerald D. Hines College of Architecture and Design who has a background in the design of medical devices, will work with Contreras-Vidal on the headset design to optimize usability and form factor.

“It has to be very user friendly,” Contreras-Vidal said. The idea is that use of the device – it will be modeled on a simple rowing machine and at least initially will focus on the upper limbs – will promote plasticity in the brain and the restoration of motor function. Contreras-Vidal said the same concept could apply to the lower limbs to restore a patient’s ability to walk.

While the work also has applications for virtual reality, gaming and consumer electronics, he said the researchers are focused on using it to help people recover from stroke. It will be tested in the clinic at TIRR before being sent home with patients.

“The research team of the physical medicine and rehabilitation department is fortunate to be a part of this project, which will make a difference and improve the quality of life in stroke survivors,” said Dr. Gerard Francisco, chairman and professor of physical medicine & rehabilitation with McGovern Medical School at the University of Texas Health Science Center at Houston and chief medical officer and director of the NeuroRecovery Research Center at TIRR Memorial Hermann.

“Each year, thousands suffer a stroke which can leave them facing a long road of rehabilitation. By developing this device for use at home, it can be an added and convenient component to their rehabilitation journey.”

Harmony Bionics will produce the robotic device, while National Instruments will provide a compact, embedded, hardware solution for the brain-computer interface system and provide technical assistance.

“There is a growing need for accelerating the transition to practice of the discoveries and innovations that start at universities,” said Igor Alvarado, business development manager for academic research at National Instruments. “This project allows us to help advance new at-home rehab technologies for stroke patients by providing the data acquisition and control platform to be used in prototyping, testing and deploying the new rehab device.”

National Instruments also will oversee a national competition, which will release the researchers’ datasets and encourage people elsewhere to suggest improvements in the decoding algorithms.

“That’s STEM outreach,” Contreras-Vidal said. “But it’s also citizen-science and advancing the state of the art.”

 

via ‘Smart’ robotic system could offer home-based rehabilitation | EurekAlert! Science News

, , , , , , ,

Leave a comment

[Abstract] An intelligent, adaptive, performance-sensitive, and virtual reality-based gaming platform for the upper limb.

Abstract

Stroke is a leading cause of adult disability, characterized by a spectrum of muscle weakness and movement abnormalities related to the upper limb. About 80% of individuals who had a stroke suffer from upper limb dysfunction. Conventional rehabilitation aims to improve one’s ability to use paralyzed limbs through repetitive exercise under one-on-one supervision by physiotherapists. This poses difficulty given the limited availability of healthcare resources and the high cost of availing specialized services at healthcare centers, particularly in developing countries like India. Thus, the design of cost-effective, home-based, and technology-assisted individualized rehabilitation platform that can deliver real-time feedback on one’s skill progress is critical. This paper describes the design of a novel, multimodal, virtual reality (VR)-based, and performance-sensitive exercise platform that can intelligently adapt its task presentation to one’s performance. Here, we aim to address unilateral shoulder abduction and adduction that are essential for the performance of daily living activities. We designed an experimental study in which six individuals who had chronic stroke (post-stroke period: >6 months) participated. While they interacted with our VR-based tasks, we recorded their physiological signals in a synchronized manner. Preliminary results indicate the potential of our VR-based, adaptive individualized system in the performance of individuals who had a stroke suffering from upper limb movement disorders.

© 2018 John Wiley & Sons, Ltd.

 

via Scopus preview – Scopus – Document details

, , , , , ,

Leave a comment

[BOOK] Medical books online: Physiotherapy book online

Medical books online is a website for doctors,nurses,medical students to give review about medical book its contains, about its author and its usefulness. Physiotherapy book online Practical guide to hemiplegia treatment book review Hemiplegia, a lot of unremarkably referred to as a stroke, isn’t simply a medical specialty or a contractor condition, however one with a psychosocial impact on the patient’s life. A sensible Guide to paralysis Treatment addresses the therapy management of paralysis specializing in the broader wants of the patient. This book is split into varied topics starting from basic anatomy and physiology of the human brain and development of the systema nervosum, to clinical diagnosing, symptomology, and therefore the management of paralysis complications. The necessities of rehabilitation medication and approach to treatment area unit lined intimately. For fast reference, varied exercises and treatment techniques area unit divided into lying, sitting and standing positions. Chapters on orofacial rehabilitation, perception, orthotics and management of complications offer a home care programme for paralysis patients. fifty five pictures and illustrations enhance the data provided during this comprehensive guide to paralysis treatment. Key Points

  • Clear format for fast reference and sensible use
  • Chapters embody basic anatomy of human brain and systema nervosum through to symptoms and rehabilitation
  • 55 pictures, illustrations and tables.

via medical books online: Physiotherapy book online.

, , , , , , , ,

Leave a comment

[STUDY] – Design of a physiologically informed virtual reality based interactive platform for individuals with upper limb impairment

A large number of stroke-surviving individuals exhibit deficits related to upper limb movement, thereby making post stroke rehabilitation a critical part of patients’ health care system. The patients are typically treated with conventional occupational therapy at the hospital after stroke. However, due to economic pressures and limited health care resources often the patients receive less therapy than required causing them to be deprived of the potential therapeutic benefits. Thus implementing a cost-effective home based technology-assisted rehabilitation system which is capable of providing intensive, adaptive and individualized rehabilitation service is critical. Virtual reality (VR) based rehabilitation system seems to address this challenge effectively. VR technology for rehabilitation allows us to create an interactive environment with precise control over intensity of practice that influence one’s motor control in an individualized manner. In this study we developed an interactive VR-based platform which challenges the coordination skill of individuals with upper limb impairment. Additionally, we used patient’s physiological indices to understand their stress level while they interact with the VR-based rehabilitation environment. The system developed in this work is a first step to understand its potential to provide individualized home-based rehabilitative service with minimal dependency on physiotherapist. In our initial study designed as a proof-of-concept application, one stroke-surviving patient participated in the interactive VR-based task. The preliminary results obtained from this initial study indicate the potential of mapping one’s stress level to his physiological indices. Thus these results indicate the potential applicability of such a system for various stroke-rehabilitation applications

via IEEE Xplore Abstract (Abstract) – Design of a physiologically informed virtual reality based interactive platform for individuals with….

, , , , , , , , , ,

Leave a comment

%d bloggers like this: